organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-tert-Butyl-4-methyl-6-(1,3-oxazinan-1vlmethyl)phenol

Wen-Jun Lei,^a Shu-Zhong Zhan^a and Seik Weng Ng^{b*}

^aCollege of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 30 March 2010; accepted 30 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.117; data-to-parameter ratio = 11.4.

The title compound, C₁₆H₂₅NO₂, which was synthesized by a Mannich reaction route, is a rare example of an organic compound containing the six-membered oxazine ring. The ring adopts a chair conformation and the N atom is pyramidal. The N atom serves as a hydrogen-bond acceptor to the phenolic OH group.

Related literature

The synthesis from 2-tert-butyl-4-methylphenol, 3-amino-1propanol and formaldehyde is an example of carbon-carbon bond formation by the Mannich reaction. For another variation of the Mannich reaction involving 3-amino-1-propanol, see: Korepin et al. (2001).

Experimental

Crystal data C16H25NO2

 $M_r = 263.37$

Orthorhombic, $P2_12_12_1$ a = 6.4740 (7) Åb = 14.1928 (13) Å c = 16.7914 (16) Å V = 1542.9 (3) Å³

Data collection

Rigaku R-AXIS Spider IP	15222 measured reflections
diffractometer	2044 independent reflections
Absorption correction: multi-scan	1664 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.022$
$T_{\min} = 0.980, T_{\max} = 0.991$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of
$wR(F^2) = 0.117$	independent and constrained
S = 1.11	refinement
2044 reflections	$\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$
180 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
1 restraint	

Z = 4

Mo $K\alpha$ radiation

 $0.28 \times 0.20 \times 0.12 \ \mathrm{mm}$

 $\mu = 0.07 \text{ mm}^{-1}$

T = 293 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1 - H1 \cdots N1$	0.85 (1)	1.90 (2)	2.665 (2)	149 (3)

Data collection: RAPID-AUTO (Rigaku, 2002); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank South China University of Technology and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5237).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Korepin, A. G., Galkin, P. V., Glushakova, N. M., Lagodzinskaya, G. V., Loginova, M. V., Lodygina, V. P. & Eremenko, L. T. (2001). Russ. Chem. Bull. 50, 104-109.
- Rigaku (2002). RAPID-AUTO, Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). publCIF. In preparation.

supporting information

 Acta Cryst. (2010). E66, o1030 [https://doi.org/10.1107/S1600536810012109]

 2-tert-Butyl-4-methyl-6-(1,3-oxazinan-1-ylmethyl)phenol

Wen-Jun Lei, Shu-Zhong Zhan and Seik Weng Ng

S1. Comment

Organic synthesis centers largely on stereoselective carbon–carbon and carbon–heteroatom bond-forming reactions; among such reactions is the class of Mannich reactions, which can be regarded as being the most important carbon– carbon bond-forming reaction. The reactions lead to β -aminocarbonyl compounds, which are important intermediates for pharmaceuticals.

One variation of the Mannich reaction involves the catalytic addition of an amine, R₂NH, to an alkene or alkyne, i. e., hydroamination. In the 2-*tert*-butyl-4-methylphenol reacts with 3-amino-1-propanol to yield a compound having a 1,3-oxazinyl ring (Scheme I, Fig. 1). Such a ring is difficult to synthesis by conventional routes.

S2. Experimental

2-*tert*-Butyl-4-methylphenol (2.24 g, 12.3 mmol), 3-amino-1-propanol (0.93 g, 12.3 mmol), 37% aqueous formaldehyde (1.83 ml, 24.6 mmol) and triethylamine (2.49 g, 24.6 mmol) in ethanol (50 ml) were heated for 6 hours. Slow evaporation of the filtrate gave light-yellow crystals in 70% yield.

S3. Refinement

Carbon-bound H-atoms were allowed to ride on their parent atoms (C–H 0.93-0.97 Å) and their displacement parameters were set to $1.2-1.5U_{eq}$ (C). The hydroxy H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of O–H 0.84 ± 0.01 Å.

Due to the absence of anomalous scatterers, the absolute configuration could not be determined, and, therefore, 1488 Friedel pairs were merged.

Figure 1

Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

2-tert-Butyl-4-methyl-6-(1,3-oxazinan-1-ylmethyl)phenol

Crystal data

C₁₆H₂₅NO₂ $M_r = 263.37$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 6.4740 (7) Å b = 14.1928 (13) Å c = 16.7914 (16) Å V = 1542.9 (3) Å³ Z = 4

Data collection

Rigaku R-AXIS Spider IP diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.980, T_{\max} = 0.991$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.117$ S = 1.112044 reflections F(000) = 576 $D_x = 1.134 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 12093 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KBlock, yellow $0.28 \times 0.20 \times 0.12 \text{ mm}$

15222 measured reflections 2044 independent reflections 1664 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -8 \rightarrow 8$ $k = -18 \rightarrow 18$ $l = -21 \rightarrow 21$

180 parameters1 restraintPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_0^2) + (0.0739P)^2 + 0.0371P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta ho_{ m max} = 0.14 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.8894 (2)	0.48173 (11)	0.62162 (8)	0.0654 (4)	
H1	0.972 (4)	0.5284 (14)	0.6242 (18)	0.095 (9)*	
O2	0.9444 (3)	0.75355 (12)	0.59189 (10)	0.0816 (5)	
N1	1.0668 (3)	0.63695 (11)	0.67909 (9)	0.0550 (4)	
C1	0.7719 (3)	0.47819 (12)	0.68939 (10)	0.0494 (4)	
C2	0.8294 (3)	0.53321 (12)	0.75571 (10)	0.0506 (4)	
C3	0.7081 (3)	0.53034 (12)	0.82338 (10)	0.0536 (4)	
Н3	0.7451	0.5670	0.8670	0.064*	
C4	0.5332 (3)	0.47461 (12)	0.82833 (10)	0.0524 (4)	
C5	0.4816 (3)	0.42039 (12)	0.76175 (10)	0.0501 (4)	
Н5	0.3656	0.3819	0.7646	0.060*	
C6	0.5953 (3)	0.42121 (12)	0.69126 (10)	0.0468 (4)	
C7	1.0274 (3)	0.58874 (15)	0.75529 (11)	0.0594 (5)	
H7A	1.0222	0.6353	0.7975	0.071*	
H7B	1.1415	0.5465	0.7666	0.071*	
C8	0.4047 (4)	0.47229 (16)	0.90293 (11)	0.0731 (6)	
H8A	0.2749	0.4423	0.8919	0.110*	
H8B	0.3806	0.5355	0.9211	0.110*	
H8C	0.4765	0.4376	0.9434	0.110*	
C9	0.5275 (3)	0.36320 (13)	0.61807 (10)	0.0539 (4)	
C10	0.4755 (5)	0.43096 (16)	0.54936 (12)	0.0754 (6)	
H10A	0.3555	0.4673	0.5630	0.113*	
H10B	0.4484	0.3953	0.5019	0.113*	
H10C	0.5901	0.4725	0.5403	0.113*	
C11	0.3358 (4)	0.30415 (17)	0.63527 (14)	0.0745 (6)	
H11A	0.2244	0.3448	0.6510	0.112*	
H11B	0.3651	0.2605	0.6774	0.112*	
H11C	0.2971	0.2701	0.5882	0.112*	
C12	0.7001 (4)	0.29608 (16)	0.59218 (13)	0.0731 (6)	
H12A	0.6504	0.2558	0.5504	0.110*	
H12B	0.7423	0.2584	0.6368	0.110*	
H12C	0.8157	0.3320	0.5731	0.110*	
C13	0.9229 (3)	0.71409 (15)	0.66757 (13)	0.0668 (5)	
H13A	0.7828	0.6912	0.6742	0.080*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

0.9476	0.7621	0.7076	0.080*
1.1466 (4)	0.79381 (18)	0.58285 (17)	0.0839 (7)
1.1654	0.8439	0.6215	0.101*
1.1600	0.8208	0.5300	0.101*
1.3100 (4)	0.71942 (18)	0.59488 (14)	0.0743 (6)
1.3017	0.6732	0.5524	0.089*
1.4457	0.7482	0.5930	0.089*
1.2798 (3)	0.67164 (15)	0.67383 (13)	0.0633 (5)
1.3757	0.6195	0.6790	0.076*
1.3065	0.7158	0.7167	0.076*
	0.9476 1.1466 (4) 1.1654 1.1600 1.3100 (4) 1.3017 1.4457 1.2798 (3) 1.3757 1.3065	0.94760.76211.1466 (4)0.79381 (18)1.16540.84391.16000.82081.3100 (4)0.71942 (18)1.30170.67321.44570.74821.2798 (3)0.67164 (15)1.30650.7158	0.94760.76210.70761.1466 (4)0.79381 (18)0.58285 (17)1.16540.84390.62151.16000.82080.53001.3100 (4)0.71942 (18)0.59488 (14)1.30170.67320.55241.44570.74820.59301.2798 (3)0.67164 (15)0.67383 (13)1.30650.71580.7167

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0583 (9)	0.0845 (9)	0.0533 (7)	-0.0116 (8)	0.0156 (7)	-0.0123 (7)
O2	0.0656 (10)	0.0945 (10)	0.0847 (10)	-0.0108 (9)	-0.0202 (8)	0.0295 (9)
N1	0.0417 (8)	0.0652 (8)	0.0579 (8)	-0.0029 (7)	-0.0030 (7)	0.0015 (7)
C1	0.0461 (9)	0.0594 (8)	0.0427 (8)	0.0024 (8)	0.0025 (7)	-0.0022 (7)
C2	0.0480 (10)	0.0563 (9)	0.0474 (8)	0.0045 (8)	-0.0048 (7)	0.0002 (8)
C3	0.0618 (11)	0.0578 (9)	0.0412 (8)	0.0048 (9)	-0.0042 (8)	-0.0049 (7)
C4	0.0547 (10)	0.0583 (8)	0.0443 (8)	0.0077 (8)	0.0048 (8)	-0.0005 (8)
C5	0.0474 (10)	0.0540 (8)	0.0491 (8)	0.0026 (8)	0.0026 (7)	0.0007 (7)
C6	0.0456 (9)	0.0517 (8)	0.0431 (7)	0.0058 (7)	-0.0011 (7)	-0.0018 (7)
C7	0.0526 (11)	0.0719 (10)	0.0537 (9)	-0.0032 (10)	-0.0084 (9)	0.0020 (9)
C8	0.0795 (16)	0.0877 (13)	0.0519 (11)	0.0033 (13)	0.0197 (10)	-0.0034 (10)
C9	0.0553 (11)	0.0637 (10)	0.0428 (8)	0.0006 (9)	-0.0051 (8)	-0.0044 (8)
C10	0.0868 (17)	0.0854 (13)	0.0541 (10)	-0.0005 (13)	-0.0201 (11)	0.0065 (10)
C11	0.0764 (16)	0.0823 (13)	0.0649 (12)	-0.0191 (12)	-0.0065 (11)	-0.0106 (11)
C12	0.0834 (17)	0.0754 (12)	0.0606 (11)	0.0122 (13)	0.0005 (11)	-0.0172 (10)
C13	0.0492 (11)	0.0760 (11)	0.0752 (13)	0.0046 (10)	-0.0018 (11)	0.0095 (11)
C14	0.0771 (17)	0.0884 (14)	0.0861 (16)	-0.0235 (14)	-0.0163 (14)	0.0215 (13)
C15	0.0625 (14)	0.0911 (14)	0.0694 (13)	-0.0203 (12)	0.0040 (11)	-0.0028 (11)
C16	0.0458 (10)	0.0732 (11)	0.0708 (12)	-0.0052 (9)	-0.0033 (10)	-0.0011 (10)

Geometric parameters (Å, °)

01—C1	1.370 (2)	C9—C11	1.526 (3)
01—H1	0.852 (10)	C9—C12	1.531 (3)
O2—C13	1.396 (3)	C9—C10	1.539 (3)
O2—C14	1.436 (3)	C10—H10A	0.9600
N1-C13	1.450 (3)	C10—H10B	0.9600
N1-C16	1.467 (3)	C10—H10C	0.9600
N1—C7	1.473 (2)	C11—H11A	0.9600
C1—C6	1.401 (3)	C11—H11B	0.9600
C1—C2	1.410 (2)	C11—H11C	0.9600
C2—C3	1.382 (3)	C12—H12A	0.9600
C2—C7	1.505 (3)	C12—H12B	0.9600
C3—C4	1.384 (3)	C12—H12C	0.9600

supporting information

Сз Нз	0.0300	C13 H13A	0.9700
C_{4}	1 308 (2)	C13 H13R	0.9700
C_{4} C_{8}	1.590(2)	C14 C15	1 508 (4)
C5 C6	1.304(2)	C_{14} H_{14A}	0.0700
C5C0	1.394(2)	C14 $H14P$	0.9700
	1.542 (2)	C14—H14B	0.9700
C_{0}	1.343(2)	C15 - C16	1.302 (3)
	0.9700	CI5—HISA	0.9700
	0.9700	CIS—HISB	0.9700
C8—H8A	0.9600	CI6—HI6A	0.9700
C8—H8B	0.9600	С16—Н16В	0.9700
C8—H8C	0.9600		
C1 O1 H1	110(2)	C9 C10 H10B	100.5
C1 = 01 = 01	110(2) 11020(18)		109.5
$C_{13} = 02 = 014$	110.29 (10)	$\begin{array}{cccc} \begin{array}{c} 1110A - C 10 - 1110B \end{array} \\ \begin{array}{ccccc} C 10 - 1110C \end{array} \end{array}$	109.5
C13 - N1 - C10	110.01(13) 110.80(16)	$U_{10} = C_{10} = H_{10}C$	109.5
CIS = NI = C7	110.80 (10)	H10A - C10 - H10C	109.5
CI_{0} $NI_{-}C/$	111.79 (16)	HI0B—CI0—HI0C	109.5
01 - 01 - 02	119.54 (15)	C9—CII—HIIA	109.5
01	119.30 (17)	C9—CII—HIIB	109.5
C6-C1-C2	121.15 (16)	HIIA—CII—HIIB	109.5
C3—C2—C1	118.89 (18)	С9—С11—Н11С	109.5
C3—C2—C7	120.23 (16)	H11A—C11—H11C	109.5
C1—C2—C7	120.73 (17)	H11B—C11—H11C	109.5
C2—C3—C4	122.09 (16)	C9—C12—H12A	109.5
С2—С3—Н3	119.0	C9—C12—H12B	109.5
С4—С3—Н3	119.0	H12A—C12—H12B	109.5
C3—C4—C5	117.54 (16)	C9—C12—H12C	109.5
C3—C4—C8	121.00 (16)	H12A—C12—H12C	109.5
C5—C4—C8	121.45 (18)	H12B—C12—H12C	109.5
C6—C5—C4	123.24 (18)	O2-C13-N1	111.13 (18)
С6—С5—Н5	118.4	O2—C13—H13A	109.4
С4—С5—Н5	118.4	N1—C13—H13A	109.4
C5—C6—C1	117.06 (15)	O2—C13—H13B	109.4
C5—C6—C9	121.45 (17)	N1—C13—H13B	109.4
C1—C6—C9	121.49 (15)	H13A—C13—H13B	108.0
N1—C7—C2	113.26 (15)	O2—C14—C15	110.27 (18)
N1—C7—H7A	108.9	O2—C14—H14A	109.6
С2—С7—Н7А	108.9	C15—C14—H14A	109.6
N1—C7—H7B	108.9	O2—C14—H14B	109.6
С2—С7—Н7В	108.9	C15—C14—H14B	109.6
H7A—C7—H7B	107.7	H14A—C14—H14B	108.1
C4—C8—H8A	109.5	C16—C15—C14	110.1 (2)
C4—C8—H8B	109.5	C16—C15—H15A	109.6
H8A—C8—H8B	109.5	C14—C15—H15A	109.6
C4—C8—H8C	109.5	C16—C15—H15B	109.6
H8A - C8 - H8C	109.5	C14—C15—H15B	109.6
H8B - C8 - H8C	109.5	H15A - C15 - H15B	108.2
$C_{11} = C_{9} = C_{12}$	107.79 (16)	N1_C16_C15	100.2
011 - 09 - 012	107.79 (10)	11 - 010 - 013	109.00 (10)

C11—C9—C10	107.87 (19)	N1—C16—H16A	109.9
C12—C9—C10	109.61 (18)	C15—C16—H16A	109.9
С11—С9—С6	111.95 (16)	N1—C16—H16B	109.9
С12—С9—С6	110.53 (17)	C15—C16—H16B	109.9
С10—С9—С6	109.03 (15)	H16A—C16—H16B	108.3
C9—C10—H10A	109.5		
O1—C1—C2—C3	178.97 (16)	C16—N1—C7—C2	-166.73 (16)
C6—C1—C2—C3	0.0 (3)	C3—C2—C7—N1	-142.23 (18)
O1—C1—C2—C7	-5.4 (3)	C1-C2-C7-N1	42.2 (2)
C6-C1-C2-C7	175.57 (16)	C5—C6—C9—C11	-3.1 (2)
C1—C2—C3—C4	0.6 (3)	C1—C6—C9—C11	177.96 (17)
C7—C2—C3—C4	-175.06 (16)	C5—C6—C9—C12	-123.27 (19)
C2—C3—C4—C5	-0.1 (2)	C1—C6—C9—C12	57.8 (2)
C2—C3—C4—C8	179.57 (19)	C5-C6-C9-C10	116.2 (2)
C3—C4—C5—C6	-1.0 (3)	C1-C6-C9-C10	-62.8 (2)
C8—C4—C5—C6	179.35 (17)	C14—O2—C13—N1	-63.1 (2)
C4—C5—C6—C1	1.5 (3)	C16—N1—C13—O2	62.4 (2)
C4—C5—C6—C9	-177.50 (16)	C7—N1—C13—O2	-173.52 (16)
O1—C1—C6—C5	-179.96 (17)	C13—O2—C14—C15	59.0 (3)
C2-C1-C6-C5	-0.9 (2)	O2-C14-C15-C16	-54.6 (3)
O1—C1—C6—C9	-1.0 (2)	C13—N1—C16—C15	-56.7 (2)
C2-C1-C6-C9	178.05 (16)	C7—N1—C16—C15	179.72 (18)
C13—N1—C7—C2	70.2 (2)	C14—C15—C16—N1	53.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1…N1	0.85 (1)	1.90 (2)	2.665 (2)	149 (3)