

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[4,4'-(propane-1,3-diyl)dipiperidinium] β -octamolybdate(VI)

Mohamed Driss, Rekaya Ksiksi, Fatma Ben Amor and Mohamed Faouzi Zid*

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia Correspondence e-mail: faouzi.zid@fst.rnu.tn

Received 29 March 2010; accepted 13 April 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.036; wR factor = 0.099; data-to-parameter ratio = 17.2.

The title compound, bis[4,4'-(propane-1,3-diyl)dipiperidinium] β -octamolybdate(VI), (C₁₃H₂₈N₂)₂[Mo₈O₂₆], was produced by hydrothermal reaction of an acidified aqueous solution of Na₂MoO₄·2H₂O and 4,4'-trimethylenedipiperidine (*L*). The structure of the title compound consists of β -octamolybdate(VI) anion clusters and protonated [H₂*L*]²⁺ cations. The octamolybdate anion is located around an inversion center. N–H···O hydrogen bonds between the cations and anions ensure the cohesion of the structure and result in a three-dimensional network.

Related literature

For applications of polyoxometallates (POMs) in catalyst chemistry, see: Pope (1983). For applications of POMs in materials science, see: Muller *et al.* (1998). For the introduction of POMs into coordination polymers for the construction of polymers with desired properties, see: Bu *et al.* (2001); Wu *et al.* (2002). For the antiviral and antitumour activities of POMs, see: Hasenknopf (2005); Gerth *et al.* (2005). For related literature, see: Zebiri *et al.* (2008); Li & Tan (2008). For hydrogen-bonding discussion, see: Blessing (1986); Brown (1976).

 $V = 4559 (3) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 2.22 \text{ mm}^{-1}$

4960 independent reflections 3996 reflections with $I > 2\sigma(I)$

intensity decay: 4%

2 standard reflections every 120 min

T = 298 K0.4 × 0.3 × 0.2 mm

 $R_{\rm int} = 0.034$

Z = 4

Experimental

Crystal data

$(C_{13}H_{28}N_2)_2[Mo_8O_{26}]$	
$M_r = 1608.26$	
Orthorhombic, Pbca	
u = 23.975 (5) Å	
b = 13.935 (4) Å	
z = 13.647 (9) Å	

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.556, T_{\max} = 0.642$
5810 measured reflections

Refinement

I v

S

4

N1-

N2-

$R[F^2 > 2\sigma(F^2)] = 0.036$	289 parameters
$\nu R(F^2) = 0.099$	H-atom parameters constrained
f = 1.08	$\Delta \rho_{\rm max} = 1.05 \ {\rm e} \ {\rm \AA}^{-3}$
960 reflections	$\Delta \rho_{\rm min} = -1.27 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °). $\overline{D-H\cdots A}$ D-H $H\cdots A$

$-H1B\cdots O5$ 0.90 2.42 3.312 (6) 172	$\cdots A$
$-H2B\cdots O10^{i}$ 0.90 2.01 2.886 (5) 163	

Symmetry code: (i) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$.

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP-3 for Windows* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2553).

References

- Blessing, R. H. (1986). Acta Cryst. B42, 613-621.
- Brandenburg, K. (2001). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Brown, I. D. (1976). *Acta Cryst.* A32, 24–31.
- Bu, W.-M., Ye, L., Yang, G.-Y., Gao, J.-S., Fan, Y.-G., Shao, M.-C. & Xu, J.-Q. (2001). Inorg. Chem. Commun. 4, 1–4.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gerth, H. U. V., Rompel, A., Krebs, B., Boos, J. & Lanvers-Kaminsky, C. (2005). Anticancer Drugs, 16, 101–106.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Hasenknopf, B. (2005). Front. Biosci. 10, 275–287.

- Li, S.-L. & Tan, K. (2008). Acta Cryst. E64, m1487.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Muller, A., Peters, F., Pope, M. T. & Gatteschi, D. (1998). Chem. Rev. 98, 239–241.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

metal-organic compounds

Pope, M. T. (1983). *Heteropoly and Isopoly Oxometalates*. New York: Springer-Verlag.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zebiri, I., Bencharif, L., Direm, A., Bencharif, M. & Benali-Cherif, N. (2008). Acta Cryst. E64, m474-m475.

Wu, C.-D., Lu, C.-Z., Lin, X., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. Commun. 5, 664–666.

Acta Cryst. (2010). E66, m533–m534 [https://doi.org/10.1107/S1600536810013632] Bis[4,4'-(propane-1,3-diyl)dipiperidinium] β-octamolybdate(VI) Mohamed Driss, Rekaya Ksiksi, Fatma Ben Amor and Mohamed Faouzi Zid

S1. Comment

Les polyoxométallates (POMs) constituent une large famille de clusters d'oxydes métalliques contenant des métaux de transition (principalement V, Mo et W) en leurs degrés d'oxydation les plus élevés (Pope, 1983). La diversité des structures des POMs leur procure une large polyvalence en termes de forme, de polarité, de potentiels redox, de surface, de distribution de charge et d'acidité, ainsi, beaucoup d'applications leur sont possibles dans divers domaines, parmi lesquels, la catalyse, la science des matériaux et chimie des polymères (Pope, 1983; Muller *et al.*, 1998; Bu *et al.*, 2001; Wu *et al.*, 2002). Par ailleurs de récentes études ont montré qu'une gamme de POMs présente des activités antivirales et anti-tumorales (Hasenknopf, 2005; Gerth *et al.*, 2005). Durant notre étude sur ce type de matériaux nous avons isolé une nouvelle phase dont les cristaux sont de qualité et de taille convenables pour une étude par diffraction des rayons X sur monocristal.

L'unité asymétrique du composé (I) consiste en un cation diprotoné 4,4'-triméthylènedipépiridinium et la moitié d'un cluster β -octamolybdate [Mo₈O₂₆]⁴, chaque cluster étant organisé autour d'un centre d'inversion (Fig. 1). Une liaison hydrogène faible relie un atome d'hydrogène du cation et un atome d'oxygène externe du cluster β -octamolybdate(VI) (Fig. 1).

Des liaisons hydrogène de type N—H···O, satisfaisant la condition NHO supérieur ou égal à 150°, s'établissent entre les cations organiques et les atomes d'oxygène externes des clusters β -octamolybdate(VI), renforçant ainsi la cohésion de la structure générant ainsi une charpente tridimensionnelle (Fig. 2). Ces liaisons sont considérées comme faibles (N···O: 2,885 (6) et 3,312 (7) (Å)), d'après le critère de Brown portant sur les distances et les angles (Brown, 1976; Blessing, 1986). Le composé étudié est comparable à d'autres composés similaires de la littérature, par exemple NH₄(C₈H₂₀N)₃[Mo₈O₂₆] (Zebiri *et al.*, 2008) et (C₁₂H₂₀N₄)₂[Mo₈O₂₆] (Li & Tan, 2008). En effet ces deux composés sont constitués de clusters β -octamolybdate discrets et de cations organiques reliés par des liaisons hydrogène de type NH···O. Dans le deuxième exemple cité, bien qu'il n y ait pas partage d'arêtes ni de sommets entre les clusters, l'existence de liaisons hydrogène entre les cations organiques et les clusters confère à la structure le caractère unidimensionnel.

S2. Experimental

La synthèse a été réalisée par voie hydrothermale avec comme réactifs Na₂MoO₄.2H₂O (0,24 g, 1 mmol) et 4,4'triméthylènedipépiridine (0,1 g, 1 mmol). Le pH de la solution est ajusté à 4 à l'aide de HCl (6 M). La solution préparée est transvasée dans un récipient en Téflon qui est introduit dans une autoclave en acier. L'ensemble est maintenu sous pression à une température voisine de 150°C pendant deux jours. Le refroidissement jusqu'à température ambiante a été réalisé par paliers de 30° par jour. Des cristaux de forme parallélépipédique, de couleur brune, de taille suffisante et de qualité convenable pour une étude structurale sont obtenus.

S3. Refinement

All H atoms have been positioned geometrically using AFIX23 and AFIX13 instructions of SHELXL97 (Sheldrick, 2008) with the constraint $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Représentation du polyanion $[Mo_8O_{26}]^{4-}$ et d'un cation diprotoné $(C_{13}H_{28}N_2)^{2+}$. Les ellipsoïdes d'agitation thermique ont 30% de probabilité de présence. Les atomes H sont représentés comme des sphères de rayon arbitraire et la liaison H est représentée en trait pointillé. [Code de symétrie: (i) -*x* + 1, -*y* + 1, -*z*]

Figure 2

Projection de la structure du composé $(C_{13}H_{28}N_2)_2[Mo_8O_{26}]$ selon c.

bis[4,4'-(propane-1,3-diyl)dipiperidinium] β-octamolybdate(VI)

Crystal data

 $(C_{13}H_{28}N_2)_2[Mo_8O_{26}]$ $M_r = 1608.26$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 23.975 (5) Å b = 13.935 (4) Å c = 13.647 (9) Å V = 4559 (3) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4	4960 independent reflections
diffractometer	3996 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.034$
Graphite monochromator	$\theta_{\rm max} = 27.0^\circ, \theta_{\rm min} = 2.2^\circ$
$\omega/2\theta$ scans	$h = -30 \rightarrow 0$
Absorption correction: ψ scan	$k = -1 \rightarrow 17$
(North <i>et al.</i> , 1968)	$l = -1 \rightarrow 17$
$T_{\min} = 0.556, \ T_{\max} = 0.642$	2 standard reflections every 120 min
5810 measured reflections	intensity decay: 4%

F(000) = 3136

 $\theta = 12 - 15^{\circ}$ $\mu = 2.22 \text{ mm}^{-1}$

T = 298 K

Prism. brown

 $0.4 \times 0.3 \times 0.2 \text{ mm}$

 $D_{\rm x} = 2.343 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 25 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.099$	neighbouring sites
S = 1.08	H-atom parameters constrained
4960 reflections	$w = 1/[\sigma^2(F_o^2) + (0.050P)^2 + 9.1911P]$
289 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.05 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.27 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.4488 (2)	0.3151 (4)	0.3293 (4)	0.0540 (15)	
H1A	0.4463	0.2575	0.3590	0.065*	
H1B	0.4708	0.3081	0.2764	0.065*	
N2	0.15957 (16)	0.2275 (3)	0.8306 (3)	0.0294 (9)	

H2A	0.1468	0.1813	0.8708	0.035*
H2B	0.1300	0.2547	0.8008	0.035*
C1	0.3795 (2)	0.4370 (4)	0.4548 (4)	0.0312 (11)
H1	0.3854	0.4959	0.4170	0.037*
C2	0.3548 (3)	0.3633 (5)	0.3856 (4)	0.0449 (15)
H20	0.3187	0.3857	0.3631	0.054*
H21	0.3490	0.3036	0.4208	0.054*
C3	0.3924 (3)	0.3444 (5)	0.2965 (4)	0.0463 (15)
H31	0.3762	0.2941	0.2564	0.056*
H32	0.3950	0.4021	0.2571	0.056*
C4	0.4753 (3)	0.3838 (5)	0.3975 (4)	0.0504 (16)
H41	0.4819	0.4442	0.3641	0.060*
H42	0.5109	0.3587	0.4192	0.060*
C5	0.4370 (2)	0.4003 (5)	0.4866 (4)	0.0401 (13)
H51	0.4327	0.3406	0.5223	0.048*
H52	0.4542	0.4468	0.5302	0.048*
C6	0.3415(2)	0 4628 (4)	0.5419(4)	0.0352(12)
H61	0.3615	0.5075	0.5835	0.042*
H62	0.3091	0.4961	0.5165	0.042*
C7	0.3214(2)	0.3803(4)	0.6050(4)	0.012 0.0340(12)
С7 H71	0.3532	0.3498	0.6359	0.0340 (12)
H72	0.3032	0.3330	0.5638	0.041*
C8	0.3032 0.2805 (2)	0.3330 0.4140 (4)	0.5050 0.6843(4)	0.041
U0 Н81	0.2501	0.4170	0.6526	0.0255 (10)
H82	0.2007	0.4479	0.0520	0.035*
C0	0.2997 0.25557 (10)	0.4390	0.7202 0.7494 (3)	0.035
U9 U0	0.23557 (19)	0.3348 (3)	0.7494 (3)	0.0201 (9)
C10	0.2800	0.3038 0.3782 (3)	0.7855	0.031°
U101	0.2149(2) 0.2345	0.3782 (3)	0.8239 (3)	0.0274 (10)
H102	0.2343	0.4231	0.8037	0.033*
C11	0.1803	0.4112 0.3022 (4)	0.7893	0.033
U111	0.1098(2)	0.3022 (4)	0.8300 (4)	0.0338 (11)
ППП ППП	0.2191	0.2710	0.9279	0.041*
ПП2 С12	0.1039	0.3321 0.1822 (4)	0.9334	0.041°
U12	0.1909(2) 0.1751	0.1632 (4)	0.7343 (4)	0.0303(12) 0.044*
11121 Ц122	0.1751	0.1403	0.7155	0.044*
П122 С12	0.2234 0.22476 (10)	0.1433 0.2581 (4)	0.7808	0.044°
U121	0.22470 (19)	0.2381 (4)	0.0904 (4)	0.0299 (10)
П131 Ц122	0.1900	0.2009	0.0301	0.030*
П152 Мо1	0.2310	0.2203	0.0470	0.030°
Mol	0.484890(10)	0.58851(5)	0.03948(3)	0.02043(11)
Mo2	0.333080(10) 0.422788(16)	0.34337(3) 0.61244(3)	0.18137(3) 0.11200(3)	0.02234(11) 0.02480(11)
Mod	0.422788(10)	0.01244(3)	0.11200(3)	0.02489 (11)
M04	0.030139(17)	0.54852(3)	0.00726(3)	0.02559 (11)
	0.4/9//(13)	0.4631(2)	0.1051(2)	0.0223(0)
02	0.33430(13) 0.40781(12)	0.4788(2)	0.0255(2)	0.0211(6)
03	0.49/81(13)	0.3539 (2)	-0.0778(2)	0.0230(6)
04	0.41401(13)	0.3525(3)	0.0025(2)	0.02/3(7)
05	0.51905(15)	0.3003 (3)	0.1209(3)	0.034/(8)

O6	0.36637 (13)	0.5174 (3)	0.1144 (2)	0.0279 (7)
07	0.39269 (15)	0.7001 (3)	0.0433 (3)	0.0387 (9)
08	0.54174 (16)	0.6221 (3)	0.2737 (3)	0.0353 (8)
09	0.61609 (14)	0.6091 (3)	0.1208 (2)	0.0295 (8)
O10	0.42016 (15)	0.6529 (3)	0.2296 (3)	0.0420 (10)
011	0.58676 (15)	0.4471 (3)	0.2357 (3)	0.0336 (8)
012	0.70309 (16)	0.6243 (3)	-0.0214 (3)	0.0415 (10)
013	0.68141 (15)	0.4542 (3)	0.0665 (3)	0.0366 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.089 (4)	0.040 (3)	0.033 (3)	0.024 (3)	0.017 (3)	0.007 (2)
N2	0.0215 (18)	0.028 (2)	0.038 (2)	-0.0026 (17)	-0.0008 (17)	0.0090 (18)
C1	0.040 (3)	0.027 (3)	0.027 (2)	-0.005 (2)	0.004 (2)	0.003 (2)
C2	0.055 (4)	0.051 (3)	0.029 (3)	-0.020 (3)	0.004 (2)	0.003 (3)
C3	0.066 (4)	0.047 (3)	0.026 (3)	-0.020 (3)	0.005 (3)	-0.003 (3)
C4	0.045 (3)	0.071 (5)	0.035 (3)	0.007 (3)	0.006 (3)	0.004 (3)
C5	0.038 (3)	0.050 (3)	0.033 (3)	0.000 (3)	0.003 (2)	0.003 (3)
C6	0.041 (3)	0.031 (3)	0.034 (3)	0.000 (2)	0.009 (2)	0.006 (2)
C7	0.035 (3)	0.032 (3)	0.034 (3)	-0.003 (2)	0.010 (2)	0.002 (2)
C8	0.032 (3)	0.027 (2)	0.029 (2)	0.000 (2)	0.005 (2)	0.001 (2)
C9	0.023 (2)	0.027 (2)	0.028 (2)	-0.0002 (19)	0.0011 (18)	0.002 (2)
C10	0.030 (2)	0.025 (2)	0.028 (2)	-0.0036 (19)	0.0047 (19)	-0.0025 (19)
C11	0.034 (3)	0.042 (3)	0.026 (2)	-0.004 (2)	0.005 (2)	0.001 (2)
C12	0.033 (3)	0.026 (2)	0.051 (3)	-0.002 (2)	0.005 (2)	-0.007 (2)
C13	0.023 (2)	0.030 (2)	0.036 (2)	-0.0020 (19)	0.005 (2)	-0.004 (2)
Mo1	0.0216 (2)	0.0201 (2)	0.01959 (19)	-0.00003 (14)	-0.00049 (14)	0.00314 (15)
Mo2	0.0213 (2)	0.0275 (2)	0.01882 (19)	-0.00030 (15)	-0.00195 (14)	0.00103 (15)
Mo3	0.0206 (2)	0.0281 (2)	0.0260 (2)	0.00483 (16)	0.00207 (15)	-0.00384 (16)
Mo4	0.0195 (2)	0.0321 (2)	0.0252 (2)	-0.00429 (16)	-0.00038 (15)	0.00520 (17)
01	0.0205 (15)	0.0300 (17)	0.0170 (14)	0.0002 (13)	0.0031 (12)	0.0006 (13)
O2	0.0197 (15)	0.0237 (16)	0.0198 (15)	-0.0001 (12)	-0.0010 (12)	0.0010 (12)
03	0.0209 (15)	0.0241 (16)	0.0240 (15)	-0.0016 (13)	-0.0005 (13)	-0.0003 (13)
O4	0.0245 (16)	0.0300 (18)	0.0272 (17)	-0.0058 (14)	0.0000 (13)	0.0027 (14)
05	0.037 (2)	0.0296 (19)	0.0371 (19)	0.0021 (16)	-0.0061 (16)	0.0099 (16)
06	0.0201 (16)	0.0387 (19)	0.0249 (16)	0.0002 (14)	0.0026 (13)	-0.0009 (15)
O7	0.0318 (19)	0.037 (2)	0.048 (2)	0.0123 (17)	-0.0005 (17)	0.0045 (18)
08	0.036 (2)	0.042 (2)	0.0280 (17)	0.0018 (17)	-0.0007 (15)	-0.0062 (15)
09	0.0248 (17)	0.037 (2)	0.0266 (16)	-0.0101 (14)	-0.0020 (14)	0.0012 (15)
O10	0.0317 (19)	0.059 (3)	0.035 (2)	0.0075 (19)	0.0045 (16)	-0.0158 (19)
011	0.0270 (18)	0.039 (2)	0.0353 (19)	0.0033 (16)	-0.0050 (15)	0.0038 (16)
O12	0.0287 (19)	0.053 (2)	0.043 (2)	-0.0137 (18)	-0.0003 (17)	0.0127 (19)
013	0.0295 (19)	0.044 (2)	0.036 (2)	0.0029 (17)	-0.0057 (16)	0.0088 (17)

Geometric parameters (Å, °)

N1—C4	1.478 (9)	C10—H101	0.9700
N1—C3	1.482 (9)	C10—H102	0.9700
N1—H1A	0.9000	C11—H111	0.9700
N1—H1B	0.9000	C11—H112	0.9700
N2—C12	1.503 (6)	C12—C13	1.517 (7)
N2—C11	1.506 (6)	C12—H121	0.9700
N2—H2A	0.9000	C12—H122	0.9700
N2—H2B	0.9000	C13—H131	0.9700
C1—C2	1.516 (8)	C13—H132	0.9700
C1—C5	1.534 (8)	Mo1—O5	1.695 (3)
C1—C6	1.540 (7)	Mo1—O4	1.758 (3)
C1—H1	0.9800	Mo1—O1	1.958 (3)
C2—C3	1.536 (8)	Mo1—O3	1.958 (3)
C2—H20	0.9700	Mo1—O2	2.140 (3)
C2—H21	0.9700	Mo1—O2 ⁱ	2.378 (3)
C3—H31	0.9700	Mo1—Mo2	3.213 (2)
С3—Н32	0.9700	Mo2—O8	1.702 (4)
C4—C5	1.540 (8)	Mo2—O11	1.703 (4)
C4—H41	0.9700	Mo2—O9	1.903 (3)
C4—H42	0.9700	Mo2—O1	2.009 (3)
C5—H51	0.9700	Mo2—O2	2.316 (3)
С5—Н52	0.9700	Mo2—O3 ⁱ	2.387 (3)
C6—C7	1.514 (7)	Mo3—O7	1.700 (4)
С6—Н61	0.9700	Mo3—O10	1.703 (4)
С6—Н62	0.9700	Mo3—O6	1.894 (3)
C7—C8	1.534 (7)	Mo3—O3 ⁱ	2.015 (3)
C7—H71	0.9700	Mo3—O2 ⁱ	2.329 (3)
С7—Н72	0.9700	Mo3—O1	2.346 (3)
C8—C9	1.538 (7)	Mo4—O12	1.699 (4)
C8—H81	0.9700	Mo4—O13	1.713 (4)
C8—H82	0.9700	Mo4—O6 ⁱ	1.937 (3)
C9—C13	1.528 (7)	Mo4—O9	1.945 (4)
C9—C10	1.533 (6)	Mo4—O4 ⁱ	2.286 (3)
С9—Н9	0.9800	Mo4—O2	2.505 (3)
C10—C11	1.516 (7)		
C4—N1—C3	113.8 (5)	O5—Mo1—O1	99.82 (16)
C4—N1—H1A	108.8	O4—Mo1—O1	96.81 (15)
C3—N1—H1A	108.8	O5—Mo1—O3	102.72 (16)
C4—N1—H1B	108.8	O4—Mo1—O3	95.99 (14)
C3—N1—H1B	108.8	O1—Mo1—O3	150.38 (13)
H1A—N1—H1B	107.7	O5—Mo1—O2	99.06 (15)
C12—N2—C11	111.7 (4)	O4—Mo1—O2	156.65 (14)
C12—N2—H2A	109.3	O1—Mo1—O2	78.50 (12)
C11—N2—H2A	109.3	O3—Mo1—O2	79.18 (12)
C12—N2—H2B	109.3	O5—Mo1—O2 ⁱ	174.01 (15)

C11—N2—H2B	109.3	O4—Mo1—O2 ⁱ	81.53 (13)
H2A—N2—H2B	107.9	O1-Mo1-O2 ⁱ	77.87 (12)
C2—C1—C5	107.6 (5)	O3—Mo1—O2 ⁱ	77.75 (12)
C2—C1—C6	114.0 (5)	O2-Mo1-O2 ⁱ	75.12 (12)
C5—C1—C6	113.0 (4)	O5—Mo1—Mo2	88.51 (13)
C2—C1—H1	107.3	O4—Mo1—Mo2	133.24 (11)
С5—С1—Н1	107.3	O1—Mo1—Mo2	36.43 (9)
С6—С1—Н1	107.3	03—Mo1—Mo2	125.24 (9)
C1-C2-C3	112 3 (5)	Ω^2 —Mo1—Mo2	46.06 (8)
C1 - C2 - H20	109.1	Ω^{2i} Mol Mo2	86 41 (8)
$C_1 C_2 H_{20}$	109.1	$O_2 MO_1 MO_2$	105.86(18)
C_{1} C_{2} H_{21}	109.1	$O_8 M_0 2 O_9$	103.80(18) 00.28(17)
$C_1 = C_2 = H_2 I$	109.1	03 - M02 - 09	39.28(17)
C_{3} C_{2} H_{21}	109.1	011 - 1002 - 09	103.39(17)
$n_{20} - c_{2} - n_{21}$	107.9	08 - M02 - 01	100.10(10)
$NI = C_2 = U_2 I_2$	110.1 (5)		97.61 (15)
NI = C3 = H31	109.6	09—Mo2—01	145.99 (13)
C2—C3—H31	109.6	08—Mo2—O2	158.21 (15)
N1—C3—H32	109.6	O11—Mo2—O2	95.70 (15)
С2—С3—Н32	109.6	O9—Mo2—O2	78.23 (13)
H31—C3—H32	108.2	O1—Mo2—O2	73.42 (12)
N1—C4—C5	109.8 (5)	O8—Mo2—O3 ⁱ	86.92 (15)
N1—C4—H41	109.7	O11—Mo2—O3 ⁱ	164.71 (15)
C5—C4—H41	109.7	O9—Mo2—O3 ⁱ	82.07 (13)
N1—C4—H42	109.7	O1—Mo2—O3 ⁱ	71.40 (12)
C5—C4—H42	109.7	O2—Mo2—O3 ⁱ	71.29 (11)
H41—C4—H42	108.2	O8—Mo2—Mo1	135.47 (13)
C1—C5—C4	111.2 (5)	O11—Mo2—Mo1	85.78 (13)
C1—C5—H51	109.4	O9—Mo2—Mo1	119.95 (11)
C4—C5—H51	109.4	O1—Mo2—Mo1	35.37 (9)
C1—C5—H52	109.4	O2—Mo2—Mo1	41.72 (8)
C4—C5—H52	109.4	$O3^{i}$ Mo2 Mo1	79.14 (8)
$H_{51} - C_{5} - H_{52}$	108.0	07 - Mo3 - 010	1054(2)
C7 - C6 - C1	116.8 (4)	$0.7 - M_0 - 0.6$	102.1(2) 102.07(17)
C7 - C6 - H61	108.1	010 - Mo3 - 06	102.07(17) 100.89(18)
$C_1 = C_0 = H_0 I$	108.1	$O7 Mo3 O3^{i}$	96 11 (16)
C7 C6 H62	108.1	$0/-10 M_{0}^{2} O_{1}^{2}$	90.11(10)
$C_{1} = C_{0} = H_{02}$	108.1	010 - 1005 - 03	100.13(10) 147.28(14)
	100.1	00 - M03 - 03	147.20(14)
H01 - C0 - H02	107.3	$0/-M03-02^{\circ}$	92.78 (16)
	111.9 (4)	$010 - M03 - 02^{1}$	161.40 (16)
C6—C/—H/I	109.2	$06-M03-02^{4}$	/8.48 (13)
C8—C7—H71	109.2	O31—Mo3—O21	73.64 (12)
С6—С7—Н72	109.2	O7—Mo3—O1	162.66 (15)
С8—С7—Н72	109.2	O10—Mo3—O1	89.54 (16)
Н71—С7—Н72	107.9	O6—Mo3—O1	83.19 (13)
C7—C8—C9	115.9 (4)	O3 ⁱ —Mo3—O1	72.21 (12)
C7—C8—H81	108.3	O2 ⁱ —Mo3—O1	71.90 (11)
С9—С8—Н81	108.3	O12—Mo4—O13	104.98 (19)
C7—C8—H82	108.3	O12—Mo4—O6 ⁱ	104.46 (17)

C9_C8_H82	108.3	$013 - M_0 4 - 06^{i}$	97.60 (17)
H_{81} C_{8} H_{82}	107.4	$012 - M_0 4 - 09$	103.06(17)
$C_{13} = C_{0} = C_{10}$	107.4	O12 Mo4 O9	103.00(10)
$C_{13} = C_{9} = C_{10}$	100.0(4)	O_{13} Mo4 O_{2}	30.10(17)
$C_{13} - C_{9} - C_{8}$	112.7(4)	00 - 104 - 09	143.39(14)
C10 - C9 - C8	110.5 (4)	$012 - 1004 - 04^{2}$	92.01 (10)
C13—C9—H9	108.4	013—Mo4—O4	163.01 (15)
С10—С9—Н9	108.4	06 ¹ —Mo4—O4 ¹	//.8/ (14)
С8—С9—Н9	108.4	$O9-Mo4-O4^{1}$	77.50 (14)
C11—C10—C9	111.8 (4)	O12—Mo4—O2	161.62 (16)
C11—C10—H101	109.2	O13—Mo4—O2	93.37 (15)
C9—C10—H101	109.2	O6 ⁱ —Mo4—O2	73.37 (12)
C11—C10—H102	109.2	O9—Mo4—O2	72.87 (12)
С9—С10—Н102	109.2	O4 ⁱ —Mo4—O2	69.64 (11)
H101-C10-H102	107.9	Mo1—O1—Mo2	108.20 (14)
N2-C11-C10	110.7 (4)	Mo1—O1—Mo3	110.06 (14)
N2—C11—H111	109.5	Mo2—O1—Mo3	105.02 (14)
C10-C11-H111	109.5	Mo1—O2—Mo2	92.22 (11)
N2—C11—H112	109.5	Mo1—O2—Mo3 ⁱ	92.13 (12)
C10-C11-H112	109.5	Mo2—O2—Mo3 ⁱ	161.78 (15)
H111—C11—H112	108.1	Mo1-O2-Mo1 ⁱ	104.88 (12)
N2-C12-C13	112.2 (4)	Mo2—O2—Mo1 ⁱ	98.66 (12)
N2—C12—H121	109.2	Mo3 ⁱ —O2—Mo1 ⁱ	97.29 (12)
C13—C12—H121	109.2	Mo1—O2—Mo4	164.32 (15)
N2—C12—H122	109.2	Mo2—O2—Mo4	85.83 (10)
C13—C12—H122	109.2	Mo3 ⁱ —O2—Mo4	85.22 (10)
H121—C12—H122	107.9	Mo1 ⁱ —O2—Mo4	90.78 (11)
C12—C13—C9	112.9 (4)	Mo1—O3—Mo3 ⁱ	108.30 (14)
C12—C13—H131	109.0	Mo1—O3—Mo2 ⁱ	109.63 (14)
С9—С13—Н131	109.0	Mo3 ⁱ —O3—Mo2 ⁱ	103.34 (13)
C12—C13—H132	109.0	Mo1—O4—Mo4 ⁱ	118.04 (17)
С9—С13—Н132	109.0	Mo3—O6—Mo4 ⁱ	117.50 (17)
H131—C13—H132	107.8	Mo2	117.21 (17)
O5—Mo1—O4	104.29 (17)		

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
N1—H1 <i>B</i> …O5	0.90	2.42	3.312 (6)	172	
N2—H2 <i>B</i> ···O10 ⁱⁱ	0.90	2.01	2.886 (5)	163	

Symmetry code: (ii) -x+1/2, -y+1, z+1/2.