Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Scheelite-type $\mathrm{NaEr}\left(\mathrm{MoO}_{4}\right)_{2}$

Dan Zhao, ${ }^{\text {a }}$ Feifei Li, ${ }^{\text {a }}$ Wendan Cheng ${ }^{\text {b }}$ and Hao Zhang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China, and ${ }^{\text {b }}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
Correspondence e-mail: iamzd@hpu.edu.cn

Received 6 March 2010; accepted 5 April 2010
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{Mo}-\mathrm{O})=0.003 \AA$; disorder in main residue; R factor $=0.032 ; w R$ factor $=0.089$; data-to-parameter ratio $=11.5$

Explorations of the $A^{1+}-R E^{3+}-\mathrm{Mo}^{6+}-\mathrm{O}^{2-}\left(A^{1+}\right.$ is an alkali metal cation, $R E^{3+}$ is a rare-earth metal cation) quaternary systems prepared by the high-temperature solution growth method led to the title structure, sodium erbium bis(molybdate), $\mathrm{NaEr}\left(\mathrm{MoO}_{4}\right)_{2}$. It is isostructural to the scheelite structure $\left(\mathrm{CaWO}_{4}\right)$ and is composed of $\left[\mathrm{MoO}_{4}\right]^{2-}$ tetrahedra with $\overline{4}$ symmetry and $\left[(\mathrm{Na} / \mathrm{Er}) \mathrm{O}_{8}\right]^{14-}$ polyhedra. The $[(\mathrm{Na} /$ $\left.\mathrm{Er}) \mathrm{O}_{8}\right]^{14-}$ polyhedron is a distorted tetragonal antiprism, also with $\overline{4}$ symmetry, with statistically mixed $\mathrm{Na} / \mathrm{Er}$ atoms at its centre. There are two sets of $\mathrm{Na} / \mathrm{Er}-\mathrm{O}$ bond lengths [2.420 (4) and 2.435 (3) Å], but just one set of Mo-O bond lengths [1.774 (4) Å].

Related literature

For the structures, properties and applications of the alkali rare-earth tungstates and molybdates with the general formula $A^{1+} R E^{3+}\left(M^{6+} \mathrm{O}_{4}\right)_{2}\left(A^{1+}\right.$ is an alkali metal cation, $R E^{3+}$ is a rare-earth metal cation, M^{6+} is Mo^{6+} or W^{6+}), see: Huang et al. (2006); Klevtsova (1975); Klevtsova et al. (1972); Kolitsch (2001); Kuzmicheva et al. (2005); Li et al. (2006); Morozov et al. (2006); Stevens et al. (1991); Zhao et al. (2010). For the scheelite $\left(\mathrm{CaWO}_{4}\right)$ structure, see: Sillen \& Nylander (1943).

Experimental

Crystal data
$\mathrm{NaEr}\left(\mathrm{MoO}_{4}\right)_{2}$
$M_{r}=510.13$
Tetragonal, $I 4_{1} / a$
$a=5.1816$ (8) A
$c=11.288$ (3) A
$V=303.07(11) \AA^{3}$
Data collection
Rigaku Saturn70 CCD diffractometer
Absorption correction: multi-scan (rescaled SADABS; Sheldrick, 1997)

$$
T_{\min }=0.263, T_{\max }=0.489
$$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$	15 parameters
$w R\left(F^{2}\right)=0.089$	$\Delta \rho_{\max }=1.12 \mathrm{e}^{-3}$
$S=0.84$	$\Delta \rho_{\min }=-1.15 \mathrm{e} \mathrm{A}^{-3}$

520 measured reflections
172 independent reflections 106 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$
Mo $K \alpha$ radiation
$\mu=17.87 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.08 \times 0.04 \times 0.04 \mathrm{~mm}$
$\Delta \rho_{\max }=1.12 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.15 \mathrm{e}^{-3}$

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2187).

References

Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Huang, X. Y., Lin, Z. B., Zhang, L. Z., Chen, J. T. \& Wang, G. F. (2006). Cryst. Growth Des. 6, 2271-2274.
Klevtsova, R. F. (1975). Kristallografiya, 20, 746-750.
Klevtsova, R. F., Vinokurov, V. A. \& Klevtsov, P. V. (1972). Kristallografiya, 17, 284-288.
Kolitsch, U. (2001). Z. Kristallogr. 216, 449-454.
Kuzmicheva, G. M., Lis, D. A., Subbotin, K. A., Rybakov, V. B. \& Zharikov, E. V. (2005). J. Cryst. Growth, 275, e1835-e1842.

Li, X. Z., Lin, Z. B., Zhang, L. Z. \& Wang, G. F. (2006). J. Cryst. Growth, 293, 157-161.
Morozov, V. A., Arakcheeva, A. V., Chapuis, G., Guiblin, N., Rossell, M. D. \& Van Tendeloo, G. (2006). Chem. Mater. 18, 4075-4082
Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sillen, L. G. \& Nylander, A. L. (1943). Ark. Kemi Mineral. Geol. 17, 1-27.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stevens, S. B., Morrison, C. A., Allik, T. H., Rheingold, A. L. \& Haggerty, B. S. (1991). Phys. Rev. B Condens. Matter. 43, 7386-7394.

Zhao, D., Li, F., Cheng, W. \& Zhang, H. (2010). Acta Cryst. E66, i2.

supporting information

Acta Cryst. (2010). E66, i36 [https://doi.org/10.1107/S160053681001264X]

Scheelite-type $\mathrm{NaEr}\left(\mathrm{MoO}_{4}\right)_{2}$

Dan Zhao, Feifei Li, Wendan Cheng and Hao Zhang

S1. Comment

Alkali rare-earth bis(molybdates) with the general formula $A^{1+} R E^{3+}\left(M \mathrm{O}_{4}\right)_{2}\left(A^{1}\right.$ is an alkali-metal cation, $R E^{3+}$ is a rareearth metal cation, M is Mo^{6+} or W^{6+}) have been the subject of interest for many decades, mainly due to their applications as suitable host materials for fluorescence (Kuzmicheva et al., 2005; Morozov et al., 2006; Li et al., 2006). Some of these crystals are isostructural to scheelite $\left(\mathrm{CaWO}_{4}, I 4_{1} / a\right.$; Sillen \& Nylander, 1943), such as $\mathrm{NaLa}\left(\mathrm{MoO}_{4}\right)_{2}$ (Stevens et al., 1991), $\mathrm{LiNd}\left(\mathrm{MoO}_{4}\right)_{2}$ (Kolitsch, 2001), $\mathrm{LiNd}\left(\mathrm{WO}_{4}\right)_{2}$ (Huang et al., 2006) and $\mathrm{LiDy}\left(\mathrm{WO}_{4}\right)_{2}$ (Zhao et al., 2010).

In difference to CaWO_{4} with one cation species only, the cations A^{1+} and $R E^{3+}$ are statistically disordered. Within alkali rare-earth bis(molybdates), different structures from the scheelite type have also been reported, such as $\mathrm{LiLa}\left(\mathrm{MoO}_{4}\right)_{2}$ (Pbca; Klevtsova, 1975) and $\mathrm{CsDy}\left(\mathrm{MoO}_{4}\right)_{2}$ (Pccm; Klevtsova et al. 1972).

The X-ray diffraction analysis has shown that the title compound $\mathrm{NaEr}\left(\mathrm{MoO}_{4}\right)_{2}$ is isostructural with the scheelite. In the title structure, Na and Er atoms are disordered over the same $4 a$ site while Mo atoms reside on $4 b$ site. The structure of $\mathrm{NaEr}\left(\mathrm{MoO}_{4}\right)_{2}$ may be regarded as composed of $\left[\mathrm{MoO}_{4}\right]^{2-}$ tetrahedra and of $\left[(\mathrm{Na} / \mathrm{Er}) \mathrm{O}_{8}\right]^{14-}$ polyhedra (each in the form of a distorted tetragonal antiprism) that share the oxygens (Fig. 2). Each oxygen of the $\left[\mathrm{MoO}_{4}\right]^{2-}$ tetrahedron is shared by the different $\mathrm{Na} / E r$ polyhedron and each oxygen of the $\left[(\mathrm{Na} / \mathrm{Er}) \mathrm{O}_{8}\right]^{14-}$ polyhedron is shared by the different $\left[\mathrm{MoO}_{4}\right]^{2-}$ tetrahedron.

S2. Experimental

Single crystals of $\mathrm{NaEr}\left(\mathrm{MoO}_{4}\right)_{2}$ have been prepared by the high temperature solution growth (HTSG) method in air. A powder mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.4418 \mathrm{~g}), \mathrm{Er}_{2} \mathrm{O}_{3}(0.2657 \mathrm{~g})$ and $\mathrm{MoO}_{3}(2.000 \mathrm{~g})$ at the molar ratio of $\mathrm{Na}: \mathrm{Er}: \mathrm{Mo}=6: 1: 10$ was first ground in an agate mortar and then transferred to a platinum crucible. The sample was gradually heated in air at 1173 K for 24 h . In this stage, the reagents were completely melted. After that, the intermediate product was slowly cooled to 673 K at the rate of $2 \mathrm{Kh}^{-1}$. It was kept at 673 for another 10 h and then quenched to room temperature. The obtained crystals were light-red and of the prismatical shape. The dimensions of the used sample were typical for the grown crystals in this batch.

S3. Refinement

The Na and Er atoms are in substitutional disorder in the crystal structure. The tentative refinement that included the corresponding occupancy factors for the disordered $\mathrm{Na} / \mathrm{Er}$ yielded $\mathrm{Na} 1: \mathrm{Er} 1=0.501$ (2) : 0.499 (2). (The atomic positional and anisotropic displacement parameters of Na 1 and Er 1 atoms were constrained to be identical by using EADP and EXYZ constraint instructions (SHELXL-97; Sheldrick, 2008).) Therefore the ratio of Na and Er was fixed to 1:1 in the final model with the constrained positional and the displacement parameters of na and Er as given above. The highest peak in the difference electron density map equals to $1.12 \mathrm{e} / \AA^{3}$ at the distance of $0.83 \AA$ from Na1/Er1 site while the deepest hole equals to $-1.15 \mathrm{e} / \AA^{3}$ at the distance of $1.39 \AA$ from Na1/Er1 site, too.

Figure 1
Section of the structure of $\operatorname{NaEr}\left(\mathrm{MoO}_{4}\right)_{2}$ with the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.

Figure 2
View of the crystal structure of $\mathrm{NaEr}\left(\mathrm{MoO}_{4}\right)_{2}$. The $\left[\mathrm{MoO}_{4}\right]^{2-}$ tetrahedra are shown in green.

Sodium erbium bis(molybdate)

Crystal data

$\mathrm{NaEr}\left(\mathrm{MoO}_{4}\right)_{2}$
$M_{r}=510.13$
Tetragonal, $I 4_{1} / a$
Hall symbol: -I 4ad
$a=5.1816$ (8) \AA
$c=11.288$ (3) \AA
$V=303.07(11) \AA^{3}$
$Z=2$
$D_{\mathrm{x}}=5.590 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 365 reflections
$\theta=4.3-27.3^{\circ}$
$\mu=17.87 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Prism, red
$0.08 \times 0.04 \times 0.04 \mathrm{~mm}$
$F(000)=454$

Data collection

Rigaku Saturn70 CCD
diffractometer
Radiation source: fine-focus sealed tube
Detector resolution: 28.5714 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(rescaled SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.263, T_{\text {max }}=0.489$
520 measured reflections
172 independent reflections
106 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.089$
$S=0.84$
172 reflections
15 parameters
0 restraints
9 constraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=4.3^{\circ} \\
& h=-2 \rightarrow 6 \\
& k=-5 \rightarrow 6 \\
& l=-14 \rightarrow 14
\end{aligned}
$$

Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{\wedge} 2^{\wedge}\left(F_{0}{ }^{\wedge} 2^{\wedge}\right)+(0.0639 P)^{\wedge} 2^{\wedge}\right]$
where $P=\left(F_{\mathrm{o}} \wedge^{\wedge}{ }^{\wedge}+2 F_{\mathrm{c}}^{\wedge} 2^{\wedge}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.12 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.15 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.055 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Er1	0.0000	0.2500	0.1250	$0.0081(5)$	0.50
Na1	0.0000	0.2500	0.1250	$0.0081(5)$	0.50
Mo1	0.5000	0.7500	0.1250	$0.0086(5)$	
O1	$0.2568(6)$	$0.5968(6)$	$0.0397(3)$	$0.0204(12)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Er1	$0.0070(6)$	$0.0070(6)$	$0.0102(8)$	0.000	0.000	0.000
Na1	$0.0070(6)$	$0.0070(6)$	$0.0102(8)$	0.000	0.000	0.000
Mo1	$0.0067(6)$	$0.0067(6)$	$0.0124(8)$	0.000	0.000	0.000
O1	$0.025(2)$	$0.017(2)$	$0.019(2)$	$0.0012(15)$	$-0.0045(14)$	$-0.0007(17)$

Geometric parameters (\AA, ${ }^{\circ}$)

Er1-O1 ${ }^{\text {i }}$	2.420 (4)	Er1-O1 ${ }^{\text {vii }}$	2.435 (3)
Erl-O1 ${ }^{\text {ii }}$	2.420 (4)	Mo1-O1 ${ }^{\text {viii }}$	1.774 (4)
Er1-O1 ${ }^{\text {iii }}$	2.420 (4)	Mol-O1 ${ }^{\text {ix }}$	1.774 (4)
Erl-O1 ${ }^{\text {iv }}$	2.420 (4)	Mo1-O1	1.774 (4)
Er1-O1 ${ }^{\text {v }}$	2.435 (3)	Mol- $\mathrm{Ol}^{\text {x }}$	1.774 (4)

Er1-O1 ${ }^{\text {vi }}$	2.435 (3)
Er1-O1	2.435 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Er} 1-\mathrm{O} 1^{\text {ii }}$	79.63 (16)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Er} 1-\mathrm{O} 1^{\text {iii }}$	126.16 (10)
O1i-Er1-O1ii	126.16 (10)
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{Er} 1-\mathrm{Ol}^{\text {iv }}$	126.16 (10)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Er} 1-\mathrm{Ol}^{\text {iv }}$	126.16 (10)
O1 $1^{\text {iii- }}$ Er $1-\mathrm{Ol}^{\text {iv }}$	79.62 (16)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Er} 1-\mathrm{O} 1^{\text {v }}$	75.78 (12)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Er} 1-\mathrm{O}^{\text {v }}$	68.76 (7)
$\mathrm{O} 1^{\text {iii }}$ - $\mathrm{Er} 1-\mathrm{O} 1^{v}$	152.76 (16)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Er} 1-\mathrm{Ol}^{\mathrm{v}}$	73.67 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Er} 1-\mathrm{Ol}^{\text {vi }}$	68.76 (7)
$\mathrm{O} 1{ }^{\text {iii }}$ - $\mathrm{Er} 1-\mathrm{Ol}^{\text {vi }}$	75.78 (12)
$\mathrm{Ol}^{\text {iii- }} \mathrm{Er} 1-\mathrm{O}{ }^{\text {vi }}$	73.67 (7)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Er} 1-\mathrm{Ol}^{\text {vi }}$	152.76 (16)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Er} 1-\mathrm{O} 1^{\text {vi }}$	133.38 (18)
O1-Er1-O1	73.67 (7)
O1i-Er1-O1	152.76 (16)
$\mathrm{O} 1 \mathrm{iii}-\mathrm{Er} 1-\mathrm{O} 1$	75.78 (12)
$\mathrm{O} 1{ }^{\text {iv }}-\mathrm{Er} 1-\mathrm{O} 1$	68.76 (7)
O1 ${ }^{\text {v }}$ - $\mathrm{Er} 1-\mathrm{O} 1$	99.01 (7)
O1 ${ }^{\text {vi}}-\mathrm{Er} 1-\mathrm{O} 1$	99.01 (7)
O1 ${ }^{\text {i }}-\mathrm{Er} 1-\mathrm{O} 1^{\text {vii }}$	152.76 (16)
O1i-Er1-O1 ${ }^{\text {vii }}$	73.67 (7)
$\mathrm{O1}^{\text {iii- }}$ - $\mathrm{Er} 1-\mathrm{O}{ }^{\text {vii }}$	68.76 (7)
$\mathrm{Ol}^{\text {iv }}-\mathrm{Er} 1-\mathrm{O}{ }^{\text {vii }}$	75.78 (12)

$\mathrm{O} 1-\mathrm{Na} 1^{\text {iii }}$	2.420 (4)
$\mathrm{O} 1-\mathrm{Er} 1^{\text {iii }}$	2.420 (4)
$\mathrm{O} 1^{\mathrm{v}}$ - $\mathrm{Er} 1-\mathrm{O} 1^{\text {vii }}$	99.01 (7)
$\mathrm{O}{ }^{\text {vi}}-\mathrm{Er} 1-\mathrm{O} 1^{\text {vii }}$	99.01 (7)
O1-Er1-O1 $1^{\text {vii }}$	133.38 (18)
O1- ${ }^{\text {i }}$ - $\mathrm{Er} 1-\mathrm{Er} 1^{\text {xi }}$	38.03 (7)
O1il-Er1-Er1 ${ }^{\text {xi }}$	69.88 (9)
O1 ${ }^{\text {iiii }}$ - $\mathrm{Er} 1-\mathrm{Er}^{\text {xi }}$	159.67 (8)
O1 ${ }^{\text {iv }}-\mathrm{Er} 1-\mathrm{Er}^{\text {xi }}$	101.19 (8)
O1 ${ }^{\mathrm{v}}$ - $\mathrm{Er} 1-\mathrm{Er} 1^{\text {xi }}$	37.75 (8)
O1 ${ }^{\text {vi }}-\mathrm{Er} 1-\mathrm{Er} 1^{\text {xi }}$	101.99 (9)
O1-Er1-Er ${ }^{\text {xi }}$	85.52 (9)
O1 ${ }^{\text {vii }}$ - $\mathrm{Er} 1-\mathrm{Er} 1^{\text {xi }}$	131.38 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Er} 1-\mathrm{Na} 1^{\text {xi }}$	38.03 (7)
$\mathrm{O} 1{ }^{\text {iii }}$ - $\mathrm{Er} 1-\mathrm{Na} 1^{\text {xi }}$	69.88 (9)
O1iii-Er1-Na1 ${ }^{\text {xi }}$	159.67 (8)
O1 ${ }^{\text {iv }}-\mathrm{Er} 1-\mathrm{Na} 1^{\text {xi }}$	101.19 (8)
$\mathrm{O1}{ }^{\text {v }}$ - $\mathrm{Er} 1-\mathrm{Na} 1^{\text {xi }}$	37.75 (8)
O1 ${ }^{\text {vi}}-\mathrm{Er} 1-\mathrm{Na} 1^{\text {xi }}$	101.99 (9)
O1-Er1-Na1 ${ }^{\text {xi }}$	85.52 (9)
$\mathrm{O} 1^{\text {vii }}$ - $\mathrm{Er} 1-\mathrm{Na} 1^{\text {xi }}$	131.38 (8)
$\mathrm{O} 1{ }^{\text {viii }}-\mathrm{Mol}-\mathrm{O} 1^{\text {ix }}$	114.2 (2)
O1 ${ }^{\text {viii-Mol-O1 }}$	107.15 (11)
$\mathrm{O} 1{ }^{\mathrm{ix}}$ - $\mathrm{Mo} 1-\mathrm{O} 1$	107.15 (11)
$\mathrm{O} 1^{\text {viii }}-\mathrm{Mol-O1}{ }^{\text {x }}$	107.15 (11)
$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{Mo1-O1}{ }^{\text {x }}$	107.15 (11)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{O}^{\text {x }}$	114.2 (2)

Symmetry codes: (i) $-y+3 / 4, x+1 / 4, z+1 / 4$; (ii) $y-3 / 4,-x+1 / 4, z+1 / 4$; (iii) $-x,-y+1,-z$; (iv) $x, y-1 / 2,-z$; (v) $y-1 / 4,-x+1 / 4,-z+1 / 4$; (vi) $-y+1 / 4, x+1 / 4$, $-z+1 / 4$; (vii) $-x,-y+1 / 2, z$; (viii) $y-1 / 4,-x+5 / 4,-z+1 / 4$; (ix) $-y+5 / 4, x+1 / 4,-z+1 / 4$; (x) $-x+1,-y+3 / 2, z ;$ (xi) $-x+1 / 2,-y+1 / 2,-z+1 / 2$.

