## metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Dichlorido[2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl- $\kappa C^1$ ]bis(trimethylphosphine- $\kappa P$ )cobalt(III)

#### Tingting Zheng and Hongjian Sun\*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China Correspondence e-mail: hjsun@sdu.edu.cn

Received 22 March 2010; accepted 16 April 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.013 Å; disorder in main residue; R factor = 0.061; wR factor = 0.186; data-to-parameter ratio = 15.1.

In the title compound,  $[Co(C_7F_7)Cl_2(C_3H_9P)_2]$ , the Co<sup>III</sup> atom displays a trigonal-bipyramidal coordination geometry, with the two Cl ligands and the C atom of the perfluorotolyl ligand in the equatorial plane and the two phosphine ligands occupying axial positions. The molecule has an approximate  $C_{2v}$  symmetry. The trifluoromethyl group is disordered over two positions, with nearly equal occupancies.

#### **Related literature**

For general background on the activation of C–F bonds and the formation of C–C bonds, see: Schaub *et al.* (2006); Böhm *et al.* (2001); Zheng *et al.* (2009).



b = 13.3657 (19) Å

V = 4190.8 (11) Å<sup>3</sup>

c = 25.426 (4) Å

Z = 8

#### **Experimental**

| Crystal data                  |
|-------------------------------|
| $[Co(C_7F_7)Cl_2(C_3H_9P)_2]$ |
| $M_r = 499.04$                |
| Orthorhombic, Pbca            |
| a = 12.3321 (19)  Å           |
|                               |

Mo  $K\alpha$  radiation  $\mu = 1.28 \text{ mm}^{-1}$ 

#### Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\rm min} = 0.740, T_{\rm max} = 0.802$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ 8 restraints $wR(F^2) = 0.186$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.78 \text{ e } \text{\AA}^{-3}$ 3373 reflections $\Delta \rho_{min} = -0.69 \text{ e } \text{\AA}^{-3}$ 223 parameters $\Delta \rho_{min} = -0.69 \text{ e } \text{\AA}^{-3}$ 

T = 293 K

 $R_{\rm int} = 0.052$ 

 $0.25 \times 0.20 \times 0.18 \; \mathrm{mm}$ 

18353 measured reflections 3373 independent reflections

2345 reflections with  $I > 2\sigma(I)$ 

# Table 1 Selected geometric parameters (Å, °).

| C1-Co1      | 1.987 (6)   | Co1-P1     | 2.262 (2)  |
|-------------|-------------|------------|------------|
| Cl1-Co1     | 2.2290 (18) | Co1-P2     | 2.264 (2)  |
| Cl2-Co1     | 2.2613 (16) |            |            |
| C1-Co1-Cl1  | 123.2 (2)   | Cl2-Co1-P1 | 90.03 (7)  |
| C1-Co1-Cl2  | 125.5 (2)   | C1-Co1-P2  | 89.93 (19) |
| Cl1-Co1-Cl2 | 111.29 (7)  | Cl1-Co1-P2 | 89.13 (8)  |
| C1-Co1-P1   | 89.36 (19)  | Cl2-Co1-P2 | 90.86 (7)  |
| Cl1-Co1-P1  | 90.78 (8)   | P1-Co1-P2  | 179.08 (8) |
|             |             |            |            |

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge support by the NSF of China within the project No. 20872080/20772072.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2264).

#### References

- Böhm, V., Gstöttmayr, C., Weskamp, T. & Herrmann, W. (2001). Angew. Chem. Int. Ed. 40, 3387–3389.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Schaub, S., Backes, M. & Radius, U. (2006). J. Am. Chem. Soc. 128, 15964– 15965.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zheng, T., Sun, H., Chen, Y., Li, X., Dürr, S., Radius, U. & Harms, K. (2009). Organometallics, 28, 5771–5776.

# supporting information

#### Acta Cryst. (2010). E66, m574 [https://doi.org/10.1107/S1600536810014066]

# Dichlorido[2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl- $\kappa C^1$ ]bis(trimethyl-phosphine- $\kappa P$ )cobalt(III)

### **Tingting Zheng and Hongjian Sun**

#### S1. Comment

The activation of C—F bonds by transition metal compounds has blossomed in the past few years. There has also been considerable interest in the chemistry of carbon-fluorine bond cleavage followed by carbon-carbon bond formation because they play a key role in the organic synthesis (Schaub *et al.*, 2006; Böhm *et al.*, 2001). Recently we have reported the stoichiometric reaction involving one-electron oxidative addition of bromobenzene and (1-perflurotoluene- $\kappa C$ )tris(trimethylphosphine- $\kappa P$ )cobalt gaining bromo(1-perflurotoluene- $\kappa C$ )tris(trimethylphosphine- $\kappa P$ )cobalt and C—C coupling product (Zheng *et al.*, 2009). We tried to synthesise the compound 1, through the reaction of bromopentafluorobenzene with the(1-perflurotoluene- $\kappa C$ )tris(trimethylphosphine- $\kappa P$ )cobalt. We added the solution of hydrochloric acid in order to abolish the organometallic compounds and gain the organic compound 1. Surprisingly we isolated complex 2 (Scheme 2) as red crystals and its molecular structure is shown in Fig.1. The cobalt atom displays a trigonal bipyramidal coordination, with two Cl atoms and C atom in the equatorial plane and two P atoms occupying axial positions. The Cl1 —Co1 and Cl2—Co1) distances are 2.2290 (18) Å and 2.2613 (16) Å, respectively. The angle between the phosphine ligands and the Co atom, P1–Co1–P2 is 179.08 (8)°.

#### **S2.** Experimental

The reaction leading to the title compound is shown in Scheme 2. To a solution of 1 (0.50 g,1.00 mmol) in 30 mL of pentane was added bromopentafluorobenzene (0.74 g, 3.00 mmol) with stirring at 213 K. The mixture was allowed to warm-up to 293 K and was stirred for 18 h. The color changed from green to yellow-brown. The reaction mixture was added to a solution of hydrochloric acid with a color change to red-brown. Pentane was used to estract the organic product. Crystallization from pentane at 273 K afforded the title compound as red crystals in 37% yield.

#### **S3. Refinement**

Hydrogen atoms were included in the refinement at calculated positions (C–H = 0.97 Å) and treated as riding, with  $U_{iso}(H) = 1.5 U_{eq}(C)$ . In the refinement process, the sum of the occupancy factors of the disordered CF<sub>3</sub> groups was constrained to 1.0 and restrains were imposed on its geometry [C-C 1.54 (2) Å; C-F 1.36 (2) Å]. The occupancy factor of the major orientation of the CF<sub>3</sub> group refined at 0.513 (13).



#### Figure 1

Molecular structure and aAtom numbering scheme for the title compound with the displacement ellipsoids shown at the 30% probability level.



Figure 2 Preparation of the title compound.

Dichlorido [2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl-  $\kappa C^1$ ] bis(trimethylphosphine- $\kappa P$ ) cobalt(III)

| Crystal data                  |                                               |
|-------------------------------|-----------------------------------------------|
| $[Co(C_7F_7)Cl_2(C_3H_9P)_2]$ | $D_{\rm x} = 1.582 {\rm ~Mg} {\rm ~m}^{-3}$   |
| $M_r = 499.04$                | Melting point: 380 K                          |
| Orthorhombic, Pbca            | Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ac 2ab       | Cell parameters from 2967 reflections         |
| a = 12.3321 (19)  Å           | $\theta = 2.3 - 21.0^{\circ}$                 |
| b = 13.3657 (19)  Å           | $\mu = 1.28 \text{ mm}^{-1}$                  |
| c = 25.426 (4)  Å             | T = 293  K                                    |
| $V = 4190.8 (11) \text{ Å}^3$ | Block, red                                    |
| Z = 8                         | $0.25 \times 0.20 \times 0.18 \text{ mm}$     |
| F(000) = 2000                 |                                               |

Data collection

| Bruker SMART CCD area-detector                  | 18353 measured reflections                                  |
|-------------------------------------------------|-------------------------------------------------------------|
| diffractometer                                  | 3373 independent reflections                                |
| Radiation source: fine-focus sealed tube        | 2345 reflections with $I > 2\sigma(I)$                      |
| Graphite monochromator                          | $R_{int} = 0.052$                                           |
| $\varphi$ and $\omega$ scans                    | $\theta_{max} = 24.2^{\circ}, \ \theta_{min} = 2.3^{\circ}$ |
| Absorption correction: multi-scan               | $h = -14 \rightarrow 10$                                    |
| ( <i>SADABS</i> ; Sheldrick, 1996)              | $k = -15 \rightarrow 12$                                    |
| $T_{\min} = 0.740, T_{\max} = 0.802$            | $l = -27 \rightarrow 29$                                    |
| Refinement                                      |                                                             |
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier            |
| Least-squares matrix: full                      | map                                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.061$                 | Hydrogen site location: inferred from                       |
| $wR(F^2) = 0.186$                               | neighbouring sites                                          |
| S = 1.07                                        | H-atom parameters constrained                               |
| 3373 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0935P)^2 + 7.5678P]$           |
| 223 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                              |
| 8 restraints                                    | $(\Delta/\sigma)_{max} = 0.013$                             |
| Primary atom site location: structure-invariant | $\Delta\rho_{max} = 0.78 \text{ e} \text{ Å}^{-3}$          |
| direct methods                                  | $\Delta\rho_{min} = -0.69 \text{ e} \text{ Å}^{-3}$         |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x          | У           | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|------------|-------------|------------|-----------------------------|-----------|
| C1   | 0.9572 (5) | 0.1013 (5)  | 0.1322 (3) | 0.0593 (16)                 |           |
| C2   | 0.9141 (7) | 0.1728 (6)  | 0.0990 (3) | 0.080(2)                    |           |
| C3   | 0.8099 (8) | 0.1731 (9)  | 0.0813 (3) | 0.102 (3)                   |           |
| C4   | 0.7378 (6) | 0.0992 (11) | 0.0944 (4) | 0.109 (4)                   |           |
| C5   | 0.7789 (7) | 0.0239 (8)  | 0.1266 (3) | 0.094 (3)                   |           |
| C6   | 0.8834 (6) | 0.0266 (6)  | 0.1449 (3) | 0.073 (2)                   |           |
| C8   | 1.3056 (6) | -0.0189 (6) | 0.0919 (3) | 0.087 (2)                   |           |
| H8A  | 1.3203     | -0.0538     | 0.1241     | 0.130*                      |           |
| H8B  | 1.3477     | 0.0414      | 0.0907     | 0.130*                      |           |
| H8C  | 1.3244     | -0.0607     | 0.0626     | 0.130*                      |           |
| C9   | 1.1447 (8) | 0.0770 (7)  | 0.0268 (3) | 0.101 (3)                   |           |
| H9A  | 1.1794     | 0.1413      | 0.0286     | 0.151*                      |           |
| H9B  | 1.0687     | 0.0858      | 0.0201     | 0.151*                      |           |
| H9C  | 1.1766     | 0.0384      | -0.0010    | 0.151*                      |           |
| C10  | 1.0943 (7) | -0.1069 (5) | 0.0800 (3) | 0.087 (2)                   |           |
| H10A | 1.1015     | -0.1461     | 0.1115     | 0.130*                      |           |

| H10B | 1.1264       | -0.1422       | 0.0510       | 0.130*      |            |
|------|--------------|---------------|--------------|-------------|------------|
| H10C | 1.0189       | -0.0954       | 0.0729       | 0.130*      |            |
| C11  | 1.1647 (6)   | 0.2311 (6)    | 0.2713 (3)   | 0.092 (3)   |            |
| H11A | 1.2031       | 0.1723        | 0.2824       | 0.137*      |            |
| H11B | 1.1369       | 0.2656        | 0.3016       | 0.137*      |            |
| H11C | 1.2131       | 0.2744        | 0.2524       | 0.137*      |            |
| C12  | 0.9874 (8)   | 0.3117 (6)    | 0.2110 (4)   | 0.105 (3)   |            |
| H12A | 1.0344       | 0.3495        | 0.1884       | 0.157*      |            |
| H12B | 0.9727       | 0.3495        | 0.2423       | 0.157*      |            |
| H12C | 0.9206       | 0.2979        | 0.1931       | 0.157*      |            |
| C13  | 0.9579 (7)   | 0.1302 (8)    | 0.2711 (3)   | 0.101 (3)   |            |
| H13A | 0.9885       | 0.0672        | 0.2816       | 0.151*      |            |
| H13B | 0.8913       | 0.1187        | 0.2525       | 0.151*      |            |
| H13C | 0.9438       | 0.1701        | 0.3017       | 0.151*      |            |
| Cl1  | 1.22875 (15) | 0.22034 (13)  | 0.13739 (8)  | 0.0772 (6)  |            |
| Cl2  | 1.18147 (13) | -0.01081 (11) | 0.21464 (6)  | 0.0566 (4)  |            |
| Col  | 1.10845 (6)  | 0.10295 (6)   | 0.15914 (3)  | 0.0498 (3)  |            |
| F1   | 0.9169 (4)   | -0.0490 (4)   | 0.17618 (19) | 0.0965 (15) |            |
| F2   | 0.7167 (4)   | -0.0546 (6)   | 0.1418 (2)   | 0.146 (3)   |            |
| F3   | 0.7792 (5)   | 0.2497 (5)    | 0.0496 (2)   | 0.156 (3)   |            |
| F4   | 0.9791 (5)   | 0.2502 (4)    | 0.0832 (2)   | 0.1083 (16) |            |
| P1   | 1.05246 (15) | 0.19513 (14)  | 0.22862 (7)  | 0.0664 (5)  |            |
| P2   | 1.16269 (14) | 0.01209 (14)  | 0.08875 (7)  | 0.0622 (5)  |            |
| C7   | 0.6149 (13)  | 0.0863 (14)   | 0.0797 (8)   | 0.106 (9)*  | 0.487 (13) |
| F6   | 0.5612 (14)  | 0.0191 (12)   | 0.1062 (6)   | 0.154 (7)*  | 0.487 (13) |
| F5   | 0.5737 (12)  | 0.1839 (12)   | 0.0899 (6)   | 0.138 (6)*  | 0.487 (13) |
| F7   | 0.6077 (13)  | 0.0920 (13)   | 0.0284 (6)   | 0.150 (6)*  | 0.487 (13) |
| C7′  | 0.6232 (14)  | 0.1080 (15)   | 0.0695 (8)   | 0.141 (12)* | 0.513 (13) |
| F6′  | 0.6148 (12)  | 0.1727 (13)   | 0.0306 (6)   | 0.158 (6)*  | 0.513 (13) |
| F7′  | 0.6005 (11)  | 0.0140 (10)   | 0.0511 (5)   | 0.133 (5)*  | 0.513 (13) |
| F5′  | 0.5527 (11)  | 0.1180 (11)   | 0.1069 (5)   | 0.131 (5)*  | 0.513 (13) |
|      |              |               |              |             |            |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$   |
|-----|-------------|-------------|-------------|-------------|-------------|------------|
| C1  | 0.046 (4)   | 0.069 (4)   | 0.062 (4)   | 0.006 (3)   | -0.001 (3)  | -0.001 (3) |
| C2  | 0.072 (5)   | 0.092 (6)   | 0.077 (5)   | 0.023 (5)   | -0.004(4)   | 0.012 (4)  |
| C3  | 0.078 (6)   | 0.152 (9)   | 0.074 (5)   | 0.056 (7)   | -0.024 (5)  | -0.011 (6) |
| C4  | 0.042 (4)   | 0.209 (12)  | 0.076 (6)   | 0.027 (6)   | -0.010 (4)  | -0.035 (7) |
| C5  | 0.052 (5)   | 0.157 (9)   | 0.072 (5)   | -0.024 (6)  | 0.013 (4)   | -0.030 (6) |
| C6  | 0.053 (4)   | 0.095 (6)   | 0.072 (5)   | -0.008(4)   | 0.003 (4)   | 0.004 (4)  |
| C8  | 0.055 (4)   | 0.104 (6)   | 0.101 (6)   | 0.014 (4)   | 0.009 (4)   | -0.010 (5) |
| C9  | 0.121 (7)   | 0.113 (7)   | 0.068 (5)   | 0.018 (6)   | 0.002 (5)   | 0.006 (5)  |
| C10 | 0.083 (6)   | 0.072 (5)   | 0.105 (6)   | 0.012 (4)   | -0.018 (5)  | -0.019 (4) |
| C11 | 0.075 (5)   | 0.096 (6)   | 0.103 (6)   | 0.012 (5)   | -0.017 (5)  | -0.031 (5) |
| C12 | 0.111 (7)   | 0.081 (6)   | 0.122 (7)   | 0.042 (5)   | -0.003 (6)  | -0.018 (5) |
| C13 | 0.078 (6)   | 0.148 (8)   | 0.078 (5)   | -0.005 (6)  | 0.021 (4)   | -0.005 (5) |
| C11 | 0.0681 (11) | 0.0602 (10) | 0.1034 (14) | -0.0203 (9) | 0.0083 (10) | 0.0143 (9) |
|     |             |             |             |             |             |            |

# supporting information

| Cl2 | 0.0546 (9)  | 0.0522 (9)  | 0.0629 (9)  | 0.0059 (7) | -0.0052 (7) | 0.0159 (7)  |
|-----|-------------|-------------|-------------|------------|-------------|-------------|
| Co1 | 0.0414 (5)  | 0.0477 (5)  | 0.0603 (5)  | 0.0008 (3) | 0.0002 (4)  | 0.0075 (4)  |
| F1  | 0.088 (3)   | 0.098 (3)   | 0.103 (3)   | -0.031 (3) | -0.006 (3)  | 0.027 (3)   |
| F2  | 0.076 (3)   | 0.227 (7)   | 0.136 (5)   | -0.073 (5) | 0.010 (3)   | -0.025 (5)  |
| F3  | 0.138 (5)   | 0.199 (6)   | 0.130 (5)   | 0.083 (5)  | -0.048 (4)  | 0.023 (4)   |
| F4  | 0.112 (4)   | 0.089 (3)   | 0.124 (4)   | 0.017 (3)  | -0.012 (3)  | 0.042 (3)   |
| P1  | 0.0549 (11) | 0.0721 (12) | 0.0723 (11) | 0.0116 (9) | 0.0003 (9)  | -0.0081 (9) |
| P2  | 0.0544 (10) | 0.0683 (11) | 0.0638 (11) | 0.0091 (9) | -0.0010 (8) | 0.0011 (8)  |
|     |             |             |             |            |             |             |

Geometric parameters (Å, °)

| C1—C2     | 1.382 (10) | C10—H10C      | 0.9600      |
|-----------|------------|---------------|-------------|
| C1—C6     | 1.389 (10) | C11—P1        | 1.823 (8)   |
| C1—Co1    | 1.987 (6)  | C11—H11A      | 0.9600      |
| C2—C3     | 1.362 (12) | C11—H11B      | 0.9600      |
| C2—F4     | 1.369 (9)  | C11—H11C      | 0.9600      |
| C3—F3     | 1.358 (11) | C12—P1        | 1.808 (8)   |
| C3—C4     | 1.370 (15) | C12—H12A      | 0.9600      |
| C4—C5     | 1.393 (14) | C12—H12B      | 0.9600      |
| C4—C7′    | 1.554 (17) | C12—H12C      | 0.9600      |
| C4—C7     | 1.570 (16) | C13—P1        | 1.811 (8)   |
| C5—F2     | 1.357 (11) | C13—H13A      | 0.9600      |
| C5—C6     | 1.370 (11) | C13—H13B      | 0.9600      |
| C6—F1     | 1.350 (9)  | С13—Н13С      | 0.9600      |
| C8—P2     | 1.812 (7)  | Cl1—Co1       | 2.2290 (18) |
| C8—H8A    | 0.9600     | Cl2—Co1       | 2.2613 (16) |
| C8—H8B    | 0.9600     | Co1—P1        | 2.262 (2)   |
| C8—H8C    | 0.9600     | Co1—P2        | 2.264 (2)   |
| C9—P2     | 1.812 (8)  | C7—F6         | 1.302 (16)  |
| С9—Н9А    | 0.9600     | C7—F7         | 1.311 (17)  |
| С9—Н9В    | 0.9600     | C7—F5         | 1.424 (17)  |
| С9—Н9С    | 0.9600     | C7'—F5'       | 1.296 (17)  |
| C10—P2    | 1.814 (8)  | C7'—F6'       | 1.317 (17)  |
| C10—H10A  | 0.9600     | C7'—F7'       | 1.368 (17)  |
| C10—H10B  | 0.9600     |               |             |
| C2—C1—C6  | 112.8 (7)  | P1—C12—H12B   | 109.5       |
| C2—C1—Co1 | 124.3 (6)  | H12A—C12—H12B | 109.5       |
| C6—C1—Co1 | 122.9 (5)  | P1—C12—H12C   | 109.5       |
| C3—C2—F4  | 117.0 (8)  | H12A—C12—H12C | 109.5       |
| C3—C2—C1  | 124.5 (9)  | H12B—C12—H12C | 109.5       |
| F4—C2—C1  | 118.5 (7)  | P1—C13—H13A   | 109.5       |
| F3—C3—C2  | 117.5 (11) | P1—C13—H13B   | 109.5       |
| F3—C3—C4  | 120.4 (9)  | H13A—C13—H13B | 109.5       |
| C2—C3—C4  | 122.1 (9)  | P1—C13—H13C   | 109.5       |
| C3—C4—C5  | 115.3 (7)  | H13A—C13—H13C | 109.5       |
| C3—C4—C7′ | 115.9 (12) | H13B—C13—H13C | 109.5       |
| C5—C4—C7′ | 128.7 (13) | C1—Co1—Cl1    | 123.2 (2)   |

| C3—C4—C7                                                 | 130.4 (12)           | C1—Co1—Cl2                      | 125.5 (2)              |
|----------------------------------------------------------|----------------------|---------------------------------|------------------------|
| C5—C4—C7                                                 | 114.3 (12)           | C 1-Co1-C 2                     | 111.29(7)              |
| C7' - C4 - C7                                            | 14 8 (11)            | C1 - Co1 - P1                   | 89 36 (19)             |
| F2                                                       | 117 1 (9)            | $C_1 = C_0 = P_1$               | 90 78 (8)              |
| $F_{2}$ = C5 = C4                                        | 121 3 (8)            | C12— $Co1$ — $P1$               | 90.03 (7)              |
| $C_{12} C_{23} C_{4}$                                    | 121.5(0)<br>121.6(0) | $C_{1}$ $C_{2}$ $C_{1}$ $P_{2}$ | 80.03 (10)             |
| $E_0 - C_3 - C_4$                                        | 121.0(9)<br>1180(8)  | C1 = C01 = 12                   | 89.93 (19)             |
| F1 = C6 = C1                                             | 110.0 (0)            | $C12$ $C_{12}$ $C_{21}$ $P2$    | 00.86(7)               |
| $\begin{array}{cccc} FI &CI \\ C5 & C6 & C1 \end{array}$ | 110.3(0)<br>122.9(9) | $C_{12}$ $C_{01}$ $F_{2}$       | 90.80(7)               |
| $C_{3}$                                                  | 123.8 (8)            | PI = C0I = P2                   | 1/9.08 (8)             |
| P2                                                       | 109.5                | C12—P1—C13                      | 105.9 (5)              |
| P2—C8—H8B                                                | 109.5                | CI2—PI—CII                      | 104.9 (4)              |
| H8A—C8—H8B                                               | 109.5                |                                 | 105.1 (4)              |
| P2—C8—H8C                                                | 109.5                | C12—P1—Co1                      | 114.3 (3)              |
| H8A—C8—H8C                                               | 109.5                | C13—P1—Co1                      | 113.6 (3)              |
| H8B—C8—H8C                                               | 109.5                | C11—P1—Co1                      | 112.1 (3)              |
| Р2—С9—Н9А                                                | 109.5                | C9—P2—C8                        | 105.5 (4)              |
| Р2—С9—Н9В                                                | 109.5                | C9—P2—C10                       | 104.9 (4)              |
| H9A—C9—H9B                                               | 109.5                | C8—P2—C10                       | 104.9 (4)              |
| Р2—С9—Н9С                                                | 109.5                | C9—P2—Co1                       | 113.2 (3)              |
| Н9А—С9—Н9С                                               | 109.5                | C8—P2—Co1                       | 112.0 (3)              |
| Н9В—С9—Н9С                                               | 109.5                | C10—P2—Co1                      | 115.5 (3)              |
| P2-C10-H10A                                              | 109.5                | F6—C7—F7                        | 121.3 (17)             |
| P2-C10-H10B                                              | 109.5                | F6—C7—F5                        | 110.9 (16)             |
| H10A—C10—H10B                                            | 109.5                | F7—C7—F5                        | 96.0 (15)              |
| P2—C10—H10C                                              | 109.5                | F6—C7—C4                        | 116.3 (16)             |
| H10A—C10—H10C                                            | 109.5                | F7—C7—C4                        | 107.2 (14)             |
| H10B-C10-H10C                                            | 109.5                | F5                              | 101.6 (13)             |
| P1—C11—H11A                                              | 109.5                | F5'                             | 115.5(17)              |
| P1—C11—H11B                                              | 109.5                | F5'                             | 102.1(16)              |
| H11A—C11—H11B                                            | 109.5                | F6' - C7' - F7'                 | 102.1(10)<br>109.3(16) |
| P1H11C                                                   | 109.5                | F5'-C7'-C4                      | 109.5(10)<br>108.5(15) |
|                                                          | 109.5                | F6' - C7' - C4                  | 1153(16)               |
| H11B C11 H11C                                            | 109.5                | F7' C7' C4                      | 104.8(14)              |
| $\mathbf{P}_{1}  \mathbf{C}_{12}  \mathbf{H}_{12A}$      | 109.5                | 1/                              | 104.8 (14)             |
| 11-012-1112A                                             | 109.5                |                                 |                        |
| $C_{1}$ $C_{1}$ $C_{2}$ $C_{3}$                          | 1.7(11)              | $C_1$ $C_{21}$ $B_1$ $C_{12}$   | -57.7(4)               |
| $C_0 = C_1 = C_2 = C_3$                                  | 1.7(11)<br>-178.6(6) | C1 = C01 = F1 = C12             | -37.7(4)               |
| $C_0 = C_1 = C_2 = C_3$                                  | -178.0(0)            | C12  C12  C12                   | 17(8(4))               |
| $C_0 - C_1 - C_2 - F_4$                                  | -1/9.5(7)            | C12 - C01 - P1 - C12            | 1/0.8(4)               |
| C01 - C1 - C2 - F4                                       | 0.2 (10)             | CI = COI = PI = CI3             | 04.1 (4)               |
| F4-C2-C3-F3                                              | 0.1 (12)             | CII = CoI = PI = CI3            | -1/2.7(3)              |
| C1 - C2 - C3 - F3                                        | 178.9 (7)            | Cl2—Co1—P1—Cl3                  | -61.4 (3)              |
| F4—C2—C3—C4                                              | 1/9.7 (8)            | CI-CoI-PI-CII                   | -176.9 (4)             |
| C1—C2—C3—C4                                              | -1.5 (14)            | Cll—Col—Pl—Cll                  | -53.7 (3)              |
| F3—C3—C4—C5                                              | 179.1 (7)            | Cl2—Co1—P1—C11                  | 57.6 (3)               |
| C2—C3—C4—C5                                              | -0.4 (13)            | C1—Co1—P2—C9                    | 63.6 (4)               |
| F3—C3—C4—C7′                                             | 1.8 (15)             | Cl1—Co1—P2—C9                   | -59.6 (4)              |
| C2—C3—C4—C7′                                             | -177.8 (11)          | Cl2—Co1—P2—C9                   | -170.8 (4)             |
| F3—C3—C4—C7                                              | -2.0(17)             | C1-Co1-P2-C8                    | -177.3(4)              |

| C2—C3—C4—C7   | 178.5 (12)  | Cl1—Co1—P2—C8  | 59.6 (3)    |
|---------------|-------------|----------------|-------------|
| C3—C4—C5—F2   | -178.9 (8)  | Cl2—Co1—P2—C8  | -51.7 (3)   |
| C7'—C4—C5—F2  | -1.9 (16)   | C1—Co1—P2—C10  | -57.3 (3)   |
| C7—C4—C5—F2   | 2.0 (14)    | Cl1—Co1—P2—C10 | 179.5 (3)   |
| C3—C4—C5—C6   | 2.0 (13)    | Cl2—Co1—P2—C10 | 68.2 (3)    |
| C7'—C4—C5—C6  | 179.0 (12)  | C3—C4—C7—F6    | -166.9 (13) |
| C7—C4—C5—C6   | -177.1 (10) | C5—C4—C7—F6    | 12.0 (19)   |
| F2C5F1        | 0.5 (11)    | C7'—C4—C7—F6   | 180 (5)     |
| C4—C5—C6—F1   | 179.6 (7)   | C3—C4—C7—F7    | 54 (2)      |
| F2C5C1        | 179.0 (7)   | C5—C4—C7—F7    | -127.5 (14) |
| C4—C5—C6—C1   | -1.8 (13)   | C7'—C4—C7—F7   | 40 (4)      |
| C2-C1-C6-F1   | 178.4 (7)   | C3—C4—C7—F5    | -46.5 (19)  |
| Co1-C1-C6-F1  | -1.3 (10)   | C5—C4—C7—F5    | 132.4 (12)  |
| C2-C1-C6-C5   | -0.1 (11)   | C7'—C4—C7—F5   | -60 (4)     |
| Co1—C1—C6—C5  | -179.8 (6)  | C3—C4—C7'—F5'  | -118.0 (15) |
| C2-C1-C01-Cl1 | -1.3 (7)    | C5—C4—C7'—F5'  | 65 (2)      |
| C6-C1-C01-Cl1 | 178.4 (5)   | C7—C4—C7′—F5′  | 51 (4)      |
| C2-C1-Co1-Cl2 | 178.8 (5)   | C3—C4—C7'—F6'  | 13 (2)      |
| C6-C1-C01-Cl2 | -1.5 (7)    | C5—C4—C7'—F6'  | -163.6 (13) |
| C2-C1-Co1-P1  | 89.2 (6)    | C7—C4—C7′—F6′  | -178 (5)    |
| C6-C1-Co1-P1  | -91.1 (6)   | C3—C4—C7′—F7′  | 133.6 (13)  |
| C2-C1-Co1-P2  | -90.2 (6)   | C5—C4—C7'—F7'  | -43.3 (19)  |
| C6—C1—Co1—P2  | 89.5 (6)    | C7—C4—C7′—F7′  | -58 (4)     |
|               |             |                |             |