## organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## N'-(2,3-Dimethoxybenzylidene)-2hydroxy-3-methylbenzohydrazide

#### You-Yue Han\* and Qiu-Rong Zhao

Department of Chemistry and Life Science, Chuzhou University, Chuzhou, Anhui 239000, People's Republic of China Correspondence e-mail: hanyouyue@126.com

Received 30 March 2010; accepted 30 March 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.067; wR factor = 0.175; data-to-parameter ratio = 16.4.

In the title compound,  $C_{17}H_{18}N_2O_4$ , the dihedral angle between the two benzene rings is  $6.0(2)^{\circ}$  and the molecule adopts an E configuration with respect to the C=N bond. There is an intramolecular  $O-H \cdots O$  hydrogen bond in the molecule, which generates an S(6) ring. In the crystal, molecules are linked through intermolecular N-H···O hydrogen bonds, forming C(4) chains running along the c axis.

## **Related literature**

For a related structure and background information, see: Han & Zhao (2010). For reference structural data, see: Allen et al. (1987).



## **Experimental**

Crystal data  $C_{17}H_{18}N_2O_4$ 

 $M_r = 314.33$ 

Orthorhombic, Pccn a = 14.923 (3) Å b = 24.329 (5) Å c = 8.7422 (17) Å  $V = 3174.0 (11) \text{ Å}^3$ 

#### Data collection

| Bruker SMART CCD                     | 17128 measured reflections             |
|--------------------------------------|----------------------------------------|
| diffractometer                       | 3461 independent reflections           |
| Absorption correction: multi-scan    | 1998 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2001)               | $R_{\rm int} = 0.223$                  |
| $T_{\min} = 0.984, T_{\max} = 0.986$ |                                        |
|                                      |                                        |

Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.067$ | 211 parameters                                           |
|---------------------------------|----------------------------------------------------------|
| $wR(F^2) = 0.175$               | H-atom parameters constrained                            |
| S = 0.92                        | $\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$  |
| 3461 reflections                | $\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$ |

Z = 8

Mo  $K\alpha$  radiation

 $0.17 \times 0.15 \times 0.15 \ \mathrm{mm}$ 

 $\mu = 0.10 \text{ mm}^{-1}$ 

T = 298 K

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                  | D-H                                   | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------------|---------------------------------------|-------------------------|------------------------|--------------------------------------|
| $04 - H4 \cdots O3$ $N2 - H2A \cdots O3^{i}$ | 0.82<br>0.90                          | 1.91<br>2.17            | 2.630 (2)<br>3.030 (2) | 146<br>158                           |
| Symmetry code: (i)                           | $x + \frac{3}{2}, y, z - \frac{1}{2}$ |                         |                        |                                      |

(1) $+\frac{z}{2}, y, z$ 

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Applied Chemistry Key Subject of Anhui Province (No. 200802187 C). The authors thank Mr Yuan-Guang Zhang of Anqing Normal University for his help with growing the crystals.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5386).

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Han, Y.-Y. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1025.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

## supporting information

Acta Cryst. (2010). E66, o1026 [https://doi.org/10.1107/S1600536810012122]

N'-(2,3-Dimethoxybenzylidene)-2-hydroxy-3-methylbenzohydrazide

## You-Yue Han and Qiu-Rong Zhao

## S1. Comment

As part of our ongoing studies of hydrazones (Han & Zhao, 2010), we now report the structure of the title compound, (I).

In the molecule of the title compound, Fig. 1, the dihedral angle between the two benzene rings is  $6.0 (2)^{\circ}$ . The molecule adopts an *E* configuration with respect to the C=N bond. There is an intramolecular O–H···O hydrogen bond (Table 1) in the molecule. All the bond lengths are within normal ranges (Allen *et al.*, 1987).

In the crystal structure, molecules are linked through intermolecular N–H $\cdots$ O hydrogen bonds (Table 1) to form chains running along the *c* axis (Fig. 2).

## **S2. Experimental**

A mixture of 2,3-dimethoxybenzaldehyde (0.166 g, 1 mmol) and 2-hydroxy-3-methylbenzohydrazide (0.166 g, 1 mmol) in 50 ml me thanol was stirred at room temperature for 1 h. The mixture was filtered to remove impurities, and then left at room temperature. After a few days, colourless blocks of (I) were formed.

## **S3. Refinement**

H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93 or 0.96 Å, O–H = 0.82 Å, N–H = 0.90 Å, and  $U_{iso}(H) = 1.2U_{eq}(C,N)$  or  $U_{iso}(H) = 1.5U_{eq}(methyl C and O)$ .



Figure 1

The molecular structure of (I) with 30% probability displacement ellipsoids for non-H atoms. Intramolecular O–H…O hydrogen bond is shown as a dashed line.



## Figure 2

The molecular packing of the title compound, viewed along the *a* axis. Hydrogen bonds are shown as dashed lines.

N'-(2,3-Dimethoxybenzylidene)-2-hydroxy-3-methylbenzohydrazide

Crystal data

| $C_{17}H_{18}N_2O_4$                     | F(000) = 1328                                         |
|------------------------------------------|-------------------------------------------------------|
| $M_r = 314.33$                           | $D_{\rm x} = 1.316 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Orthorhombic, Pccn                       | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ab 2ac                  | Cell parameters from 2994 reflections                 |
| a = 14.923 (3)  Å                        | $\theta = 2.7 - 24.9^{\circ}$                         |
| b = 24.329 (5) Å                         | $\mu = 0.10 \ { m mm^{-1}}$                           |
| c = 8.7422 (17)  Å                       | T = 298  K                                            |
| $V = 3174.0 (11) \text{ Å}^3$            | Block, colorless                                      |
| Z = 8                                    | $0.17 \times 0.15 \times 0.15 \text{ mm}$             |
| Data collection                          |                                                       |
| Bruker SMART CCD                         | Absorption correction: multi-scan                     |
| diffractometer                           | (SADABS; Bruker, 2001)                                |
| Radiation source: fine-focus sealed tube | $T_{\min} = 0.984, \ T_{\max} = 0.986$                |
| Graphite monochromator                   | 17128 measured reflections                            |
| $\omega$ scans                           | 3461 independent reflections                          |
|                                          |                                                       |

| $h = -18 \rightarrow 18$                                   |
|------------------------------------------------------------|
| $k = -30 \longrightarrow 31$                               |
| $l = -8 \rightarrow 11$                                    |
|                                                            |
| Secondary atom site location: difference Fourier           |
| map                                                        |
| Hydrogen site location: inferred from                      |
| neighbouring sites                                         |
| H-atom parameters constrained                              |
| $w = 1/[\sigma^2(F_o^2) + (0.0754P)^2]$                    |
| where $P = (F_0^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| $\Delta \rho_{\rm max} = 0.23 \ { m e} \ { m \AA}^{-3}$    |
| $\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$ |
|                                                            |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|--------------|-----------------------------|
| 01  | 0.42606 (9)  | 0.10101 (6)  | 0.37153 (16) | 0.0482 (4)                  |
| O2  | 0.28300 (9)  | 0.06224 (8)  | 0.52262 (16) | 0.0602 (5)                  |
| O3  | 0.84543 (10) | 0.11847 (7)  | 0.62612 (16) | 0.0586 (5)                  |
| O4  | 1.01095 (9)  | 0.13449 (7)  | 0.53290 (16) | 0.0601 (5)                  |
| H4  | 0.9716       | 0.1232       | 0.5903       | 0.072*                      |
| N1  | 0.67827 (11) | 0.09279 (7)  | 0.53655 (18) | 0.0464 (5)                  |
| N2  | 0.74005 (11) | 0.11742 (7)  | 0.44045 (19) | 0.0474 (5)                  |
| H2A | 0.7274       | 0.1235       | 0.3411       | 0.057*                      |
| C1  | 0.52468 (13) | 0.06866 (8)  | 0.5673 (2)   | 0.0402 (5)                  |
| C2  | 0.43791 (13) | 0.07538 (9)  | 0.5098 (2)   | 0.0396 (5)                  |
| C3  | 0.36482 (13) | 0.05310 (9)  | 0.5889 (2)   | 0.0443 (5)                  |
| C4  | 0.37887 (16) | 0.02333 (10) | 0.7208 (2)   | 0.0521 (6)                  |
| H4A | 0.3306       | 0.0079       | 0.7727       | 0.063*                      |
| C5  | 0.46507 (16) | 0.01651 (10) | 0.7758 (2)   | 0.0536 (6)                  |
| Н5  | 0.4743       | -0.0036      | 0.8649       | 0.064*                      |
| C6  | 0.53705 (15) | 0.03885 (9)  | 0.7014 (2)   | 0.0473 (5)                  |
| H6  | 0.5945       | 0.0341       | 0.7406       | 0.057*                      |
| C7  | 0.38589 (19) | 0.15360 (11) | 0.3766 (3)   | 0.0724 (8)                  |
| H7A | 0.3336       | 0.1523       | 0.4405       | 0.109*                      |
| H7B | 0.3690       | 0.1646       | 0.2751       | 0.109*                      |
| H7C | 0.4278       | 0.1797       | 0.4178       | 0.109*                      |
| C8  | 0.20603 (16) | 0.04196 (12) | 0.6008 (3)   | 0.0701 (8)                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# supporting information

| H8A  | 0.2071       | 0.0025       | 0.6009     | 0.105*     |
|------|--------------|--------------|------------|------------|
| H8B  | 0.1529       | 0.0546       | 0.5500     | 0.105*     |
| H8C  | 0.2063       | 0.0551       | 0.7043     | 0.105*     |
| C9   | 0.59903 (13) | 0.09237 (9)  | 0.4826 (2) | 0.0445 (5) |
| H9   | 0.5885       | 0.1076       | 0.3867     | 0.053*     |
| C10  | 0.82117 (13) | 0.13106 (9)  | 0.4951 (2) | 0.0428 (5) |
| C11  | 0.88015 (14) | 0.16270 (8)  | 0.3910 (2) | 0.0421 (5) |
| C12  | 0.97309 (14) | 0.16251 (8)  | 0.4165 (2) | 0.0456 (5) |
| C13  | 1.03102 (15) | 0.19180 (10) | 0.3209 (3) | 0.0532 (6) |
| C14  | 0.99399 (18) | 0.22279 (10) | 0.2061 (3) | 0.0650(7)  |
| H14  | 1.0318       | 0.2430       | 0.1429     | 0.078*     |
| C15  | 0.90212 (19) | 0.22521 (11) | 0.1802 (3) | 0.0671 (7) |
| H15  | 0.8789       | 0.2469       | 0.1021     | 0.081*     |
| C16  | 0.84659 (15) | 0.19497 (9)  | 0.2724 (2) | 0.0538 (6) |
| H16  | 0.7851       | 0.1960       | 0.2554     | 0.065*     |
| C17  | 1.13038 (15) | 0.18931 (13) | 0.3465 (3) | 0.0768 (8) |
| H17A | 1.1502       | 0.1519       | 0.3392     | 0.115*     |
| H17B | 1.1442       | 0.2034       | 0.4464     | 0.115*     |
| H17C | 1.1603       | 0.2111       | 0.2705     | 0.115*     |
|      |              |              |            |            |

Atomic displacement parameters  $(Å^2)$ 

|     | <b>U</b> 711 | I /22       | <b>I</b> 733 | I 712        | 1713         | I /23        |
|-----|--------------|-------------|--------------|--------------|--------------|--------------|
| 01  | 0.020( (8)   | 0.0590 (10) | 0.04(2.(0)   | 0 0024 (7)   | 0.0010 (()   | 0 0000 (7)   |
| 01  | 0.0396 (8)   | 0.0589 (10) | 0.0462 (9)   | 0.0034 (7)   | -0.0010 (6)  | 0.0099 (7)   |
| 02  | 0.0318 (8)   | 0.0918 (13) | 0.0569 (10)  | -0.0080(8)   | 0.0014 (7)   | 0.0109 (8)   |
| 03  | 0.0378 (8)   | 0.0921 (13) | 0.0459 (9)   | -0.0056 (8)  | -0.0042 (7)  | 0.0152 (8)   |
| O4  | 0.0370 (9)   | 0.0835 (12) | 0.0597 (10)  | 0.0003 (8)   | -0.0035 (7)  | 0.0124 (8)   |
| N1  | 0.0348 (10)  | 0.0580 (12) | 0.0463 (10)  | -0.0030 (8)  | -0.0004 (8)  | 0.0027 (8)   |
| N2  | 0.0375 (10)  | 0.0623 (12) | 0.0422 (10)  | -0.0061 (9)  | -0.0030 (8)  | 0.0055 (8)   |
| C1  | 0.0371 (11)  | 0.0444 (12) | 0.0390 (11)  | -0.0017 (9)  | -0.0027 (9)  | -0.0038 (9)  |
| C2  | 0.0373 (11)  | 0.0444 (11) | 0.0372 (11)  | -0.0011 (9)  | -0.0012 (9)  | 0.0006 (9)   |
| C3  | 0.0377 (12)  | 0.0543 (13) | 0.0409 (11)  | -0.0030 (10) | 0.0018 (9)   | -0.0034 (10) |
| C4  | 0.0520 (14)  | 0.0595 (15) | 0.0448 (12)  | -0.0075 (11) | 0.0059 (11)  | 0.0020 (10)  |
| C5  | 0.0616 (15)  | 0.0590 (14) | 0.0403 (12)  | 0.0016 (12)  | -0.0011 (11) | 0.0102 (10)  |
| C6  | 0.0470 (13)  | 0.0505 (13) | 0.0445 (12)  | 0.0015 (10)  | -0.0070 (10) | 0.0015 (10)  |
| C7  | 0.0754 (19)  | 0.0632 (18) | 0.0787 (17)  | 0.0105 (14)  | -0.0018 (15) | 0.0187 (14)  |
| C8  | 0.0411 (14)  | 0.102 (2)   | 0.0677 (16)  | -0.0099 (13) | 0.0149 (11)  | -0.0004 (14) |
| C9  | 0.0368 (12)  | 0.0531 (13) | 0.0436 (12)  | 0.0003 (9)   | -0.0030 (9)  | 0.0007 (10)  |
| C10 | 0.0348 (11)  | 0.0501 (12) | 0.0437 (12)  | 0.0008 (10)  | -0.0017 (9)  | -0.0012 (9)  |
| C11 | 0.0410 (12)  | 0.0432 (12) | 0.0422 (11)  | -0.0039 (9)  | -0.0031 (9)  | -0.0042 (9)  |
| C12 | 0.0440 (13)  | 0.0456 (12) | 0.0472 (12)  | -0.0001 (10) | -0.0006 (10) | -0.0079 (10) |
| C13 | 0.0461 (13)  | 0.0532 (14) | 0.0602 (14)  | -0.0050 (11) | 0.0092 (11)  | -0.0077 (11) |
| C14 | 0.0723 (18)  | 0.0547 (15) | 0.0680 (16)  | -0.0191 (13) | 0.0149 (14)  | 0.0024 (12)  |
| C15 | 0.0768 (19)  | 0.0569 (16) | 0.0678 (16)  | -0.0098 (13) | -0.0064 (14) | 0.0206 (12)  |
| C16 | 0.0519 (13)  | 0.0512 (14) | 0.0584 (14)  | -0.0029 (11) | -0.0090 (11) | 0.0061 (11)  |
| C17 | 0.0450 (15)  | 0.087 (2)   | 0.098 (2)    | -0.0091 (14) | 0.0176 (14)  | -0.0022 (16) |

Geometric parameters (Å, °)

| 01—C2                       | 1.372 (2)                | С7—Н7А         | 0.9600      |  |
|-----------------------------|--------------------------|----------------|-------------|--|
| O1—C7                       | 1.414 (3)                | С7—Н7В         | 0.9600      |  |
| O2—C3                       | 1.370 (2)                | С7—Н7С         | 0.9600      |  |
| O2—C8                       | 1.425 (3)                | C8—H8A         | 0.9600      |  |
| O3—C10                      | 1.240 (2)                | C8—H8B         | 0.9600      |  |
| O4—C12                      | 1.349 (2)                | C8—H8C         | 0.9600      |  |
| O4—H4                       | 0.8195                   | С9—Н9          | 0.9300      |  |
| N1—C9                       | 1.273 (3)                | C10-C11        | 1.482 (3)   |  |
| N1—N2                       | 1.384 (2)                | C11—C16        | 1.394 (3)   |  |
| N2-C10                      | 1.343 (2)                | C11—C12        | 1.405 (3)   |  |
| N2—H2A                      | 0.9005                   | C12—C13        | 1.398 (3)   |  |
| C1—C6                       | 1.391 (3)                | C13—C14        | 1.372 (3)   |  |
| C1—C2                       | 1.398 (3)                | C13—C17        | 1.501 (3)   |  |
| C1—C9                       | 1.453 (3)                | C14—C15        | 1.391 (4)   |  |
| C2—C3                       | 1.401 (3)                | C14—H14        | 0.9300      |  |
| C3—C4                       | 1.378 (3)                | C15—C16        | 1.370 (3)   |  |
| C4—C5                       | 1.383 (3)                | C15—H15        | 0.9300      |  |
| C4—H4A                      | 0.9300                   | C16—H16        | 0.9300      |  |
| C5—C6                       | 1.368 (3)                | C17—H17A       | 0.9600      |  |
| С5—Н5                       | 0.9300                   | C17—H17B       | 0.9600      |  |
| С6—Н6                       | 0.9300                   | С17—Н17С       | 0.9600      |  |
| C2-01-C7                    | 115 99 (16)              | O2—C8—H8C      | 109 5       |  |
| $C_{3} = 0^{2} = C_{8}^{2}$ | 117 34 (18)              | H8A - C8 - H8C | 109.5       |  |
| $C_{12} - O_{4} - H_{4}$    | 109 3                    | H8B - C8 - H8C | 109.5       |  |
| C9-N1-N2                    | 113 41 (17)              | N1 - C9 - C1   | 121 57 (19) |  |
| C10-N2-N1                   | 119.11(17)<br>119.45(17) | N1—C9—H9       | 119.2       |  |
| C10-N2-H2A                  | 119.4                    | C1 - C9 - H9   | 119.2       |  |
| N1—N2—H2A                   | 121.1                    | 03 - C10 - N2  | 122.05 (19) |  |
| C6-C1-C2                    | 119.12 (18)              | 03 - C10 - C11 | 121.49 (18) |  |
| C6-C1-C9                    | 122.34 (18)              | N2—C10—C11     | 116.46 (17) |  |
| C2-C1-C9                    | 118.53 (18)              | C16—C11—C12    | 118.3 (2)   |  |
| 01                          | 119.28 (17)              | C16—C11—C10    | 122.42 (19) |  |
| O1—C2—C3                    | 120.71 (17)              | C12—C11—C10    | 119.17 (18) |  |
| C1—C2—C3                    | 119.90 (18)              | O4—C12—C13     | 116.7 (2)   |  |
| O2—C3—C4                    | 125.12 (18)              | O4—C12—C11     | 122.34 (19) |  |
| O2—C3—C2                    | 114.99 (18)              | C13—C12—C11    | 120.9 (2)   |  |
| C4—C3—C2                    | 119.87 (19)              | C14—C13—C12    | 117.9 (2)   |  |
| C3—C4—C5                    | 119.7 (2)                | C14—C13—C17    | 122.0 (2)   |  |
| C3—C4—H4A                   | 120.2                    | C12—C13—C17    | 120.1 (2)   |  |
| C5—C4—H4A                   | 120.2                    | C13—C14—C15    | 122.6 (2)   |  |
| C6—C5—C4                    | 121.1 (2)                | C13—C14—H14    | 118.7       |  |
| С6—С5—Н5                    | 119.4                    | C15—C14—H14    | 118.7       |  |
| С4—С5—Н5                    | 119.4                    | C16—C15—C14    | 118.6 (2)   |  |
| C5—C6—C1                    | 120.25 (19)              | C16—C15—H15    | 120.7       |  |
| С5—С6—Н6                    | 119.9                    | C14—C15—H15    | 120.7       |  |

## supporting information

| C1—C6—H6                | 119.9          | C15—C16—C11   | 121.5 (2) |
|-------------------------|----------------|---------------|-----------|
| O1—C7—H7A               | 109.5          | C15—C16—H16   | 119.2     |
| O1—C7—H7B               | 109.5          | C11—C16—H16   | 119.2     |
| H7A—C7—H7B              | 109.5          | C13—C17—H17A  | 109.5     |
| O1—C7—H7C               | 109.5          | C13—C17—H17B  | 109.5     |
| H7A—C7—H7C              | 109.5          | H17A—C17—H17B | 109.5     |
| H7B—C7—H7C              | 109.5          | C13—C17—H17C  | 109.5     |
| O2—C8—H8A               | 109.5          | H17A—C17—H17C | 109.5     |
| O2—C8—H8B               | 109.5          | H17B—C17—H17C | 109.5     |
| O2—C8—H8B<br>H8A—C8—H8B | 109.5<br>109.5 | H17B—C17—H17C | 109.5     |

Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H···A | $D \cdots A$ | <i>D</i> —H…A |
|---------------------------|-------------|-------|--------------|---------------|
| O4—H4…O3                  | 0.82        | 1.91  | 2.630 (2)    | 146           |
| N2—H2A····O3 <sup>i</sup> | 0.90        | 2.17  | 3.030 (2)    | 158           |

Symmetry code: (i) -x+3/2, *y*, z-1/2.