Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

catena-Poly[[(5,5'-dimethyl-2,2'-bi-pyridine- $\kappa^{2} N, N^{\prime}$)cadmium(II)]-di- μ iodido]

Roya Ahmadi, Khadijeh Kalateh and Vahid Amani*

Islamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
Correspondence e-mail: v_amani2002@yahoo.com
Received 11 April 2010; accepted 16 April 2010

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.037 ; \omega R$ factor $=0.098$; data-to-parameter ratio $=25.1$.

In the title coordination polymer, $\left[\mathrm{CdI}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]_{n}$, the Cd^{2+} ion lies on a twofold rotation axis: it is six-coordinated in a distorted cis- $\mathrm{CdN}_{2} \mathrm{I}_{4}$ octahedral geometry by two N atoms from a chelating 5,5'-dimethyl-2,2'-bipyridine ligands and four bridging iodide anions. The bridging function of the iodide ions leads to a chain structure propagating in [001].

Related literature

For related structures, see: Ahmadi et al. (2008); Albada et al. (2004); Amani et al. (2007, 2009); Chattopadhyay et al. (2008); Guo et al. (2006); Kalateh et al. (2008, 2010); Khalighi et al. (2008); Maheshwari et al. (2007); Tadayon Pour et al. (2008); Yu et al. (2007).

Experimental

Crystal data

$\left[\mathrm{CdI}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
$M_{r}=550.45$
Monoclinic, $C 2 / c$
$a=19.086$ (4) A
$b=10.057$ (2) \AA
$c=7.8451(16) \AA$
$\beta=101.80(3)^{\circ}$
$V=1474.0$ (5) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation

Table 1
Selected bond lengths (\AA).

$\mathrm{Cd} 1-\mathrm{N} 1$	$2.347(3)$	$\mathrm{Cd} 1-\mathrm{I} 1^{\mathrm{i}}$	$3.1628(8)$
$\mathrm{Cd} 1-\mathrm{I} 1$	$2.8586(7)$		

Symmetry code: (i) $x,-y+1, z+\frac{1}{2}$.
Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5403).

References

Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. \& Khavasi, H. R. (2008). Acta Cryst. E64, m1233.
Albada, G. A., Mohamadou, A., Mutikainen, I., Turpeinen, U. \& Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733-3742.

Amani, V., Safari, N. \& Khavasi, H. R. (2007). Polyhedron, 26, 4257-4262.
Amani, V., Safari, N., Khavasi, H. R. \& Akkurt, M. (2009). Polyhedron, 28, 3026-3030.
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.
Chattopadhyay, T., Banerjee, A., Banu, K. S., Suresh, E., Netahji, M., Birarda, G., Zangrando, E. \& Das, D. (2008). Polyhedron, 27, 2452-2458.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Guo, H. X., Yang, L. M., Lin, Z. X. \& Zou, X. J. (2006). Acta Cryst. E62, m2863-m2865.
Kalateh, K., Ahmadi, R. \& Amani, V. (2010). Acta Cryst. E66, m512.
Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. \& Khavasi, H. R. (2008). Acta Cryst. E64, m1353-m1354.
Khalighi, A., Ahmadi, R., Amani, V. \& Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.
Maheshwari, V., Carlone, M., Fronczek, F. R. \& Marzilli, L. G. (2007). Acta Cryst. B63, 603-611.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. \& Khavasi, H. R. (2008). Acta Cryst. E64, m1305.
Yu, J. H., Ye, L., Bi, M. H., Hou, Q., Zhang, X. \& Xu, J. Q. (2007). Inorg. Chim. Acta, 360, 1987-1994.

supporting information

Acta Cryst. (2010). E66, m562 [https://doi.org/10.1107/S1600536810014091]
catena-Poly[[(5,5'-dimethyl-2, 2^{\prime}-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ cadmium(II)]-di- μ-iodido]

Roya Ahmadi, Khadijeh Kalateh and Vahid Amani

S1. Comment

In a recent paper, we reported the synthes and crystal structure of $\left[\mathrm{Cd}\left(5,5^{\prime}-\mathrm{dmbpy}\right)(\mu-\mathrm{Cl})_{2}\right]_{\mathrm{n}}$, (Ahmadi et al., 2008) and $\left[\mathrm{Cd}\left(4,4^{\prime}\right.\right.$-dmbpy)(DMSO) $\left.\mathrm{I}_{2}\right]$, (Kalateh et al., 2010) [where $5,5^{\prime}$-dmbpy is $5,5^{\prime}$-dimethyl-2,2'-bipyridine and 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine].
5,5'-Dimethyl-2, 2^{\prime}-bipyridine ($5,5^{\prime}$-dmbipy), is a good bidentate ligand, and numerous complexes with 5,5'-dmbipy have been prepared, such as that of zinc (Khalighi et al., 2008), indium (Kalateh et al., 2008), iron (Amani et al., 2007), platin (Amani et al., 2009; Maheshwari et al., 2007), copper (Albada et al., 2004) and mercury (Tadayon Pour et al., 2008).

There are several $\mathrm{Cd}^{\mathrm{II}}$ polymer complexes, with formula, $\left[\mathrm{Cd}(\mathrm{N}-\mathrm{N})(\mu-\mathrm{I})_{2}\right]_{\mathrm{n}}$, such as $\left[\mathrm{Cd}(\mathrm{phen})(\mu-\mathrm{I})_{2}\right]_{\mathrm{n}}$, $($ Guo et al., 2006), $\left[\mathrm{Cd}(\mathrm{bipy})(\mu-\mathrm{I})_{2}\right]_{\mathrm{n}},\left(\mathrm{Yu}\right.$ et al., 2007) and $\left[\mathrm{Cd}(\operatorname{ampy})(\mu-\mathrm{I})_{2}\right]_{\mathrm{n}}$, (Chattopadhyay et al., 2008) [where phen is $1,10-$ phenanthroline, bipy is $2,2^{\prime}$-bipyridine and ampy is 2 -aminomethylpyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. Here, we report the synthesis and structure of the title compound.
The asymmetric unit of the title compound, (Fig. 1), contains one half -molecule; a twofold rotation axis passes through the Cd atom. The $\mathrm{Cd}^{\mathrm{II}}$ atom is six-coordinated in a distorted octahedral configuration by two N atoms from 5,5'-di-methyl-2, 2^{\prime}-bipyridine and four bridging I atoms. The bridging function of the iodo atoms leads to a one-dimensional chain structure. The $\mathrm{Cd}-\mathrm{I}$ and $\mathrm{Cd}-\mathrm{N}$ bond lengths and angles (Table 1) are within normal range $\left[\mathrm{Cd}(\mathrm{phen})(\mu-\mathrm{I})_{2}\right]_{\mathrm{n}}$, (Guo et al., 2006) and $\left[\mathrm{Cd}(\text { bipy })(\mu-\mathrm{I})_{2}\right]_{\mathrm{n}}$, (Yu et al., 2007).

S2. Experimental

A solution of 5, 5^{\prime}-dimethyl-2, 2^{\prime}-bipyridine $(0.25 \mathrm{~g}, 1.33 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$ was added to a solution of $\mathrm{CdI}_{2}(0.49$ $\mathrm{g}, 1.33 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$ at room temperature. Colourless blocks of (I) were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; $0.52 \mathrm{~g}, 71.0 \%$).

S3. Refinement

All H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and constrained to ride on their parent atoms, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}$.

Figure 1
Fragment of a polymeric chain in (I) with displacement ellipsoids drawn at the 50% probability level. [Symmetry code:
(a) $-\mathrm{x}+1, \mathrm{y},-\mathrm{z}+5 / 2]$.
catena-Poly[[(5,5'-dimethyl-2,2'-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ cadmium(II)]-di- μ-iodido]

Crystal data

$\left[\mathrm{CdI}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
$M_{r}=550.45$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=19.086$ (4) \AA
$b=10.057$ (2) \AA
$c=7.8451$ (16) \AA
$\beta=101.80$ (3) ${ }^{\circ}$
$V=1474.0(5) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\min }=0.380, T_{\text {max }}=0.510$
$F(000)=1008$
$D_{\mathrm{x}}=2.480 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 351 reflections
$\theta=2.2-29.3^{\circ}$
$\mu=5.65 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colorless
$0.25 \times 0.15 \times 0.12 \mathrm{~mm}$

8294 measured reflections
1981 independent reflections
1832 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=29.3^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-26 \rightarrow 26$
$k=-13 \rightarrow 12$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.098$
$S=1.23$
1981 reflections
79 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0571 P)^{2}+0.4175 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.037$
$\Delta \rho_{\text {max }}=1.30 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.43$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.3791(2)$	$0.7656(5)$	$1.0047(5)$	$0.0482(9)$
H1	0.3615	0.6825	0.9652	0.058^{*}
C2	$0.3413(3)$	$0.8765(5)$	$0.9329(6)$	$0.0546(11)$
C3	$0.2732(3)$	$0.8623(8)$	$0.7991(8)$	$0.0758(17)$
H3A	0.2792	0.9020	0.6917	0.114^{*}
H3B	0.2350	0.9062	0.8395	0.114^{*}
H3C	0.2619	0.7698	0.7807	0.114^{*}
C4	$0.3706(3)$	$0.9988(5)$	$0.9920(6)$	$0.0590(12)$
H4	0.3478	1.0767	0.9473	0.071^{*}
C5	$0.4327(3)$	$1.0059(5)$	$1.1151(6)$	$0.0545(10)$
H5	0.4521	1.0881	1.1531	0.065^{*}
C6	$0.4666(2)$	$0.8885(4)$	$1.1833(5)$	$0.0398(8)$
N1	$0.43894(18)$	$0.7698(3)$	$1.1264(4)$	$0.0414(7)$
Cd1	0.5000	$0.57933(4)$	1.2500	$0.04719(14)$
I1	$0.407345(14)$	$0.39302(3)$	$1.03947(3)$	$0.04393(12)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.049(2)$	$0.048(2)$	$0.0463(19)$	$0.0039(18)$	$0.0055(16)$	$0.0064(16)$
C2	$0.050(2)$	$0.066(3)$	$0.051(2)$	$0.013(2)$	$0.0171(18)$	$0.019(2)$
C3	$0.054(3)$	$0.100(5)$	$0.071(3)$	$0.012(3)$	$0.005(2)$	$0.027(3)$
C4	$0.074(3)$	$0.049(3)$	$0.058(2)$	$0.021(2)$	$0.023(2)$	$0.015(2)$
C5	$0.077(3)$	$0.035(2)$	$0.055(2)$	$0.012(2)$	$0.023(2)$	$0.0084(17)$
C6	$0.051(2)$	$0.0328(18)$	$0.0388(17)$	$0.0020(14)$	$0.0168(15)$	$0.0021(12)$
N1	$0.0470(17)$	$0.0366(17)$	$0.0400(14)$	$0.0018(13)$	$0.0074(12)$	$0.0052(12)$
Cd1	$0.0564(3)$	$0.0300(2)$	$0.0463(2)$	0.000	$-0.01021(18)$	0.000
I1	$0.04992(19)$	$0.03831(18)$	$0.04068(17)$	$-0.00834(9)$	$0.00254(11)$	$-0.00433(8)$

Geometric parameters (A, ${ }^{\circ}$)

C1-N1	1.331 (6)	C5-H5	0.9300
C1-C2	1.384 (6)	C6-N1	1.344 (5)
C1-H1	0.9300	C6-C6 ${ }^{\text {i }}$	1.474 (9)
C2-C4	1.391 (8)	Cd1-N1	2.347 (3)
C2-C3	1.501 (8)	Cd1- $\mathrm{Nl}^{\text {i }}$	2.347 (3)
C3-H3A	0.9600	Cd1-I1	2.8586 (7)
C3-H3B	0.9600	Cd1- $\mathrm{IL}^{\text {i }}$	2.8586 (7)
C3-H3C	0.9600	Cd1-I1 ${ }^{\text {ii }}$	3.1628 (8)
C4-C5	1.369 (9)	Cd1- $\mathrm{Il}^{\text {iii }}$	3.1629 (8)
C4-H4	0.9300	I1-Cd1 ${ }^{\text {iii }}$	3.1629 (8)
C5-C6	1.399 (6)		
N1-C1-C2	124.4 (5)	C5-C6- $\mathrm{C}^{\text {i }}$	122.5 (3)
N1-C1-H1	117.8	C1-N1-C6	119.2 (4)
C2-C1-H1	117.8	C1-N1-Cd1	123.4 (3)
C1-C2-C4	115.8 (5)	C6-N1-Cd1	117.3 (3)
C1-C2-C3	120.8 (5)	N1 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1$	70.55 (18)
C4-C2-C3	123.3 (5)	N1-Cd1-I1	165.97 (9)
C2-C3-H3A	109.5	N1-Cd1-I1	95.74 (9)
C2-C3-H3B	109.5	$\mathrm{N} 1^{\mathbf{i}}-\mathrm{Cd} 1-\mathrm{Il}{ }^{1}$	95.74 (9)
H3A-C3-H3B	109.5	N1-Cd1- $\mathrm{I} 1^{\text {i }}$	165.97 (9)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5	$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{I} 1^{\text {i }}$	98.09 (3)
H3A-C3-H3C	109.5	$\mathrm{N} 1^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Il}^{\text {ii }}$	86.26 (8)
H3B-C3-H3C	109.5	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Il}^{\text {ii }}$	85.51 (8)
C5-C4-C2	120.9 (4)	$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{H} 1^{\text {ii }}$	95.844 (16)
C5-C4-H4	119.6	$\mathrm{I} 1^{\text {i }}-\mathrm{Cd} 1-\mathrm{I} 1^{\text {ii }}$	90.771 (16)
C2-C4-H4	119.6	$\mathrm{N} 1^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{I} 1^{\text {iii }}$	85.51 (8)
C4-C5-C6	119.4 (5)	N1-Cd1-I1 $1^{\text {iii }}$	86.26 (8)
C4-C5-H5	120.3	$\mathrm{I}-\mathrm{Cd} 1-\mathrm{I} 1^{\text {iii }}$	90.771 (16)
C6-C5-H5	120.3	$\mathrm{I1}$ - ${ }^{\text {Cd }} 1-\mathrm{I} 11^{\text {iii }}$	95.842 (16)
N1-C6-C5	120.2 (4)	$\mathrm{I} 1{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{I} 1{ }^{\text {iii }}$	169.91 (2)
N1-C6-C6 ${ }^{\text {i }}$	117.4 (2)	Cd1-I1-Cd1iii	89.229 (16)
N1-C1-C2-C4	1.8 (7)	C6-N1-Cd1-N1 ${ }^{\text {i }}$	-0.26 (19)
N1-C1-C2-C3	-178.5 (4)	C1-N1-Cd1-I1	2.9 (3)
C1-C2-C4-C5	-0.7 (7)	C6-N1-Cd1-I1	-177.2 (3)
C3-C2-C4-C5	179.6 (5)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Il}^{\text {i }}$	-167.5 (2)
C2-C4-C5-C6	-0.5 (7)	C6-N1-Cd1- $\mathrm{Il}^{\text {i }}$	12.3 (5)
C4-C5-C6-N1	0.9 (6)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{H} 1^{\text {ii }}$	-92.5 (3)
C4-C5-C6- $\mathrm{C}^{\mathbf{i}}$	-179.7 (4)	C6-N1-Cd1- $1^{\text {ii }}$	87.4 (3)
C2-C1-N1-C6	-1.5 (6)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{I} 1^{\text {iii }}$	93.3 (3)
C2- $21-\mathrm{N} 1-\mathrm{Cd} 1$	178.4 (3)	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{I} 1^{\text {iii }}$	-86.8 (3)
C5-C6-N1-C1	0.1 (6)	$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Il-} \mathrm{Cd} 1{ }^{\text {iii }}$	74.4 (3)
C6- 6 - $6-\mathrm{N} 1-\mathrm{C} 1$	-179.4 (4)	N1-Cd1-I1-Cd1 ${ }^{\text {iii }}$	86.32 (8)
C5-C6-N1-Cd1	-179.8 (3)	$\mathrm{I} 1{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{Il}-\mathrm{Cd} 1^{\text {iii }}$	-96.013 (15)

supporting information

$\mathrm{C} 6-\mathrm{C} 6-\mathrm{N} 1-\mathrm{Cd} 1$	$0.7(5)$	$\mathrm{I} 1^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{I} 1-\mathrm{Cd} 1^{\mathrm{iii}}$	$172.370(15)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{i}}$	$179.8(4)$	$\mathrm{I} 1^{\mathrm{iii}}-\mathrm{Cd} 1-\mathrm{I} 1-\mathrm{Cd} 1^{\mathrm{iii}}$	0.0

Symmetry codes: (i) $-x+1, y,-z+5 / 2$; (ii) $x,-y+1, z+1 / 2$; (iii) $-x+1,-y+1,-z+2$.

