Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(E)-4-Nitrobenzaldehyde oxime

Asghar Abbas, ${ }^{\text {a }}$ Safdar Hussain, ${ }^{\text {b }}$ Noureen Hafeez, ${ }^{\text {b }}$ Amir Badshah, ${ }^{\text {a }}$ Aurangzeb Hasan ${ }^{\text {c }}$ and Kong Mun Lo ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan,
${ }^{\mathbf{b}}$ Department of Forensic Medicine \& Toxicology, National University of Sciences \& Technology, Islamabad, Pakistan, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: profazmi@hotmail.com
Received 12 April 2010; accepted 15 April 2010
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.066 ; w R$ factor $=0.175$; data-to-parameter ratio $=17.0$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$, the planes containing the CNO and ONO atoms subtend dihedral angles of 5.47 (5) and $8.31(5)^{\circ}$, respectively, with the benzene ring. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdot \cdots \mathrm{N}$ hydrogen bonds link the molecules into centrosymmetric dimers with an $R_{2}^{2}(6)$ graphset motif.

Related literature

For oximes as therapeutic agents in organophosphorus poisoning, see: Jokanovic et al. (2009); Marrs et al. (2006). For their use as protecting groups in organic synthesis, see: Greene et al. (1999); Shinada et al. (1995). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995). For bond lengths in similar structures, see: Xing, Ding et al. (2007); Xing, Wang et al. (2007).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=166.14$
Monoclinic, $P 2_{1} / n$
$a=3.7737$ (2) A
$b=7.0363$ (3) A
$c=28.6651(14) \AA$
$\beta=91.237$ (3) ${ }^{\circ}$
$V=760.96(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

$\mu=0.12 \mathrm{~mm}^{-1}$	$0.49 \times 0.41 \times 0.16 \mathrm{~mm}$
$T=296 \mathrm{~K}$	
Data collection	
Bruker APEXII CCD area-detector	7222 measured reflections
\quad diffractometer	1869 independent reflections
Absorption correction: multi-scan	1340 reflections with $I>2 \sigma(I)$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$R_{\text {int }}=0.031$
$\quad T_{\min }=0.945, T_{\max }=0.982$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$	110 parameters
$w R\left(F^{2}\right)=0.175$	H -atom parameters constrained
$S=1.09$	$\Delta \rho_{\max }=0.20 \mathrm{e}^{-3}$
1869 reflections	$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{N} 2^{\mathrm{i}}$	0.82	2.12	$2.841(3)$	146
Symmetry code: (i) $-x+2,-y+2,-z$				

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

AA is grateful to the HEC-Pakistan for financial support for his PhD program under scholarship No. [IIC-0317109].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2672).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Greene, T. W. \& Wuts, P. G. (1999). Protective Groups in Organic Synthesis, 3rd ed. New York: Wiley.
Jokanovic, M. \& Prostran, M. (2009). Curr. Med. Chem. 16, 2177-2188.
Marrs, T. C., Rice, P. \& Vale, J. A. (2006). Toxicol. Rev. 25, 297-323.
Sheldrick, G. M. (1996). SADABS. University of Gö ttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shinada, T. \& Yoshihara, K. (1995). Tetrahedron Lett. 36-37, 6701-6704.
Westrip, S. P. (2010). publCIF. In preparation.
Xing, Z.-T., Ding, W.-L., Wang, H.-B., Yin, J. \& Han, F. (2007). Acta Cryst. E63, o1019-o1020.
Xing, Z.-T., Wang, H.-B., Yin, J., Wu, W.-Y. \& Han, F. (2007). Acta Cryst. E63, o2236-o2237.

supporting information

Acta Cryst. (2010). E66, o1130 [https://doi.org/10.1107/S1600536810013978]

(E)-4-Nitrobenzaldehyde oxime

Asghar Abbas, Safdar Hussain, Noureen Hafeez, Amir Badshah, Aurangzeb Hasan and Kong Mun Lo

S1. Comment

Thousands of deaths are caused by acute organophosphorus pesticide poisoning each year. Oximes are accepted therapeutic agents in organophosphorus poisoning (Jokanovic et al., 2009, Marrs et al., 2006). Oximes can act as useful protecting groups (Greene et al., 1999) and have served for the protection of carbonyl groups in the syntheses of erythromycin derivatives and perhydrohistrionicotoxin (Shinada et al., 1995). Oximes are also used for the purification and characterization of carbonyl compounds. As part of our interest in the study of oxime derivatives, we report here the crystal structure of the title compound (I). A depiction of the molecule is given in Fig. 1. In the crystal structure of the title compound, molecules are connected via intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (see Table 1 and Fig. 2) to form two-dimensional dimers. The oxime group has an E configuration [$\left.\mathrm{C} 3-\mathrm{C} 7-\mathrm{N} 2-\mathrm{O} 3=179.1(2)^{\circ}\right]$ and the planes containing the CNO and ONO atoms subtend dihedral angles of $5.47(5)^{\circ}$ and $8.31(5)^{\circ}$ with the phenyl $\mathrm{C}(1-6)$ ring. which is less than that reported for similar structures (Xing \& Ding et al., 2007; Xing \& Wang et al., 2007). Each molecule is connected to a symmetry-related molecule through an inversion center by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, building an $\mathrm{R}_{2}{ }^{2}(6)$ graph-set motif in Fig. 2 (Etter et al., 1990; Bernstein et al., 1995;).

S2. Experimental

To a warm solution of 4-nitrobenzaldehyde $(0.907 \mathrm{~g}, 0.005 \mathrm{~mol})$ in 25 ml e thanol, hydroxylamine hydrochloride (0.417 $\mathrm{g}, 0.006 \mathrm{~mol})$ and sodium acetate trihydrate $(2.04 \mathrm{~g}, 0.015 \mathrm{~mol})$ were added and the mixture was heated under reflux until completion of the reaction. The concentrated reaction mixture was cooled down and water was added. The precipitated oxime was separated by filtration, washed with excess of water and dried. The crude product was recrystallized from ethanol to get the title compound (I).

S3. Refinement

All H atoms were placed in calculated position and treated as riding on their parent atoms with $\mathrm{C}-\mathrm{H}=0.93 \AA$ or $\mathrm{O}-\mathrm{H}=$ $0.82 \AA$ with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ or $1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{O})$ for the hydroxyl H atom.

Figure 1
Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 50\% probability level.

Figure 2
Hydrogen bonds shown as dashed lines, forming dimers through R22(6) graph set motif.

(E)-4-Nitrobenzaldehyde oxime

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$

$M_{r}=166.14$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=3.7737$ (2) \AA
$b=7.0363$ (3) \AA
$c=28.6651(14) \AA$
$\beta=91.237$ (3) ${ }^{\circ}$
$V=760.96(6) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=344 \\
& D_{\mathrm{x}}=1.450 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1727 \text { reflections } \\
& \theta=2.8-25.1^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.49 \times 0.41 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.945, T_{\text {max }}=0.982$

$$
\begin{aligned}
& 7222 \text { measured reflections } \\
& 1869 \text { independent reflections } \\
& 1340 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.031 \\
& \theta_{\max }=28.2^{\circ}, \theta_{\min }=2.8^{\circ} \\
& h=-5 \rightarrow 4 \\
& k=-9 \rightarrow 9 \\
& l=-38 \rightarrow 37
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.175$
$S=1.09$
1869 reflections
110 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O3	$0.9103(8)$	$0.7939(3)$	$-0.02398(6)$	$0.0848(8)$
H3	0.9673	0.8950	-0.0359	0.127^{*}
O2	$0.2494(7)$	$0.1865(3)$	$0.14956(8)$	$0.0857(8)$
N1	$0.3651(6)$	$0.3009(3)$	$0.17705(8)$	$0.0575(6)$

N 2	$0.8746(6)$	$0.8191(3)$	$0.02418(7)$	$0.0562(6)$
C 1	$0.5229(6)$	$0.4774(3)$	$0.15885(8)$	$0.0425(5)$
C2	$0.5707(6)$	$0.4913(3)$	$0.11163(8)$	$0.0426(5)$
H2	0.5092	0.3912	0.0919	0.051^{*}
C3 (6)	$0.7126(6)$	$0.6576(3)$	$0.09400(8)$	$0.0415(5)$
C7	$0.7669(7)$	$0.6696(3)$	$0.04381(9)$	$0.0529(6)$
H7	0.7205	0.5629	0.0255	0.063^{*}
C6	$0.6116(7)$	$0.6200(3)$	$0.18954(8)$	$0.0509(6)$
H6	0.5788	0.6059	0.2214	0.061^{*}
C5	$0.7516(7)$	$0.7856(3)$	$0.17149(9)$	$0.0549(6)$
H5	0.8135	0.8850	0.1914	0.066^{*}
C4	$0.7997(6)$	$0.8040(3)$	$0.12444(8)$	$0.0474(6)$
H4	0.8922	0.9165	0.1128	0.057^{*}
O1	$0.3545(8)$	$0.2798(4)$	$0.21888(8)$	$0.1044(9)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O3	$0.143(2)$	$0.0654(13)$	$0.0469(11)$	$-0.0300(13)$	$0.0171(12)$	$0.0024(9)$
O2	$0.1130(19)$	$0.0472(11)$	$0.0966(17)$	$-0.0354(12)$	$-0.0037(13)$	$0.0100(10)$
N1	$0.0583(13)$	$0.0447(11)$	$0.0694(15)$	$-0.0043(10)$	$0.0033(11)$	$0.0160(10)$
N2	$0.0732(15)$	$0.0490(11)$	$0.0467(11)$	$-0.0115(10)$	$0.0070(10)$	$0.0029(9)$
C1	$0.0405(11)$	$0.0353(10)$	$0.0518(13)$	$-0.0014(9)$	$0.0023(9)$	$0.0071(9)$
C2	$0.0467(12)$	$0.0318(10)$	$0.0491(12)$	$-0.0054(9)$	$-0.0020(9)$	$-0.0028(9)$
C3	$0.0432(12)$	$0.0335(10)$	$0.0478(12)$	$-0.0031(9)$	$-0.0004(9)$	$0.0015(9)$
C7	$0.0677(16)$	$0.0416(12)$	$0.0496(14)$	$-0.0128(11)$	$0.0028(11)$	$-0.0025(10)$
C6	$0.0586(15)$	$0.0501(13)$	$0.0442(12)$	$0.0019(11)$	$0.0022(10)$	$0.0012(10)$
C5	$0.0706(17)$	$0.0410(12)$	$0.0528(14)$	$-0.0082(11)$	$-0.0034(12)$	$-0.0077(10)$
C4	$0.0543(14)$	$0.0332(10)$	$0.0544(14)$	$-0.0095(9)$	$-0.0020(10)$	$0.0008(9)$
O1	$0.155(3)$	$0.0918(17)$	$0.0674(15)$	$-0.0365(17)$	$0.0135(14)$	$0.0309(12)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 3-\mathrm{N} 2$	$1.401(3)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{O} 3-\mathrm{H} 3$	0.8200	$\mathrm{C} 3-\mathrm{C} 4$	$1.385(3)$
$\mathrm{O} 2-\mathrm{N} 1$	$1.202(3)$	$\mathrm{C} 3-\mathrm{C} 7$	$1.460(3)$
$\mathrm{N} 1-\mathrm{O} 1$	$1.210(3)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{~N} 1-\mathrm{C} 1$	$1.477(3)$	$\mathrm{C} 6-\mathrm{C} 5$	$1.385(3)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.264(3)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 1-\mathrm{C} 6$	$1.371(3)$	$\mathrm{C} 5-\mathrm{C} 4$	$1.371(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.373(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.387(3)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
			$118.11(19)$
$\mathrm{N} 2-\mathrm{O} 3-\mathrm{H} 3$	109.5	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7$	$122.7(2)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 1$	$123.2(2)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 3$	118.7
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1$	$118.4(2)$	$\mathrm{C} 3-\mathrm{C} 7-\mathrm{H} 7$	118.7
$\mathrm{O} 1 — \mathrm{~N} 1-\mathrm{C} 1$	$118.4(2)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$117.8(2)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{O} 3$	$111.8(2)$		

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$123.0(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$118.9(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$118.1(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.63(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.1(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 7$	$122.78(19)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$171.2(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-7.8(4)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-8.2(3)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$172.8(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.5(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.8(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7$	$179.1(2)$
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 3$	$179.1(2)$

$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	121.1
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	121.1
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.4(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.8
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.8
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$121.0(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 7-\mathrm{N} 2$	$-5.0(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7-\mathrm{N} 2$	$175.6(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.8(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.6(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$-0.2(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$-0.5(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.8(4)$
$\mathrm{C} 7-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-178.6(2)$

Hydrogen-bond geometry $\left(A,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.82	2.12	$2.841(3)$	146

Symmetry code: (i) $-x+2,-y+2,-z$.

