organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diethyl 2-[phenyl(pyrazol-1-yl)methyl]propanedioate

Ihssan Meskini,^a Maria Daoudi,^a Jean-Claude Daran,^b Hafid Zouihri^c* and Taibi Ben Hadda^d

^aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, ^bLaboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex, France, ^cCentre National pour la Recherche Scientifique et Technique, Division UATRS, Rabat, Morocco, and ^dLaboratoire de Chimie des Matériaux, Université Med. 1ier, Oujda, Morocco

Correspondence e-mail: zouihri@cnrst.ma

Received 6 March 2010; accepted 29 March 2010

Key indicators: single-crystal X-ray study; T = 173 K, P = 0.0 kPa; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.122; data-to-parameter ratio = 15.1.

There are two independent molecules in the asymmetric unit of the title compound, $C_{17}H_{20}N_2O_4$, which differ slightly in the orientation of the phenyl ring and carbonyl groups with respect to the pyrazole unit. In the first molecule, the dihedral angle between the phenyl and pyrazole rings is $68.99 (13)^{\circ}$ while the two carbonyl groups make a dihedral angle of 72.1 (4) $^{\circ}$. The corresponding values in the second molecule are 68.54 (14) and $71.5 (4)^{\circ}$, respectively.

Related literature

For related compounds displaying biological activity, see: Davam et al. (2007); Patil et al. (2007); Ramkumar et al. (2008); Sechi et al. (2009a,b); Zeng et al. (2008a,b). For a related structures, see: Akkurt et al. (2007). For the synthetic procedure, see: Pommier & Neamati (2006). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$C_{17}H_{20}N_2O_4$	V = 3344.2 (2) Å ³
$M_r = 316.36$	Z = 8
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 19.6279 (8) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 8.1538 (3) Å	T = 173 K
c = 21.6002 (9) Å	$0.35 \times 0.22 \times 0.17 \text{ mm}$
$\beta = 104.675 \ (2)^{\circ}$	

Data collection

Refinement

6346 reflections

S = 1.06

 $R[F^2 > 2\sigma(F^2)] = 0.043$ wR(F²) = 0.122

Bruker X8 APEXII CCD areadetector diffractometer 34259 measured reflections

6348 independent reflections 4175 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.048$

419 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.19 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.25$ e Å⁻³

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by grants from Project PGR-UMP-BH-2005, the Centre National de Recherche Scientifique, CNRS (France) and the Centre National pour la Recherche Scientifique et Technique, CNRST (Morocco).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2142).

References

- Akkurt, M., Yıldırım, S. Ö., Benjelloun, O. T., Larbi, N. B., Hadda, T. B. & Büyükgüngör, O. (2007). Acta Cryst. E63, 01656-01657.
- Allen, F. H., Kennard, O., Watson, D. G., Brammmer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dayam, R., Al-Mawsawi, L. Q. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6155-6159.
- Patil, S., Kamath, S., Sanchez, T., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2007). Bioorg. Med. Chem. 15, 1212-1228.
- Pommier, Y. & Neamati, N. (2006). Bioorg. Med. Chem. 14, 3785-3792.
- Ramkumar, K., Tambov, K. V., Gundla, R., Manaev, A. V., Yarovenko, V., Traven, V. F. & Neamati, N. (2008). Bioorg. Med. Chem. 16, 8988-8998.
- Sechi, M., Carta, F., Sannia, L., Dallocchio, R., Dessi', A., Al-Safi, R. I. & Neamati, N. (2009a). Antivir. Res. 81, 267-276.
- Sechi, M., Rizzi, G., Bacchi, A., Carcelli, M., Rogolino, D., Pala, N., Sanchez, T. W., Taheri, L., Dayam, R. & Neamati, N. (2009b). Bioorg. Med. Chem. 17, 2925-2935.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). publCIF. In preparation.
- Zeng, L. F., Jiang, X. H., Sanchez, T., Zhang, H. S., Dayam, R., Neamati, N. & Long, Y. Q. (2008b). Bioorg. Med. Chem. 16, 7777-7787.
- Zeng, L. F., Zhang, H.-S., Wang, Y. H., Sanchez, T., Zheng, Y. T., Neamati, N. & Long, Y. Q. (2008a). Bioorg. Med. Chem. Lett. 18, 4521-4524.

supporting information

Acta Cryst. (2010). E66, o1014 [https://doi.org/10.1107/S1600536810011748] Diethyl 2-[phenyl(pyrazol-1-yl)methyl]propanedioate

Ihssan Meskini, Maria Daoudi, Jean-Claude Daran, Hafid Zouihri and Taibi Ben Hadda

S1. Comment

The rational design of new HIV-1 Integrase (H-I) inhibitors, one validated target for chemotherapeutic intervention (Dayam *et al.*, 2007), is fundamentally based on intermolecular coordination between H-I / chemical inhibitor / metals (Mg⁺² and Mn⁺², co-factors of the enzyme), leading to the formation of bimetallic complexes (Zeng *et al.*, 2008a; Sechi *et al.*, 2009a). Therefore several bimetallic metal complexes, in many cases exploring the well-known polydentate ligands, appear in this scenario as the most promising concept to employ in either enzyme / drug interaction or electron transfer process, in the last case involving biological oxygen transfer (Sechi *et al.*, 2009b; Ramkumar *et al.*, 2008). Another exciting example of the application of such polydentate ligands involves the synergic water activation, that occurs via the so-called remote metallic atoms. Such organometallic compounds are expected to promote or block the H-I activity [Zeng *et al.* (2008b)]. The examples given above clearly demonstrate that polydentate ligands are of special interest in the field of bioorganometallic chemistry [Patil *et al.* (2007)].

The structure of the title compound was established by ¹H and ¹³C NMR and confirmed by its elemental analyses and single-crystal X-ray structure. Crystals of the title compound contain two molecules in the asymmetric unit. The difference between the molecules lies in the orientation of the phenyl and pyrazol rings and carbonyl planes in each molecule as shown in the fitting drawing (Fig. 2). Thus in the first molecule (C11 to C143) the dihedral angles between the phenyl and pyrazol rings is 68.99 (13)° and between the two carbonyl groups is 72.1 (4)°. Whereas in the second molecule (C21 to C243), equivalent angles have as values 68.54 (14)° and 71.5 (4)°, respectively. The conformational difference between the independent molecules, as shown in Fig. 2, can also be described by torsion angles: N11—C11…C131—C132 = 79.71 (15), C11—C12…O11012 = 46.54 (9) and C11—C12…O13—O14 = 47.02 (9) in the first molecule. In the second molecule, the corresponding values are 54.31 (14), 41.77 (9) and 47.44 (9), respectively. The bond lengths and angles in the title compound (Fig. 1) are found to have normal values [Allen *et al.*, 1987].

S2. Experimental

To a solution of diethyl benzylpropanedioate (5 mmol) in water (25 ml) was added 1*H*-pyrazol (6 mmol) in the presence of acetic acid (0.1% mol). The mixture was stirred continuously at room temperature until the starting material was completely consumed. After removing the solvent, the crude products were dissolved in diethyl ether (2 x 40 ml) and washed with water until the pH became neutral. The organic solvent was dried with sodium sulphate and then evaporated. The residue was purified by recrystallization from a mixture ether/hexane (1:1) to give a white solid in 74% yield. $R_f = 0.45$ (ether/hexane: 1/1). Elemental analysis for $C_{17}H_{20}N_2O_4$: Calcd (Found): C 67.82 (67.79), H 5.89 (5.87), N (2.73 (2.72). The purity of the compound was checked by determining its melting point (87-89°C). Suitable single crystal of the title compound were obtained by recrystallization from ethanol.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.99 Å (methylene), 0.98 Å (methyl) and 1.00 Å (methine) with Uiso(H) = 1.2Ueq (aromatic, methine, methylene) and Uiso(H) = 1.5Ueq (methyl).

Figure 1

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

View showing the fitting between the molecule 1 and the inverted molecule 2 from the asymmetric unit [PLATON (Spek, 2009)].

Diethyl 2-[phenyl(pyrazol-1-yl)methyl]propanedioate

Crystal data

 $C_{17}H_{20}N_2O_4$ $M_r = 316.36$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 19.6279 (8) Å b = 8.1538 (3) Å c = 21.6002 (9) Å $\beta = 104.675$ (2)° V = 3344.2 (2) Å³ Z = 8

Data collection

Bruker X8 APEXII CCD area-detector	4175 reflections with $I > 2\sigma(I)$
diffractometer	$R_{ m int} = 0.048$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.7^{\circ}, \ \theta_{\rm min} = 1.1^{\circ}$
Graphite monochromator	$h = -23 \rightarrow 23$
φ and ω scans	$k = -9 \rightarrow 9$
34259 measured reflections	$l = -26 \rightarrow 23$
6348 independent reflections	

F(000) = 1344

 $\theta = 2.1 - 25.2^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless

 $0.35 \times 0.22 \times 0.17 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.257 {\rm Mg} {\rm m}^{-3}$

Melting point: 360 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3174 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.122$	neighbouring sites
<i>S</i> = 1.06	H-atom parameters constrained
6346 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 0.7393P]$
419 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal structure was confirmed by elemental analysis and 1H and 13 C-NMR. IR (KBr) v cm-1 : 2896/2985 (CH), 1748 (CO), 1514/1595 (C=C), 1292/1308 (C—O), 1175, 1139, 1013, 866, 753, 440. ¹H-NMR (250 MHz, CDCl₃) d (ppm): 7.30-7.46 (m, ⁴H, aromat, ³J = 8.35 Hz), 6.20 (t, ¹H, C⁴Pz, ³J = 2 Hz), 7.5 (d, 2H, C³'H and C⁵HPz, ³J = 14.4 Hz), 5.85 (d, 1H, PhC³H, ³J = 11.36 Hz), 4.80 (d, 1H, C²H(CO₂Et)₂, ³J = 11.11 Hz), 3.95 (dq, 2 H_{AB}, OCH₂CH₃, J_{AB}= 14.30 Hz, ³J = 7.11 Hz), 4.12 (dq, 2H_{AB}, CH₂OCH₃, J_{AB}= 14.30 Hz, ³J = 7.11 Hz), 1.15 (t, 3H, OCH₂CH₃, ³J = 7.13 Hz).

¹³C-NMR (250 MHz, CDCl₃) δ (ppm): 166.37 (C=O), 166.61 (CO), 137.15 (C_{quat}, Ph), 128,62 (C_{tert}, 2Cmeta/arm, Ph), 129.76 (C_{tert}, 2Cortho/ arm, Ph), 139.56 (C_{tert}, C⁵'Pz), 128.67 (C_{tert}, '^{C3}'Pz), 105.71 (C_{tert}, C⁴H, Pz), 61.87/ 61.76 (C_{sec}, 2CH₂, ester), 64.22 (C_{tert}, C³HPh), 57.33 (C_{tert}, C²H(CO₂Et)₂), 13.87 (C, OCH₂CH₃, ester), 13.69 (C, OCH₂CH₃, ester). MS (IE) Calcd for [M]⁺ C₁₇H₂₀N₂O₄: 316.35, [M+H]⁺. = 317, [M - CH(CO₂Et)₂]⁺. = 157 (100%). Elemental analysis for C₁₇H₂₀N₂O₄ Calcd (Found): C 64.54 (64.37), H 6.37 (6.34), N 8.86 (8.84).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.97782 (9)	0.4587 (2)	0.14742 (9)	0.0288 (4)	
H11	0.9766	0.4313	0.1922	0.035*	
C12	0.94763 (9)	0.3117 (2)	0.10526 (9)	0.0285 (4)	
H12	0.9474	0.3357	0.0598	0.034*	
C136	1.08085 (10)	0.4753 (2)	0.09490 (10)	0.0355 (5)	
H136	1.0511	0.4353	0.0561	0.043*	
C131	1.05405 (9)	0.4968 (2)	0.14811 (9)	0.0293 (4)	
C132	1.09818 (10)	0.5576 (3)	0.20416 (10)	0.0377 (5)	
H132	1.0805	0.5740	0.2408	0.045*	
C133	1.16781 (11)	0.5945 (3)	0.20699 (11)	0.0462 (6)	
H133	1.1975	0.6370	0.2454	0.055*	
C135	1.15052 (11)	0.5120 (3)	0.09818 (11)	0.0432 (5)	
H135	1.1683	0.4972	0.0616	0.052*	
C134	1.19419 (11)	0.5697 (3)	0.15430 (11)	0.0478 (6)	
H134	1.2423	0.5924	0.1567	0.057*	
C18	0.99255 (9)	0.1608 (2)	0.12819 (9)	0.0302 (4)	
C15	0.87274 (9)	0.2760 (2)	0.10988 (9)	0.0301 (4)	
C16	0.75841 (10)	0.2018 (3)	0.05069 (10)	0.0478 (6)	
H16A	0.7385	0.2926	0.0710	0.057*	
H16B	0.7540	0.0989	0.0737	0.057*	
C19	1.04535 (12)	-0.0718 (3)	0.09243 (11)	0.0462 (6)	
H19A	1.0208	-0.1668	0.0681	0.055*	
H19B	1.0561	-0.0982	0.1386	0.055*	
C20	1.11176 (11)	-0.0376 (3)	0.07335 (11)	0.0484 (6)	
H20A	1.1007	-0.0113	0.0276	0.073*	
H20B	1.1422	-0.1346	0.0818	0.073*	
H20C	1.1361	0.0555	0.0981	0.073*	
C17	0.72063 (12)	0.1870 (5)	-0.01707 (12)	0.0850 (11)	
H17A	0.7247	0.2901	-0.0392	0.127*	
H17B	0.6708	0.1635	-0.0205	0.127*	
H17C	0.7412	0.0976	-0.0367	0.127*	
013	1.01617 (7)	0.12639 (17)	0.18357 (7)	0.0448 (4)	
014	1.00073 (7)	0.07390 (16)	0.07883 (6)	0.0390 (3)	
012	0.83217 (6)	0.23431 (18)	0.05337 (6)	0.0388 (3)	
011	0.85427 (7)	0.28256 (18)	0.15869 (6)	0.0420 (4)	
N11	0.93182 (8)	0.60116 (18)	0.12721 (7)	0.0295 (4)	
C21	0.47116 (9)	0.8377 (2)	0.40329 (9)	0.0294 (4)	
H21	0.4728	0.8760	0.4476	0.035*	
C22	0.43696 (9)	0.9732 (2)	0.35641 (9)	0.0282 (4)	
H22	0.4362	0.9388	0.3118	0.034*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

G 9 94				0.00.00
C236	0.56098 (10)	0.7580 (2)	0.34270 (9)	0.0357 (5)
H236	0.5236	0.7390	0.3058	0.043*
C231	0.54615 (9)	0.8070 (2)	0.39927 (8)	0.0286 (4)
C235	0.62987 (11)	0.7365 (3)	0.33975 (10)	0.0422 (5)
H235	0.6397	0.7029	0.3008	0.051*
C232	0.60142 (10)	0.8345 (3)	0.45220 (10)	0.0435 (5)
H232	0.5920	0.8683	0.4913	0.052*
C233	0.67022 (11)	0.8134 (3)	0.44898 (12)	0.0556 (6)
H233	0.7077	0.8335	0.4857	0.067*
C234	0.68458 (11)	0.7637 (3)	0.39325 (11)	0.0504 (6)
H234	0.7319	0.7480	0.3913	0.060*
O22	0.32221 (6)	1.05521 (18)	0.30375 (6)	0.0379 (3)
O23	0.50629 (7)	1.17430 (17)	0.42706 (6)	0.0383 (3)
O24	0.48859 (7)	1.20201 (17)	0.32046 (6)	0.0374 (3)
O21	0.34248 (7)	1.00089 (19)	0.40842 (6)	0.0428 (4)
C25	0.36234 (10)	1.0097 (2)	0.36044 (9)	0.0303 (4)
C26	0.24856 (10)	1.0901 (3)	0.30130 (10)	0.0483 (6)
H26A	0.2450	1.1902	0.3262	0.058*
H26B	0.2274	0.9975	0.3195	0.058*
C27	0.21148 (12)	1.1144 (4)	0.23293 (11)	0.0702 (8)
H27A	0.2300	1.2124	0.2166	0.105*
H27B	0.1609	1.1282	0.2289	0.105*
H27C	0.2190	1.0184	0.2081	0.105*
C28	0.48128 (9)	1.1279 (2)	0.37332 (9)	0.0285 (4)
C29	0.53627 (11)	1.3421 (3)	0.32954 (10)	0.0439 (5)
H29A	0.5384	1.3949	0.3713	0.053*
H29B	0.5190	1.4239	0.2953	0.053*
C30	0.60821 (11)	1.2832 (3)	0.32758 (11)	0.0526 (6)
H30A	0.6245	1.2005	0.3610	0.079*
H30B	0.6410	1.3760	0.3349	0.079*
H30C	0.6060	1.2348	0.2856	0.079*
N21	0.42781 (8)	0.68893 (19)	0.39088 (7)	0.0323 (4)
N12	0.90130 (9)	0.6301 (2)	0.06472 (8)	0.0402 (4)
N22	0.39520 (10)	0.6437 (2)	0.33069 (8)	0.0469 (5)
C141	0.91609 (10)	0.7177 (2)	0.16551 (10)	0.0350 (5)
H141	0.9323	0.7224	0.2108	0.042*
C241	0.41790 (11)	0.5804 (3)	0.43464 (11)	0.0412 (5)
H241	0.4364	0.5869	0.4797	0.049*
C142	0.87256 (10)	0.8278 (3)	0.12717 (10)	0.0394 (5)
H142	0.8520	0.9236	0.1398	0.047*
C143	0.86510(10)	0.7683 (3)	0.06560 (11)	0.0431 (5)
H143	0.8374	0.8202	0.0283	0.052*
C242	0.37550 (11)	0.4572 (3)	0.40125 (12)	0.0480 (6)
H242	0.3586	0.3625	0.4183	0.058*
C243	0.36321 (12)	0.5025 (3)	0.33775 (12)	0.0487 (6)
H243	0.3354	0.4407	0.3032	0.058*

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C11	0.0257 (10)	0.0313 (10)	0.0280 (10)	0.0028 (8)	0.0042 (8)	0.0022 (8)
C12	0.0242 (10)	0.0341 (11)	0.0268 (10)	0.0018 (8)	0.0056 (7)	0.0009 (8)
C136	0.0305 (11)	0.0385 (12)	0.0368 (12)	-0.0014 (9)	0.0072 (9)	-0.0019 (9)
C131	0.0255 (10)	0.0282 (10)	0.0334 (11)	0.0029 (8)	0.0059 (8)	0.0019 (8)
C132	0.0334 (11)	0.0435 (12)	0.0346 (12)	0.0013 (9)	0.0054 (9)	-0.0015 (9)
C133	0.0326 (12)	0.0541 (14)	0.0464 (14)	-0.0053 (10)	0.0004 (10)	-0.0046 (11)
C135	0.0360 (12)	0.0500 (13)	0.0466 (14)	-0.0007 (10)	0.0158 (10)	0.0005 (11)
C134	0.0284 (11)	0.0575 (14)	0.0563 (15)	-0.0015 (11)	0.0085 (10)	0.0011 (12)
C18	0.0222 (10)	0.0327 (11)	0.0344 (12)	-0.0039 (8)	0.0046 (8)	-0.0005 (9)
C15	0.0270 (10)	0.0297 (10)	0.0323 (11)	0.0049 (8)	0.0049 (8)	0.0015 (8)
C16	0.0221 (10)	0.0735 (16)	0.0472 (14)	-0.0042 (11)	0.0076 (9)	-0.0031 (12)
C19	0.0516 (14)	0.0332 (12)	0.0600 (15)	0.0111 (10)	0.0252 (11)	0.0019 (10)
C20	0.0404 (13)	0.0569 (15)	0.0483 (14)	0.0113 (11)	0.0121 (10)	0.0028 (11)
C17	0.0348 (14)	0.166 (3)	0.0485 (16)	-0.0270 (17)	0.0003 (11)	0.0012 (18)
O13	0.0481 (9)	0.0433 (9)	0.0355 (9)	0.0110 (7)	-0.0031 (7)	-0.0010 (7)
O14	0.0448 (8)	0.0343 (8)	0.0409 (8)	0.0087 (7)	0.0165 (7)	0.0012 (6)
O12	0.0229 (7)	0.0566 (9)	0.0352 (8)	-0.0039 (6)	0.0041 (6)	-0.0065 (7)
O11	0.0327 (8)	0.0603 (10)	0.0335 (8)	-0.0014 (7)	0.0094 (6)	-0.0001 (7)
N11	0.0252 (8)	0.0317 (9)	0.0299 (9)	0.0017 (7)	0.0039 (7)	0.0021 (7)
C21	0.0289 (10)	0.0337 (10)	0.0245 (10)	-0.0001 (8)	0.0049 (8)	-0.0016 (8)
C22	0.0268 (10)	0.0341 (11)	0.0236 (10)	0.0003 (8)	0.0059 (8)	0.0000 (8)
C236	0.0344 (11)	0.0405 (11)	0.0310 (11)	-0.0016 (9)	0.0062 (8)	-0.0013 (9)
C231	0.0288 (10)	0.0288 (10)	0.0272 (10)	0.0001 (8)	0.0054 (8)	0.0012 (8)
C235	0.0415 (12)	0.0468 (13)	0.0411 (13)	-0.0005 (10)	0.0158 (10)	-0.0022 (10)
C232	0.0346 (12)	0.0580 (14)	0.0346 (12)	0.0077 (10)	0.0026 (9)	-0.0046 (10)
C233	0.0344 (13)	0.0740 (17)	0.0524 (15)	0.0060 (12)	0.0000 (10)	-0.0078 (13)
C234	0.0344 (12)	0.0590 (15)	0.0581 (16)	0.0001 (11)	0.0122 (11)	-0.0034 (12)
O22	0.0224 (7)	0.0570 (9)	0.0334 (8)	0.0031 (6)	0.0054 (6)	0.0090 (7)
O23	0.0419 (8)	0.0419 (8)	0.0287 (8)	-0.0041 (7)	0.0043 (6)	-0.0038 (6)
O24	0.0402 (8)	0.0416 (8)	0.0302 (8)	-0.0081 (6)	0.0082 (6)	0.0030 (6)
O21	0.0324 (8)	0.0674 (10)	0.0299 (8)	-0.0005 (7)	0.0104 (6)	-0.0010 (7)
C25	0.0277 (10)	0.0327 (11)	0.0285 (11)	-0.0040 (8)	0.0037 (8)	-0.0022 (8)
C26	0.0202 (10)	0.0755 (17)	0.0489 (14)	0.0020 (11)	0.0081 (9)	0.0093 (12)
C27	0.0298 (12)	0.125 (3)	0.0508 (15)	0.0155 (15)	0.0017 (11)	0.0139 (16)
C28	0.0241 (10)	0.0337 (11)	0.0272 (11)	0.0053 (8)	0.0055 (8)	0.0006 (8)
C29	0.0505 (13)	0.0409 (12)	0.0404 (13)	-0.0152 (11)	0.0116 (10)	0.0010 (10)
C30	0.0447 (14)	0.0648 (16)	0.0469 (14)	-0.0156 (12)	0.0088 (10)	-0.0025 (12)
N21	0.0313 (9)	0.0345 (9)	0.0312 (9)	-0.0002 (7)	0.0080 (7)	0.0012 (7)
N12	0.0418 (10)	0.0415 (10)	0.0327 (10)	0.0035 (8)	0.0011 (8)	0.0037 (8)
N22	0.0532 (12)	0.0470 (11)	0.0371 (11)	-0.0123 (9)	0.0054 (8)	-0.0015 (8)
C141	0.0332 (11)	0.0358 (11)	0.0373 (12)	0.0013 (9)	0.0111 (9)	-0.0025 (9)
C241	0.0372 (12)	0.0429 (13)	0.0463 (13)	0.0082 (10)	0.0157 (10)	0.0133 (10)
C142	0.0320 (11)	0.0353 (11)	0.0520 (14)	0.0042 (9)	0.0127 (9)	0.0025 (10)
C143	0.0322 (11)	0.0430 (13)	0.0483 (14)	0.0029 (10)	-0.0005 (9)	0.0134 (10)
C242	0.0415 (13)	0.0367 (13)	0.0712 (17)	0.0041 (10)	0.0245 (12)	0.0092 (11)

C243 0.0410 (13) 0.0569 (16) -0.0096(11)0.0090(11) -0.0048(11)0.0461 (13) Geometric parameters (Å, °) C11-N11 1.468 (2) C22—H22 1.0000 C11-C131 C236-C235 1.525(2)1.381 (3) C11-C12 1.531(3)C236-C231 1.385 (3) C11-H11 1.0000 С236—Н236 0.9500 C231—C232 C12-C18 1.522(3)1.381 (3) C12-C15 1.526(2)C235-C234 1.382(3)С235—Н235 0.9500 C12—H12 1.0000 C136-C135 1.384(3)C232-C233 1.380(3)C136-C131 1.391 (3) C232—H232 0.9500 C136—H136 C233—C234 0.9500 1.365 (3) C131-C132 1.390 (3) С233—Н233 0.9500 C132-C133 1.386(3) C234—H234 0.9500 C132-H132 0.9500 O22-C25 1.330(2)C133-C134 1.379(3) O22-C26 1.461(2)C133—H133 O23-C28 0.9500 1.201(2)C135-C134 1.378 (3) O24-C28 1.331(2)С135—Н135 0.9500 O24—C29 1.458 (2) C134—H134 0.9500 O21-C25 1.198(2)C26—C27 C18-013 1.202 (2) 1.485 (3) C18-014 C26—H26A 0.9900 1.323(2)C15-011 1.200(2)C26—H26B 0.9900 C15-012 1.322(2)C27—H27A 0.9800 C16-012 1.459(2) C27—H27B 0.9800 C16-C17 1.469 (3) C27—H27C 0.9800 C16—H16A 0.9900 C29-C30 1.502(3)0.9900 C16—H16B 0.9900 C29-H29A C19-014 C29-H29B 0.9900 1.461 (2) C19-C20 1.489(3) C30-H30A 0.9800 C19-H19A 0.9900 C30-H30B 0.9800 C19—H19B 0.9900 C30-H30C 0.9800 C20-H20A 0.9800 N21-C241 1.345(2) C20-H20B 0.9800 N21-N22 1.347(2)C20-H20C 0.9800 N12-C143 1.335(3)C17—H17A 0.9800 N22-C243 1.339 (3) C141-C142 C17—H17B 0.9800 1.365 (3) C141-H141 0.9500 C17—H17C 0.9800 N11-C141 C241-C242 1.346(2) 1.385 (3) N11-N12 C241-H241 0.9500 1.352(2)C21-N21 1.467(2)C142-C143 1.388(3)C21-C231 C142-H142 0.9500 1.517(2) C21-C22 1.534(2)C143-H143 0.9500 C21-H21 C242-C243 1.0000 1.382(3)

C242—H242

C243—H243

1.519(2)

1.524 (3)

C22-C25

C22-C28

0.9500

0.9500

supporting information

N11—C11—C131	111.71 (15)	C28—C22—H22	109.4
N11—C11—C12	109.05 (14)	C21—C22—H22	109.4
C131—C11—C12	113.35 (15)	C235—C236—C231	120.30 (18)
N11—C11—H11	107.5	C235—C236—H236	119.9
C131—C11—H11	107.5	C231—C236—H236	119.9
C12—C11—H11	107.5	C232—C231—C236	118.74 (18)
C18—C12—C15	108.20 (15)	C232—C231—C21	119.74 (17)
C18—C12—C11	109.54 (14)	C236—C231—C21	121.46 (16)
C15—C12—C11	110.16 (15)	C236—C235—C234	120.2 (2)
C18—C12—H12	109.6	C236—C235—H235	119.9
С15—С12—Н12	109.6	C234—C235—H235	119.9
C11—C12—H12	109.6	C233—C232—C231	120.8 (2)
C135—C136—C131	120.42 (19)	С233—С232—Н232	119.6
С135—С136—Н136	119.8	C231—C232—H232	119.6
C131—C136—H136	119.8	C234—C233—C232	120.3 (2)
C132—C131—C136	118.83 (17)	С234—С233—Н233	119.9
C132—C131—C11	118.35 (17)	С232—С233—Н233	119.9
C136—C131—C11	122.82 (17)	C233—C234—C235	119.6 (2)
C133—C132—C131	120.40 (19)	C233—C234—H234	120.2
C133—C132—H132	119.8	C235—C234—H234	120.2
C131—C132—H132	119.8	C25—O22—C26	115.94 (14)
C134—C133—C132	120.3 (2)	C28—O24—C29	116.43 (15)
С134—С133—Н133	119.9	O21—C25—O22	124.50 (17)
С132—С133—Н133	119.9	O21—C25—C22	124.60 (17)
C134—C135—C136	120.3 (2)	O22—C25—C22	110.90 (15)
С134—С135—Н135	119.8	O22—C26—C27	107.04 (16)
С136—С135—Н135	119.8	O22—C26—H26A	110.3
C135—C134—C133	119.7 (2)	С27—С26—Н26А	110.3
C135—C134—H134	120.1	O22—C26—H26B	110.3
C133—C134—H134	120.1	С27—С26—Н26В	110.3
O13—C18—O14	125.59 (18)	H26A—C26—H26B	108.6
O13—C18—C12	123.95 (17)	С26—С27—Н27А	109.5
O14—C18—C12	110.45 (16)	С26—С27—Н27В	109.5
O11—C15—O12	125.28 (18)	H27A—C27—H27B	109.5
O11—C15—C12	124.01 (17)	С26—С27—Н27С	109.5
O12—C15—C12	110.70 (16)	H27A—C27—H27C	109.5
O12—C16—C17	107.46 (17)	H27B—C27—H27C	109.5
O12—C16—H16A	110.2	O23—C28—O24	125.42 (18)
C17—C16—H16A	110.2	O23—C28—C22	124.14 (17)
O12—C16—H16B	110.2	O24—C28—C22	110.44 (15)
C17—C16—H16B	110.2	O24—C29—C30	108.77 (18)
H16A—C16—H16B	108.5	O24—C29—H29A	109.9
O14—C19—C20	108.32 (17)	С30—С29—Н29А	109.9
O14—C19—H19A	110.0	O24—C29—H29B	109.9
С20—С19—Н19А	110.0	С30—С29—Н29В	109.9
O14—C19—H19B	110.0	H29A—C29—H29B	108.3
C20-C19-H19B	110.0	С29—С30—Н30А	109.5

H19A—C19—H19B	108.4	С29—С30—Н30В	109.5
C19—C20—H20A	109.5	H30A—C30—H30B	109.5
C19—C20—H20B	109.5	С29—С30—Н30С	109.5
H20A—C20—H20B	109.5	H30A—C30—H30C	109.5
C19—C20—H20C	109.5	H30B—C30—H30C	109.5
H20A—C20—H20C	109.5	C241—N21—N22	112.35 (17)
H20B-C20-H20C	109.5	C241—N21—C21	126.61 (17)
C16—C17—H17A	109.5	N22—N21—C21	120.98 (15)
C16—C17—H17B	109.5	C143—N12—N11	103.65 (16)
H17A—C17—H17B	109.5	C243—N22—N21	104.33 (17)
C16—C17—H17C	109.5	N11—C141—C142	107.29 (18)
H17A—C17—H17C	109.5	N11—C141—H141	126.4
H17B—C17—H17C	109.5	C142—C141—H141	126.4
C18—O14—C19	117.54 (16)	N21—C241—C242	106.64 (19)
C15—O12—C16	116.30 (15)	N21—C241—H241	126.7
C141—N11—N12	112.20 (16)	C242—C241—H241	126.7
C141—N11—C11	126.54 (16)	C141—C142—C143	104.45 (18)
N12—N11—C11	121.24 (15)	C141—C142—H142	127.8
N21—C21—C231	112.30 (15)	C143—C142—H142	127.8
N21—C21—C22	109.77 (14)	N12-C143-C142	112.41 (18)
C231—C21—C22	110.48 (15)	N12—C143—H143	123.8
N21—C21—H21	108.1	C142—C143—H143	123.8
C231—C21—H21	108.1	C243—C242—C241	104.70 (19)
C22—C21—H21	108.1	C243—C242—H242	127.7
C25—C22—C28	108.93 (15)	C241—C242—H242	127.7
C25—C22—C21	111.74 (15)	N22—C243—C242	112.0 (2)
C28—C22—C21	108.08 (15)	N22—C243—H243	124.0
C25—C22—H22	109.4	C242—C243—H243	124.0