Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[6,8-Dibromo-2-(2-chloro-5-nitrophenyl)-1,2,3,4-tetrahydroguinazolin-3yl]cyclohexanol

Zhi-Gang Wang,^a Zong-Lin Xia,^b Rong Wang^c and Ming-Li Wang^b*

^aDepartment of Respiratory Medicine, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ^bDepartment of Pharmacy, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, and ^cModern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China Correspondence e-mail: wangmingli09@yahoo.com.cn

Received 16 March 2010; accepted 23 April 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; disorder in main residue; R factor = 0.055; wR factor = 0.154; data-to-parameter ratio = 14.7.

The title compound, $C_{20}H_{20}Br_2ClN_3O_3$, was synthesized by the condensation reaction of 2-chloro-5-nitrobenzaldehyde with 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol in а methanol solution. There are two independent molecules in the asymmetric unit and in one molecule the atoms of the cyclohexane ring are disordered over two sets of sites with refined occupancies of 0.657 (12) and 0.343 (12). The dihedral angle between the two benzene rings is $89.5 (2)^{\circ}$ in one molecule and 82.9 (2) $^{\circ}$ in the other. In the crystal structure, intermolecular N-H···O and O-H···O hydrogen bonds link the molecules into chains propagating along $[01\overline{1}]$.

Related literature

For details of the pharmaceutical uses of Ambroxol, systematic name 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol, a compound closely related to the title compound see: Felix et al. (2008); Gaida et al. (2005); Lee et al. (2004). For a related structure, see: Wang et al. (2009). For standard bondlength data, see: Allen et al. (1987).

Experimental

Crystal data

C20H20Br2ClN3O3 $\gamma = 84.750 \ (2)^{\circ}$ $M_r = 545.66$ V = 2169.8 (5) Å³ Triclinic, P1 Z = 4a = 10.2614 (13) ÅMo $K\alpha$ radiation b = 13.1418 (17) Å $\mu = 3.89 \text{ mm}^{-3}$ c = 16.931 (2) Å T = 298 K $\alpha = 83.764 \ (2)^{\circ}$ $0.30 \times 0.28 \times 0.28 \text{ mm}$ $\beta = 73.309 (2)^{\circ}$

Data collection

```
Bruker SMART CCD area-detector
                                           11972 measured reflections
  diffractometer
                                           8470 independent reflections
Absorption correction: multi-scan
                                           4874 reflections with I > 2\sigma(I)
                                           R_{\rm int} = 0.022
  (SADABS; Sheldrick, 1996)
  T_{\rm min}=0.389,\;T_{\rm max}=0.409
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	122 restraints
$wR(F^2) = 0.154$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 1.56 \text{ e } \text{\AA}^{-3}$
8470 reflections	$\Delta \rho_{\rm min} = -1.07 \text{ e } \text{\AA}^{-3}$
578 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.86	2.33	2.942 (7)	129
0.84	1.89	2.713 (12)	166
0.84	2.04	2.877 (17)	179
0.84	1.85	2.694 (10)	179
	<i>D</i> -H 0.86 0.84 0.84 0.84	$\begin{array}{c ccc} D-H & H\cdots A \\ \hline 0.86 & 2.33 \\ 0.84 & 1.89 \\ 0.84 & 2.04 \\ 0.84 & 1.85 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z; (iii) x - 1, y, z.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Financial support from the Third Affiliated Hospital of Soochow University is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5014).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Felix, F. S., Brett, C. M. A. & Angnes, L. (2008). Talanta, 76, 128-133.

- Gaida, W., Klinder, K., Arndt, K. & Weiser, T. (2005). Neuropharmacology, 49, 1220-1227.
- Lee, H. J., Joung, S. K., Kim, Y. G., Yoo, J.-Y. & Han, S. B. (2004). *Pharm. Res.* **49**, 93–98.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, Z.-G., Wang, R., Zhang, Y., Zhi, F. & Yang, Y.-L. (2009). Acta Cryst. E65, 0550.

supporting information

Acta Cryst. (2010). E66, o1205-o1206 [https://doi.org/10.1107/S1600536810015023]

4-[6,8-Dibromo-2-(2-chloro-5-nitrophenyl)-1,2,3,4-tetrahydroquinazolin-3-yl]cyclohexanol

Zhi-Gang Wang, Zong-Lin Xia, Rong Wang and Ming-Li Wang

S1. Comment

Ambroxol, 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol, is an expectorant agent which leads to bronchial secretion due to its mucolytic properties (Felix *et al.*, 2008; Gaida *et al.*, 2005; Lee *et al.*, 2004). Recently, we reported the crystal structure of a derivative of Ambroxol (Wang *et al.*, 2009). In this paper, the crystal structure of the title compound, derived from the condensation reaction of 2-chloro-5-nitrobenzaldehyde with 4-(2-amino-3,5-dibromobenzyl-amino)cyclohexanol in methanol solution, is reported.

There are two independent molecules in the asymmetric unit of the title compound, Fig. 1. The dihedral angle between the two benzene rings is $89.5 (2)^{\circ}$ in one molecule and $82.9 (2)^{\circ}$ in the other. The cyclohexyl rings adopt chair configurations. All bond lengths are within normal ranges (Allen *et al.*, 1987).

S2. Experimental

2-Chloro-5-nitrobenzaldehyde (1.0 mol, 185.6 mg) and 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol (1.0 mmol, 378.1 mg) were dissolved in a methanol solution (30 ml). The mixture was stirred at room temperature to give a clear colorless solution. Crystals of the title compound were formed by gradual evaporation of the solvent for a week at room temperature.

S3. Refinement

H atoms were included in calulated positions with, with C–H = 0.93-0.98 Å, N-H = 0.86Å and O-H = 0.84 with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(O)$. The C29-C34 cyclohexyl ring is disordered over two distinct sites, with refined occupancies of 0.657 (12) and 0.343 (12). Bond length restraints were applied to the disorder model using the SADI command in SHELXL (Sheldrick, 2008).

The asymmetric unit of the title compound showing 30% probability ellipsoids. H atoms bonded to C atoms are not shown.

4-[6,8-Dibromo-2-(2-chloro-5-nitrophenyl)-1,2,3,4-tetrahydroquinazolin- 3-yl]cyclohexanol

Crystal data

$C_{20}H_{20}Br_2CIN_3O_3$	Z = 4
$M_r = 545.66$	F(000) = 1088
Triclinic, $P\overline{1}$	$D_x = 1.670 \text{ Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073 \text{ Å}$
a = 10.2614 (13) Å	Cell parameters from 2646 reflections
b = 13.1418 (17) Å	$\theta = 2.5-24.5^{\circ}$
c = 16.931 (2) Å	$\mu = 3.89 \text{ mm}^{-1}$
$\begin{aligned} &\alpha &= 83.764 \ (2)^{\circ} \\ &\beta &= 73.309 \ (2)^{\circ} \\ &\gamma &= 84.750 \ (2)^{\circ} \\ &V &= 2169.8 \ (5) \ \text{\AA}^{3} \end{aligned}$ Data collection	T = 298 K Block, colorless $0.30 \times 0.28 \times 0.28 \text{ mm}$
Bruker SMART CCD area-detector	11972 measured reflections
diffractometer	8470 independent reflections
Radiation source: fine-focus sealed tube	4874 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.022$
ω scans	$\theta_{max} = 26.2^{\circ}, \theta_{min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 7$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -15 \rightarrow 16$
$T_{min} = 0.389, T_{max} = 0.409$	$l = -21 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.154$	neighbouring sites
S = 1.02	H-atom parameters constrained
8470 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0631P)^2 + 2.7275P]$
578 parameters	where $P = (F_o^2 + 2F_c^2)/3$
122 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.56 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -1.07 \ m e \ m \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.39058 (9)	-0.05133 (6)	0.42693 (4)	0.0888 (3)	
Br2	-0.06018 (7)	0.08773 (7)	0.30819 (7)	0.1156 (4)	
Br3	0.65212 (7)	0.61194 (6)	0.35191 (6)	0.0919 (3)	
Br4	0.59092 (6)	0.18627 (5)	0.36046 (5)	0.0747 (2)	
Cl1	0.87128 (15)	-0.09542 (13)	0.01005 (10)	0.0700 (4)	
C12	-0.17164 (14)	0.27481 (12)	0.47738 (9)	0.0628 (4)	
01	0.4691 (6)	-0.4725 (4)	0.1616 (4)	0.133 (3)	
O2	0.3509 (5)	-0.3554 (4)	0.2309 (4)	0.0953 (16)	
O3	0.8184 (5)	0.4244 (3)	0.0419 (3)	0.0816 (14)	
Н3	0.8561	0.4573	-0.0030	0.122*	
O4	0.2375 (7)	0.1609 (5)	0.7120 (4)	0.119 (2)	
05	0.0491 (7)	0.1570 (6)	0.8042 (4)	0.145 (3)	
N1	0.4516 (6)	-0.3856 (4)	0.1802 (4)	0.0731 (15)	
N2	0.5854 (4)	0.0384 (3)	0.0978 (3)	0.0435 (10)	
N3	0.5434 (4)	-0.0321 (3)	0.2395 (2)	0.0472 (11)	
H3N	0.5793	-0.0464	0.2797	0.057*	
N4	0.1168 (8)	0.1719 (5)	0.7331 (4)	0.0849 (18)	
N5	0.1019 (4)	0.3814 (3)	0.4122 (2)	0.0425 (10)	
N6	0.2870 (4)	0.2572 (3)	0.4237 (3)	0.0557 (12)	
H6N	0.3209	0.1949	0.4251	0.067*	
C1	0.3494 (5)	0.0295 (4)	0.1906 (3)	0.0469 (13)	
C2	0.4071 (6)	-0.0031 (4)	0.2565 (3)	0.0482 (13)	
C3	0.3189 (7)	-0.0040 (4)	0.3370 (3)	0.0579 (15)	
C4	0.1815 (7)	0.0235 (4)	0.3527 (4)	0.0704 (19)	
H4	0.1251	0.0217	0.4067	0.085*	

C5	0.1303 (6)	0.0533 (5)	0.2873 (5)	0.0723 (19)	
C6	0.2116 (6)	0.0578 (4)	0.2078 (4)	0.0598 (16)	
H6B	0.1740	0.0801	0.1646	0.072*	
C7	0.4418 (5)	0.0291 (4)	0.1042 (3)	0.0483 (13)	
H7A	0.4333	-0.0342	0.0819	0.058*	
H7B	0.4119	0.0854	0.0702	0.058*	
C8	0.6281 (5)	-0.0394(4)	0.1557 (3)	0.0407 (12)	
H8	0.7206	-0.0254	0.1549	0.049*	
C9	0.6166 (6)	0.1452 (4)	0.1032 (4)	0.0569 (15)	
H9	0.5423	0.1758	0.1462	0.068*	
C10	0.6231 (9)	0.2061 (5)	0.0216(5)	0.097(3)	
H10A	0.5357	0.2064	0.0102	0.116*	
H10R	0.6912	0.1731	-0.0221	0.116*	
C11	0.6590(10)	0.3179 (6)	0.0221	0.110	
H11A	0.6649	0.3539	-0.0324	0.133*	
H11R	0.5873	0.3528	0.0524	0.133*	
C12	0.3875	0.3328	0.0022	0.133	
U12	0.7850 (8)	0.3203 (3)	-0.002(4)	0.078 (2)	
П12 С12	0.8377	0.2879	-0.0027	0.095°	
	0.7829 (8)	0.2042 (3)	0.1224 (3)	0.080 (2)	
HIJA	0.7152	0.2978	0.1059	0.103*	
ПІЗВ	0.8/11	0.2000	0.1325	0.103^{*}	
C14	0.7484(7)	0.1518 (5)	0.1241 (4)	0.0737 (19)	
HI4A	0.8216	0.1165	0.0847	0.088*	
HI4B	0.7417	0.1176	0.1787	0.088*	
C15	0.6360 (5)	-0.1458 (4)	0.1260 (3)	0.0410 (12)	
C16	0.5412 (5)	-0.2159 (4)	0.1637 (3)	0.0465 (13)	
H16	0.4664	-0.1973	0.2069	0.056*	
C17	0.5551 (6)	-0.3135 (4)	0.1386 (3)	0.0511 (13)	
C18	0.6655 (6)	-0.3457 (5)	0.0763 (4)	0.0662 (17)	
H18	0.6752	-0.4123	0.0607	0.079*	
C19	0.7607 (6)	-0.2758 (5)	0.0380 (4)	0.0614 (16)	
H19	0.8361	-0.2950	-0.0045	0.074*	
C20	0.7458 (5)	-0.1784 (4)	0.0618 (3)	0.0487 (13)	
C21	0.3193 (5)	0.4363 (4)	0.4205 (3)	0.0445 (12)	
C22	0.3731 (5)	0.3365 (4)	0.4085 (3)	0.0443 (12)	
C23	0.5137 (5)	0.3210 (4)	0.3792 (3)	0.0481 (13)	
C24	0.5984 (6)	0.4014 (5)	0.3633 (3)	0.0586 (16)	
H24	0.6925	0.3895	0.3440	0.070*	
C25	0.5415 (6)	0.4989 (5)	0.3765 (4)	0.0595 (15)	
C26	0.4024 (6)	0.5159 (4)	0.4057 (3)	0.0539 (14)	
H26	0.3647	0.5820	0.4155	0.065*	
C27	0.1651 (5)	0.4519 (4)	0.4489 (3)	0.0449 (12)	
H27A	0.1338	0.4407	0.5087	0.054*	
H27B	0.1378	0.5220	0.4331	0.054*	
C28	0.1395 (5)	0.2766 (4)	0.4373 (3)	0.0463 (13)	
H28	0.1110	0.2319	0.4034	0.056*	
O6	0.0678 (19)	0.4493 (13)	0.0811 (8)	0.057 (4)	0.343 (12)
H6	-0.0051	0.4425	0.0696	0.085*	0.343 (12)
					- (-)

C29	0.1191 (7)	0.4085 (5)	0.3235 (3)	0.079 (2)	0.343 (12)
H29A	0.1792	0.4634	0.3210	0.095*	0.343 (12)
C30	0.0096 (19)	0.4808 (16)	0.3083 (8)	0.052 (8)	0.343 (12)
H30A	0.0273	0.5481	0.3197	0.062*	0.343 (12)
H30B	-0.0748	0.4616	0.3485	0.062*	0.343 (12)
C31	-0.0137 (17)	0.4906 (19)	0.2262 (8)	0.067 (6)	0.343 (12)
H31A	-0.0412	0.5617	0.2137	0.080*	0.343 (12)
H31B	-0.0896	0.4502	0.2290	0.080*	0.343 (12)
C32	0.1012 (18)	0.4595 (13)	0.1567 (7)	0.065 (6)	0.343 (12)
H32A	0.1618	0.5162	0.1437	0.078*	0.343 (12)
C33	0.1854 (18)	0.3684 (13)	0.1758 (7)	0.053 (6)	0.343 (12)
H33A	0.1398	0.3080	0.1731	0.063*	0.343 (12)
H33B	0.2713	0.3671	0.1327	0.063*	0.343 (12)
C34	0.2156 (15)	0.3599 (13)	0.2562 (6)	0.057 (5)	0.343 (12)
H34A	0.2257	0.2876	0.2737	0.068*	0.343 (12)
H34B	0.3032	0.3881	0.2476	0.068*	0.343 (12)
O6′	0.0198 (12)	0.4810 (10)	0.0975 (6)	0.095 (4)	0.657 (12)
H6′	-0.0436	0.4642	0.0802	0.142*	0.657 (12)
C29′	0.1191 (7)	0.4085 (5)	0.3235 (3)	0.079 (2)	0.657 (12)
H29B	0.2138	0.4277	0.3026	0.095*	0.657 (12)
C30′	0.0385 (12)	0.5058 (7)	0.3093 (5)	0.049 (3)	0.657 (12)
H30C	0.0738	0.5610	0.3292	0.059*	0.657 (12)
H30D	-0.0552	0.4992	0.3425	0.059*	0.657 (12)
C31′	0.0389 (12)	0.5356 (7)	0.2214 (5)	0.067 (3)	0.657 (12)
H31C	-0.0314	0.5897	0.2198	0.081*	0.657 (12)
H31D	0.1262	0.5619	0.1908	0.081*	0.657 (12)
C32′	0.0143 (13)	0.4461 (8)	0.1814 (6)	0.081 (4)	0.657 (12)
H32B	-0.0764	0.4224	0.2101	0.098*	0.657 (12)
C33′	0.1193 (15)	0.3608 (7)	0.1855 (5)	0.077 (4)	0.657 (12)
H33C	0.2091	0.3839	0.1565	0.092*	0.657 (12)
H33D	0.1037	0.3037	0.1583	0.092*	0.657 (12)
C34′	0.1142 (13)	0.3259 (6)	0.2735 (5)	0.072 (3)	0.657 (12)
H34C	0.0309	0.2912	0.2989	0.087*	0.657 (12)
H34D	0.1902	0.2764	0.2739	0.087*	0.657 (12)
C35	0.0602 (5)	0.2507 (4)	0.5269 (3)	0.0420 (12)	
C36	0.1226 (6)	0.2241 (4)	0.5892 (4)	0.0519 (14)	
H36	0.2172	0.2205	0.5769	0.062*	
C37	0.0451 (7)	0.2028 (4)	0.6695 (4)	0.0570 (15)	
C38	-0.0942 (7)	0.2086 (4)	0.6919 (4)	0.0617 (16)	
H38	-0.1444	0.1964	0.7469	0.074*	
C39	-0.1569 (6)	0.2328 (4)	0.6310 (3)	0.0516 (14)	
H39	-0.2515	0.2360	0.6442	0.062*	
C40	-0.0820 (5)	0.2523 (4)	0.5505 (3)	0.0435 (12)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1211 (7)	0.0938 (6)	0.0491 (4)	-0.0380 (5)	-0.0139 (4)	0.0028 (3)

supporting information

Br2	0.0488 (4)	0.0931 (6)	0.1853 (10)	0.0068 (4)	0.0052 (5)	-0.0404 (6)
Br3	0.0649 (4)	0.0829 (5)	0.1281 (7)	-0.0302 (4)	-0.0261 (4)	0.0094 (5)
Br4	0.0500 (4)	0.0687 (4)	0.0959 (5)	0.0196 (3)	-0.0086(3)	-0.0173 (4)
Cl1	0.0529 (9)	0.0799 (11)	0.0661 (10)	-0.0119 (8)	0.0041 (8)	-0.0084 (8)
Cl2	0.0496 (8)	0.0840 (11)	0.0619 (9)	-0.0129 (7)	-0.0264 (7)	-0.0010 (8)
01	0.120 (5)	0.060 (3)	0.193 (7)	-0.028(3)	0.019 (4)	-0.048 (4)
O2	0.073 (3)	0.074 (3)	0.120 (4)	-0.024(3)	0.013 (3)	-0.020(3)
03	0.106 (4)	0.048 (3)	0.083 (3)	-0.029(2)	-0.010(3)	0.002 (2)
O4	0.096 (4)	0.143 (5)	0.134 (5)	-0.020(4)	-0.076 (4)	0.052 (4)
05	0.147 (6)	0.219 (8)	0.072 (4)	-0.013(5)	-0.056 (4)	0.040 (4)
N1	0.073 (4)	0.048 (3)	0.094 (4)	-0.014(3)	-0.011 (3)	-0.012 (3)
N2	0.046 (2)	0.038 (2)	0.048 (3)	-0.0040 (19)	-0.015 (2)	-0.004(2)
N3	0.055 (3)	0.051 (3)	0.037 (2)	0.004 (2)	-0.017(2)	-0.006(2)
N4	0.099 (5)	0.081 (4)	0.085 (5)	-0.012 (4)	-0.052 (4)	0.022 (3)
N5	0.040(2)	0.045 (3)	0.042 (2)	0.0008 (19)	-0.0101 (19)	-0.0040 (19)
N6	0.042(3)	0.038 (3)	0.079 (3)	0.006 (2)	-0.005(2)	-0.010(2)
C1	0.047 (3)	0.036 (3)	0.057 (3)	-0.001(2)	-0.014(3)	-0.009(3)
C2	0.059 (3)	0.031 (3)	0.053 (3)	-0.008(2)	-0.008(3)	-0.010(2)
C3	0.076 (4)	0.040 (3)	0.050(3)	-0.014(3)	-0.002(3)	-0.006(3)
C4	0.068 (4)	0.050 (4)	0.072 (5)	-0.015(3)	0.023 (4)	-0.021(3)
C5	0.049 (4)	0.055 (4)	0.101 (6)	0.001 (3)	0.003 (4)	-0.022(4)
C6	0.052 (3)	0.044 (3)	0.084 (5)	0.002 (3)	-0.015 (3)	-0.016 (3)
C7	0.049 (3)	0.043 (3)	0.056 (3)	0.002 (2)	-0.021(3)	-0.004(3)
C8	0.040 (3)	0.040 (3)	0.044 (3)	-0.001(2)	-0.016(2)	-0.003(2)
C9	0.063 (4)	0.048 (3)	0.063 (4)	-0.005(3)	-0.023(3)	-0.001(3)
C10	0.142 (7)	0.068 (5)	0.106 (6)	-0.036(5)	-0.080(6)	0.023 (4)
C11	0.148 (8)	0.072 (5)	0.141 (8)	-0.035(5)	-0.094 (7)	0.039 (5)
C12	0.099 (5)	0.060 (4)	0.070 (4)	-0.031(4)	-0.012 (4)	0.005 (3)
C13	0.110 (6)	0.073 (5)	0.088 (5)	-0.035(4)	-0.045 (5)	0.004 (4)
C14	0.079 (5)	0.067 (4)	0.082 (5)	-0.022(4)	-0.037 (4)	0.014 (4)
C15	0.043 (3)	0.041 (3)	0.040 (3)	0.001 (2)	-0.014 (2)	-0.001(2)
C16	0.047 (3)	0.044 (3)	0.048 (3)	0.001 (2)	-0.013(3)	-0.005(2)
C17	0.052 (3)	0.041 (3)	0.059(4)	-0.002(3)	-0.014(3)	-0.006(3)
C18	0.070(4)	0.047(4)	0.078(4)	0.007(3)	-0.012(4)	-0.021(3)
C19	0.056 (4)	0.065 (4)	0.052 (4)	0.003 (3)	0.004 (3)	-0.018(3)
C20	0.043 (3)	0.051 (3)	0.048 (3)	0.000 (2)	-0.008(3)	-0.004(3)
C21	0.044(3)	0.042(3)	0.046 (3)	0.002(2)	-0.014(2)	0.000(2)
C22	0.045 (3)	0.042(3)	0.044 (3)	0.003(2)	-0.013(2)	0.001(2)
C23	0.041 (3)	0.056(3)	0.044 (3)	0.004 (3)	-0.010(2)	-0.003(3)
C24	0.036(3)	0.081(5)	0.058(4)	-0.001(3)	-0.016(3)	0.003(3)
C25	0.049(3)	0.062(4)	0.066(4)	-0.012(3)	-0.016(3)	0.004 (3)
C26	0.053 (3)	0.050 (3)	0.058 (4)	-0.005(3)	-0.014(3)	-0.003(3)
C27	0.041 (3)	0.036 (3)	0.052 (3)	-0.001(2)	-0.006(3)	-0.004(2)
C28	0.042 (3)	0.043 (3)	0.054 (3)	-0.002(2)	-0.013(3)	-0.007(3)
06	0.080 (8)	0.053 (7)	0.038 (7)	0.013 (6)	-0.021 (6)	-0.010 (5)
C29	0.095 (5)	0.086 (5)	0.056 (4)	0.039 (4)	-0.028 (4)	-0.021 (4)
C30	0.055 (10)	0.053 (10)	0.045 (10)	0.000 (8)	-0.011 (7)	-0.007 (7)
C31	0.072 (10)	0.074 (10)	0.056 (9)	0.013 (8)	-0.027 (8)	-0.002 (8)
	× /	× /	× /	× /	× /	\ /

supporting information

C32	0.099 (18)	0.061 (13)	0.038 (11)	0.000 (12)	-0.025 (12)	-0.005 (9)
C33	0.040 (11)	0.080 (14)	0.038 (10)	-0.002 (9)	-0.010 (8)	-0.009 (9)
C34	0.045 (10)	0.070 (12)	0.053 (11)	0.010 (9)	-0.013 (9)	-0.009 (9)
O6′	0.114 (7)	0.125 (8)	0.053 (5)	-0.037 (6)	-0.030 (5)	0.003 (5)
C29′	0.095 (5)	0.086 (5)	0.056 (4)	0.039 (4)	-0.028 (4)	-0.021 (4)
C30′	0.060 (6)	0.043 (6)	0.050 (6)	-0.006 (5)	-0.021 (5)	-0.009 (4)
C31′	0.066 (6)	0.076 (6)	0.063 (6)	-0.006 (5)	-0.027 (5)	0.004 (5)
C32′	0.079 (9)	0.139 (12)	0.029 (6)	-0.050 (9)	-0.015 (6)	0.020 (6)
C33′	0.103 (9)	0.077 (7)	0.047 (6)	-0.022 (6)	-0.009 (6)	-0.011 (5)
C34′	0.092 (7)	0.061 (6)	0.067 (6)	-0.012 (5)	-0.027 (5)	0.003 (5)
C35	0.042 (3)	0.036 (3)	0.050 (3)	0.002 (2)	-0.017 (3)	-0.009 (2)
C36	0.046 (3)	0.041 (3)	0.069 (4)	0.003 (2)	-0.022 (3)	0.001 (3)
C37	0.075 (4)	0.046 (3)	0.058 (4)	-0.002 (3)	-0.036 (3)	0.007 (3)
C38	0.075 (4)	0.050 (4)	0.055 (4)	-0.005 (3)	-0.013 (3)	0.004 (3)
C39	0.049 (3)	0.054 (3)	0.050 (3)	-0.002 (3)	-0.014 (3)	0.000 (3)
C40	0.044 (3)	0.040 (3)	0.051 (3)	-0.001 (2)	-0.020 (3)	-0.005 (2)

Geometric parameters (Å, °)

Br1—C3	1.897 (6)	C18—H18	0.9300
Br2—C5	1.904 (6)	C19—C20	1.365 (8)
Br3—C25	1.890 (6)	C19—H19	0.9300
Br4—C23	1.893 (5)	C21—C26	1.367 (7)
Cl1—C20	1.737 (5)	C21—C22	1.387 (7)
Cl2—C40	1.729 (5)	C21—C27	1.517 (7)
01—N1	1.201 (6)	C22—C23	1.388 (7)
O2—N1	1.204 (7)	C23—C24	1.384 (8)
O3—C12	1.441 (7)	C24—C25	1.373 (8)
O3—H3	0.8401	C24—H24	0.9300
O4—N4	1.186 (8)	C25—C26	1.375 (8)
O5—N4	1.210 (8)	C26—H26	0.9300
N1-C17	1.460 (7)	C27—H27A	0.9700
N2—C7	1.461 (6)	C27—H27B	0.9700
N2—C8	1.464 (6)	C28—C35	1.519 (7)
N2—C9	1.487 (7)	C28—H28	0.9800
N3—C2	1.371 (7)	O6—C32	1.439 (10)
N3—C8	1.444 (6)	O6—H6	0.8401
N3—H3N	0.8600	O6—H6′	1.1466
N4—C37	1.472 (8)	C29—C34	1.442 (8)
N5-C28	1.448 (6)	C29—C30	1.466 (8)
N5—C27	1.460 (6)	C29—H29A	0.9800
N5-C29	1.470 (7)	C30—C31	1.468 (9)
N6-C22	1.383 (6)	C30—H30A	0.9700
N6-C28	1.467 (6)	C30—H30B	0.9700
N6—H6N	0.8600	C31—C32	1.469 (9)
C1—C6	1.383 (7)	C31—H31A	0.9700
C1—C2	1.416 (7)	C31—H31B	0.9700
C1—C7	1.499 (7)	C32—C33	1.474 (9)

С2—С3	1.403 (8)	С32—Н32А	0.9800
C3—C4	1.379 (9)	C33—C34	1.470 (9)
C4—C5	1.364 (9)	С33—Н33А	0.9700
C4—H4	0.9300	С33—Н33В	0.9700
C5—C6	1.363 (9)	C34—H34A	0.9700
С6—Н6В	0.9300	C34—H34B	0.9700
С7—Н7А	0.9700	O6'—C32'	1.432 (12)
С7—Н7В	0.9700	O6′—H6	0.8290
C8—C15	1.525 (7)	O6'—H6'	0.8401
С8—Н8	0.9800	C30′—C31′	1.496 (7)
C9—C14	1.505 (8)	С30′—Н30С	0.9700
C9—C10	1.507 (8)	C30'—H30D	0.9700
С9—Н9	0.9800	C31′—C32′	1.494 (7)
C10—C11	1.548 (9)	C31′—H31C	0.9700
C10—H10A	0.9700	C31′—H31D	0.9700
C10—H10B	0.9700	C32′—C33′	1.492 (8)
C11—C12	1.427 (10)	C32′—H32B	0.9800
C11—H11A	0.9700	C33'—C34'	1.497 (7)
C11—H11B	0.9700	C33'—H33C	0.9700
C12—C13	1,497 (9)	C33'—H33D	0.9700
С12—Н12	0.9800	C34'—H34C	0.9700
C13—C14	1.545 (9)	C34′—H34D	0.9700
С13—Н13А	0.9700	C35—C36	1.382 (7)
С13—Н13В	0.9700	C35—C40	1.397 (7)
C14—H14A	0.9700	C36—C37	1.377 (8)
C14—H14B	0.9700	С36—Н36	0.9300
C15—C16	1.372 (7)	C37—C38	1.367 (8)
C15—C20	1.394 (7)	C38—C39	1.360 (8)
C16—C17	1.376 (7)	С38—Н38	0.9300
С16—Н16	0.9300	C39—C40	1.369 (7)
C17—C18	1.378 (8)	С39—Н39	0.9300
C18—C19	1.375 (8)		
С12—О3—Н3	118.6	C24—C23—C22	121.7 (5)
O1—N1—O2	122.5 (6)	C24—C23—Br4	119.4 (4)
O1—N1—C17	118.7 (6)	C22—C23—Br4	118.9 (4)
O2—N1—C17	118.8 (5)	C25—C24—C23	119.0 (5)
C7—N2—C8	109.3 (4)	C25—C24—H24	120.5
C7—N2—C9	112.8 (4)	C23—C24—H24	120.5
C8—N2—C9	115.5 (4)	C24—C25—C26	120.2 (5)
C2—N3—C8	121.6 (4)	C24—C25—Br3	120.6 (4)
C2—N3—H3N	119.2	C26—C25—Br3	119.1 (5)
C8—N3—H3N	119.2	C21—C26—C25	120.5 (5)
O4—N4—O5	123.2 (7)	C21—C26—H26	119.8
O4—N4—C37	118.6 (7)	C25—C26—H26	119.8
O5—N4—C37	118.1 (7)	N5—C27—C21	110.9 (4)
C28—N5—C27	109.7 (4)	N5—C27—H27A	109.5
C28—N5—C29	117.3 (4)	С21—С27—Н27А	109.5

C27 N5 C20	112 7 (4)		100 5
$C_2/-N_5-C_29$	112.7 (4)	$N_{2} = C_{2} = H_{2} = B$	109.5
C22—N6—C28	121.7 (4)	C21—C2/—H2/B	109.5
C22—N6—H6N	119.2	H27A—C27—H27B	108.1
C28—N6—H6N	119.2	N5—C28—N6	112.7 (4)
C6—C1—C2	119.6 (5)	N5-C28-C35	109.0 (4)
C6—C1—C7	122.8 (5)	N6-C28-C35	112.2 (4)
C2C1C7	117.6 (5)	N5-C28-H28	107.6
N3—C2—C3	123.3 (5)	N6-C28-H28	107.6
N3—C2—C1	119.7 (5)	C35—C28—H28	107.6
C3—C2—C1	117.0 (5)	С32—О6—Н6	134.0
C4-C3-C2	122.4 (6)	C32—O6—H6′	118.5
C4-C3-Br1	1122.1(0) 119.0(5)	Н6—06—Н6'	20.8
C^2 C^3 Br^1	119.0(5) 118.5(5)	C_{34} C_{29} C_{30}	120.7 (6)
$C_2 = C_3 = D_1^2$	118.5 (6)	$C_{24} = C_{20} = C_{30}$	126.7(0)
C_{5} C_{4} U_{4}	110.5 (0)	C_{20} C_{20} N5	120.4(0)
C_{3} C_{4} H_{4}	120.8	$C_{30} = C_{29} = N_{30}$	112.1 (6)
C3—C4—H4	120.8	C34—C29—H29A	93.0
C6—C5—C4	121.6 (6)	С30—С29—Н29А	93.0
C6—C5—Br2	119.5 (6)	N5—C29—H29A	93.0
C4—C5—Br2	118.8 (5)	C29—C30—C31	118.7 (7)
C5—C6—C1	120.8 (6)	С29—С30—Н30А	107.6
С5—С6—Н6В	119.6	C31—C30—H30A	107.6
С1—С6—Н6В	119.6	C29—C30—H30B	107.6
N2	114.2 (4)	C31—C30—H30B	107.6
N2—C7—H7A	108.7	H30A—C30—H30B	107.1
С1—С7—Н7А	108.7	C30—C31—C32	117.0 (8)
N2—C7—H7B	108.7	C30—C31—H31A	108.0
C1—C7—H7B	108 7	C32—C31—H31A	108.1
H7A - C7 - H7B	107.6	C30—C31—H31B	108.0
N3-C8-N2	111 8 (4)	C_{32} C_{31} H_{31B}	108.0
N3 C8 C15	113.2(4)	H31A C31 H31B	107.3
$N_{2} = C_{8} = C_{15}$	110.2(4)	$\begin{array}{c} 115111 \\ 06 \\ 072 \\ 071$	107.5 115.5(14)
$N_2 = C_0 = C_{13}$	107.1	$06 C^{22} C^{22}$	113.3(14) 100 5 (12)
$N_3 - C_8 - H_8$	107.1	00-032-033	109.5 (12)
N2-C8-H8	107.1	C31—C32—C33	115.2 (9)
С15—С8—Н8	107.1	06—C32—H32A	105.1
N2—C9—C14	113.4 (5)	C31—C32—H32A	105.1
N2—C9—C10	108.7 (5)	C33—C32—H32A	105.1
C14—C9—C10	109.1 (5)	C34—C33—C32	117.0 (8)
N2—C9—H9	108.5	С34—С33—Н33А	108.1
С14—С9—Н9	108.5	С32—С33—Н33А	108.1
С10—С9—Н9	108.5	C34—C33—H33B	108.1
C9-C10-C11	111.9 (6)	C32—C33—H33B	108.1
C9—C10—H10A	109.2	H33A—C33—H33B	107.3
C11—C10—H10A	109.2	C29—C34—C33	118.0 (7)
C9—C10—H10B	109.2	C29—C34—H34A	107.8
C11—C10—H10B	109.2	C33 - C34 - H34A	107.8
H_{10A} C_{10} H_{10B}	107.9	C_{29} C_{34} H_{34R}	107.8
C_{12}	110.0 (6)	$C_{22} = C_{24} = H_{24} D$	107.0
$C_{12} = C_{11} = C_{10}$	100.5	$U_{24A} = C_{24} = U_{24D}$	107.0
U12-U11-1111A	107.J	11J7A-UJ4-UJ4D	10/.1

C10—C11—H11A	109.5	С32′—Об′—Нб	118.2
C12—C11—H11B	109.5	С32'—Об'—Нб'	116.1
C10-C11-H11B	109.5	Н6—Об'—Нб'	32.6
H11A—C11—H11B	108.1	C31′—C30′—H30C	108.4
C11—C12—O3	111.2 (6)	C31'-C30'-H30D	108.4
C11—C12—C13	111.6 (6)	H30C—C30′—H30D	107.5
O3—C12—C13	108.1 (5)	C32'—C31'—C30'	111.1 (7)
C11—C12—H12	108.6	C32'—C31'—H31C	109.4
O3—C12—H12	108.6	C30'—C31'—H31C	109.4
C13—C12—H12	108.6	C32'—C31'—H31D	109.4
C12—C13—C14	110.3 (5)	C30'—C31'—H31D	109.4
С12—С13—Н13А	109.6	H31C—C31′—H31D	108.0
C14—C13—H13A	109.6	O6'—C32'—C33'	111.3 (9)
C12—C13—H13B	109.6	O6'—C32'—C31'	107.2 (9)
C14—C13—H13B	109.6	C33'—C32'—C31'	110.1 (7)
H13A—C13—H13B	108.1	O6'—C32'—H32B	109.4
C9-C14-C13	111.8 (5)	C33'—C32'—H32B	109.4
C9—C14—H14A	109.3	C31'—C32'—H32B	109.4
C13—C14—H14A	109.3	C32'—C33'—C34'	110.9 (7)
C9—C14—H14B	109.3	C32'—C33'—H33C	109.5
C13—C14—H14B	109.3	C34′—C33′—H33C	109.5
H14A—C14—H14B	107.9	C32'—C33'—H33D	109.5
C16—C15—C20	116.8 (5)	C34'—C33'—H33D	109.5
C16—C15—C8	122.2 (5)	H33C—C33′—H33D	108.1
C20—C15—C8	120.8 (5)	C33'—C34'—H34C	108.7
C15—C16—C17	120.9 (5)	C33'—C34'—H34D	108.7
C15—C16—H16	119.5	H34C—C34′—H34D	107.6
C17—C16—H16	119.5	C36—C35—C40	116.3 (5)
C16—C17—C18	121.8 (5)	C36—C35—C28	122.9 (5)
C16—C17—N1	119.2 (5)	C40—C35—C28	120.9 (4)
C18—C17—N1	119.0 (5)	C37—C36—C35	120.2 (5)
C19—C18—C17	117.6 (5)	С37—С36—Н36	119.9
C19—C18—H18	121.2	С35—С36—Н36	119.9
C17—C18—H18	121.2	C38—C37—C36	122.7 (5)
C20-C19-C18	120.7 (5)	C38—C37—N4	119.3 (6)
С20—С19—Н19	119.7	C36—C37—N4	118.0 (6)
C18—C19—H19	119.7	C39—C38—C37	117.7 (6)
C19—C20—C15	122.1 (5)	С39—С38—Н38	121.1
C19—C20—C11	117.5 (4)	С37—С38—Н38	121.1
C15—C20—Cl1	120.4 (4)	C38—C39—C40	120.7 (5)
C26—C21—C22	121.0 (5)	С38—С39—Н39	119.7
C26—C21—C27	122.4 (5)	С40—С39—Н39	119.7
C22—C21—C27	116.7 (5)	C39—C40—C35	122.4 (5)
N6-C22-C21	120.0 (5)	C39—C40—C12	116.8 (4)
N6-C22-C23	122.3 (5)	C35—C40—C12	120.8 (4)
C21—C22—C23	117.7 (5)		

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
N3—H3N····O4 ⁱ	0.86	2.33	2.942 (7)	129
O3—H3…O6′ ⁱⁱ	0.84	1.89	2.713 (12)	166
O6—H6···O3 ⁱⁱⁱ	0.84	2.04	2.877 (17)	179
O6'—H6'…O3 ⁱⁱⁱ	0.84	1.85	2.694 (10)	179

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*; (iii) *x*-1, *y*, *z*.