

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2-Azido-2-deoxy-3,4-O-isopropylidene-2-C-methyl-D-talono-1,5-lactone

## Sarah F. Jenkinson,<sup>a</sup>\* Ni Dai,<sup>a</sup> George W. J. Fleet<sup>a</sup> and David J. Watkin<sup>b</sup>

<sup>a</sup>Department of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and <sup>b</sup>Department of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

Received 19 April 2010; accepted 23 April 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.087; data-to-parameter ratio = 10.0.

The relative stereochemistry of the title compound,  $C_{10}H_{15}N_3O_5$ , was confirmed by the crystal structure determination. The absolute configuration was determined from the use of D-lyxonolactone as the starting material. The six-membered ring adopts a boat conformation with the larger azide group, rather than the methyl group, in the bowsprit position. In the crystal structure, a bifurcated intermolecular O-H···O/O-H...N hydrogen bond links molecules into chains running parallel to the b axis.

#### **Related literature**

For carbohydrates as chirons, see: Lichtenthaler & Peters (2004); Fechter et al. (1999); Fleet (1989). For branched sugars and their use as chirons, see: Rao et al. (2008); Jones et al. (2008); Booth et al. (2008); Hotchkiss, Kato et al. (2007); da Cruz et al. (2008); Soengas et al. (2005). For the structures of similar sugars, see: Chesterton et al. (2006); Booth et al. (2007); Hotchkiss, Jenkinson et al. (2007); Baird et al. (1987); Bruce et al. (1990); Punzo et al. (2005). For the extinction correction, see: Larson (1970).



#### **Experimental**

Crystal data

| $C_{10}H_{15}N_{3}O_{5}$   | b = 13.3427 (7) Å              |
|----------------------------|--------------------------------|
| $M_r = 257.25$             | c = 15.6351 (9)  Å             |
| Orthorhombic, $P2_12_12_1$ | $V = 1240.86 (12) \text{ Å}^3$ |
| u = 5.9481 (3)  Å          | Z = 4                          |

Mo  $K\alpha$  radiation  $\mu = 0.11 \text{ mm}^{-1}$ 

#### Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (DÊNZO/SCALEPACK; Otwinowski & Minor, 1997)  $T_{\min} = 0.89, \ T_{\max} = 0.99$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.038$ | 164 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.087$               | H-atom parameters constrained                              |
| S = 0.88                        | $\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 1647 reflections                | $\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$ |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                            | <i>D</i> -H | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------------------------------------------------------------------------|-------------|-------------------------|--------------|---------------------------|
| $\begin{array}{c} O15 {-} H151 {\cdots} O1^{i} \\ O15 {-} H151 {\cdots} N7^{i} \end{array}$ | 0.84        | 2.14                    | 2.930 (4)    | 157                       |
|                                                                                             | 0.84        | 2.52                    | 3.072 (4)    | 125                       |

Symmetry code: (i) -x + 1,  $y - \frac{1}{2}$ ,  $-z + \frac{3}{2}$ .

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5031).

#### References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-435.
- Baird, P. D., Dho, J. C., Fleet, G. W. J., Peach, J. M., Prout, K. & Smith, P. W. (1987). J. Chem. Soc. Perkin Trans. 1, pp. 1785-1791.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Booth, K. V., da Cruz, F. P., Hotchkiss, D. J., Jenkinson, S. F., Jones, N. A., Weymouth-Wilson, A. C., Clarkson, R., Heinz, T. & Fleet, G. W. J. (2008). Tetrahedron: Asymmetry, 19, 2417-2424.
- Booth, K. V., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2007). Acta Cryst. E63, o1759-o1760.
- Bruce, I., Fleet, G. W. J., Girdhar, A., Haraldsson, M., Peach, J. M. & Watkin, D. J. (1990). Tetrahedron, 46, 19-32.
- Chesterton, A. K. S., Jenkinson, S. F., Jones, N. A., Fleet, G. W. J. & Watkin, D. J. (2006). Acta Cryst. E62, o2983-o2985.
- Cruz, F. P. da, Horne, G. & Fleet, G. W. J. (2008). Tetrahedron Lett. 49, 6812-6815.
- Fechter, M. H., Stutz, A. E. & Tauss, A. (1999). Curr. Org. Chem. 3, 269-285. Fleet, G. W. J. (1989). Chem. Br. 25, 287-291.
- Hotchkiss, D. J., Jenkinson, S. F., Booth, K. V., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. E63, o2168-o2170.
- Hotchkiss, D. J., Kato, A., Odell, B., Claridge, T. D. W. & Fleet, G. W. J. (2007). Tetrahedron Asymmetry, 18, 500-512.
- Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904-1918.
- Larson, A. C. (1970). Crystallographic Computing, Edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.

Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65-90.

 $0.20 \times 0.15 \times 0.05 \; \rm mm$ 

10775 measured reflections

1647 independent reflections

1170 reflections with  $I > 2\sigma(I)$ 

T = 150 K

 $R_{\rm int} = 0.077$ 

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Punzo, F., Watkin, D. J., Jenkinson, S. F., Cruz, F. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, 0511–0512.
- Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., da Cruz, F. P., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). *Tetrahedron Lett.* 49, 3316–3121.
- Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). *Tetrahedron Lett.* 46, 5755–5759.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, Oxford, England.

# supporting information

Acta Cryst. (2010). E66, o1221–o1222 [https://doi.org/10.1107/S160053681001500X]
2-Azido-2-deoxy-3,4-O-isopropylidene-2-C-methyl-D-talono-1,5-lactone
Sarah F. Jenkinson, Ni Dai, George W. J. Fleet and David J. Watkin

### S1. Comment

Carbohydrates are a diverse set of chirons for the synthesis of complex amino acids and iminosugars (Lichtenthaler & Peters, 2004; Fechter et al., 1999; Fleet, 1989). 2-C-Methyl branched sugars constitute a class of rare sugars with chemotherapeutic potential (Rao et al., 2008; Jones et al., 2008; Booth et al., 2008) and can be used as building blocks in the synthesis of biologically active compounds (da Cruz et al., 2008; Hotchkiss, Kato et al., 2007; Soengas et al., 2005).

The azidolactone 3 (Fig. 1) would be a key intermediate for the synethsis of branched pyrrolidines, piperidines and prolines derived from D-lyxonolactone. Nucleophilic displacement of a triflate leaving group at the tertiary centre by azide was confirmed by X-ray crystallography to have proceeded with overall inversion of configuration (Booth et al. 2007; Hotchkiss, Jenkinson et al. 2007). The 6-membered lactone ring adopts a boat conformation, as is common with 3,4-O-isopropylidene-1,5-lactones (Baird et al., 1987; Bruce et al., 1990; Punzo et al., 2005), with the larger azide group, rather than the methyl, in the bowsprit position (Fig. 2). The absolute configuration was determined from the use of D-lyxonolactone as the starting material. As is common with these materials the azide is non linear [N7 - N8 - N9 = 172.4 (3) °] (Chesterton et al., 2006), with the anisotropic atomic displacement parameter of the central atom lowered with respect to its neighbours. The compound exists as hydrogen bonded chains of molecules running parallel to the b-axis (Fig. 3). The hydrogen bond is bifurcated. Only classical hydrogen bonding is considered.

#### **S2.** Experimental

The title compound was recrystallised by slow evaporation from a mixture of diethyl ether and cyclohexane: m.p. 397-403 K,  $[\alpha]_D^{25}$  +112.4 (*c*, 1.145 in CHCl<sub>3</sub>).

#### **S3. Refinement**

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the use of D-lyonolactone as the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and  $U_{iso}$ (H) (in the range 1.2–1.5 times  $U_{eq}$  of the parent atom), after which the positions were refined with riding constraints.



Figure 1 Synthetic Scheme



## Figure 2

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.



## Figure 3

Packing diagram for the title compound projected along the *a*-axis. Hydrogen bonds are shown by dotted lines.

2-Azido-2-deoxy-3,4-O-isopropylidene-2-C-methyl-D-talono-1,5-lactone

## Crystal data

 $C_{10}H_{15}N_{3}O_{5}$   $M_{r} = 257.25$ Orthorhombic,  $P2_{1}2_{1}2_{1}$ Hall symbol: P 2ac 2ab a = 5.9481 (3) Å b = 13.3427 (7) Å c = 15.6351 (9) Å V = 1240.86 (12) Å<sup>3</sup> Z = 4

## Data collection

| Nonius KappaCCD                       |
|---------------------------------------|
| diffractometer                        |
| Graphite monochromator                |
| $\omega$ scans                        |
| Absorption correction: multi-scan     |
| (DENZO/SCALEPACK; Otwinowski & Minor, |
| 1997)                                 |
| $T_{\min} = 0.89, T_{\max} = 0.99$    |

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.038$  $wR(F^2) = 0.087$ S = 0.881647 reflections 164 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 544  $D_x = 1.377 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 1637 reflections  $\theta = 5-27^{\circ}$   $\mu = 0.11 \text{ mm}^{-1}$  T = 150 KPlate, colourless  $0.20 \times 0.15 \times 0.05 \text{ mm}$ 

10775 measured reflections 1647 independent reflections 1170 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.077$   $\theta_{max} = 27.5^{\circ}, \theta_{min} = 5.2^{\circ}$   $h = -7 \rightarrow 7$   $k = -17 \rightarrow 17$  $l = -20 \rightarrow 20$ 

| Hydrogen site location: inferred from<br>neighbouring sites |
|-------------------------------------------------------------|
| H-atom parameters constrained                               |
| Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + ($      |
| $(0.05P)^2 + 0.16P$ ],                                      |
| where $P = [\max(F_o^2, 0) + 2F_c^2]/3$                     |
| $(\Delta/\sigma)_{\rm max} = 0.000278$                      |
| $\Delta  ho_{ m max} = 0.53 \ { m e} \ { m \AA}^{-3}$       |
| $\Delta \rho_{\min} = -0.45 \text{ e} \text{ Å}^{-3}$       |
| Extinction correction: Larson (1970), Equation              |
| 22                                                          |
| Extinction coefficient: 460 (60)                            |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x          | У            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|------------|--------------|--------------|-----------------------------|--|
| 01  | 0.4977 (3) | 0.87439 (12) | 0.79200 (10) | 0.0276                      |  |
| C2  | 0.5736 (5) | 0.85325 (19) | 0.87769 (16) | 0.0297                      |  |
| 03  | 0.7326 (3) | 0.77432 (13) | 0.86551 (10) | 0.0334                      |  |
| C4  | 0.8307 (4) | 0.78267 (17) | 0.78210 (15) | 0.0258                      |  |
| C5  | 0.6901 (4) | 0.86484 (17) | 0.73767 (14) | 0.0250                      |  |
| C6  | 0.6110 (4) | 0.83522 (18) | 0.64929 (15) | 0.0247                      |  |
| N7  | 0.4436 (4) | 0.91275 (16) | 0.62475 (14) | 0.0317                      |  |
| N8  | 0.3742 (4) | 0.90581 (16) | 0.55031 (15) | 0.0313                      |  |
| N9  | 0.2976 (4) | 0.90888 (18) | 0.48383 (15) | 0.0443                      |  |
| C10 | 0.4914 (4) | 0.73333 (18) | 0.65603 (15) | 0.0243                      |  |
| 011 | 0.3123 (3) | 0.71606 (13) | 0.62348 (11) | 0.0323                      |  |
| 012 | 0.5913 (3) | 0.66364 (12) | 0.70449 (11) | 0.0256                      |  |
| C13 | 0.8169 (4) | 0.68186 (17) | 0.73740 (16) | 0.0250                      |  |

# supporting information

| C14  | 0.8716 (5) | 0.59403 (17) | 0.79413 (17) | 0.0309  |
|------|------------|--------------|--------------|---------|
| 015  | 0.8866 (3) | 0.50433 (11) | 0.74599 (11) | 0.0351  |
| C16  | 0.8056 (4) | 0.83600 (19) | 0.58502 (16) | 0.0303  |
| C17  | 0.6857 (5) | 0.9437 (2)   | 0.91665 (18) | 0.0385  |
| C18  | 0.3762 (5) | 0.8142 (2)   | 0.92680 (19) | 0.0459  |
| H41  | 0.9905     | 0.8032       | 0.7872       | 0.0311* |
| H51  | 0.7740     | 0.9284       | 0.7350       | 0.0310* |
| H131 | 0.9235     | 0.6813       | 0.6888       | 0.0288* |
| H141 | 1.0180     | 0.6075       | 0.8209       | 0.0398* |
| H142 | 0.7552     | 0.5873       | 0.8388       | 0.0391* |
| H161 | 0.7461     | 0.8167       | 0.5292       | 0.0461* |
| H162 | 0.8707     | 0.9027       | 0.5818       | 0.0463* |
| H163 | 0.9219     | 0.7893       | 0.6024       | 0.0460* |
| H172 | 0.7391     | 0.9258       | 0.9730       | 0.0598* |
| H171 | 0.5743     | 0.9972       | 0.9206       | 0.0603* |
| H173 | 0.8113     | 0.9635       | 0.8797       | 0.0603* |
| H182 | 0.4260     | 0.7957       | 0.9845       | 0.0690* |
| H181 | 0.2604     | 0.8655       | 0.9297       | 0.0694* |
| H183 | 0.3174     | 0.7559       | 0.8975       | 0.0688* |
| H151 | 0.7591     | 0.4778       | 0.7453       | 0.0532* |
|      |            |              |              |         |

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 01  | 0.0272 (9)  | 0.0348 (9)  | 0.0207 (8)  | 0.0036 (8)   | -0.0008 (8)  | 0.0009 (7)   |
| C2  | 0.0358 (14) | 0.0323 (13) | 0.0209 (12) | 0.0025 (12)  | -0.0027 (11) | -0.0011 (12) |
| O3  | 0.0480 (11) | 0.0305 (9)  | 0.0217 (9)  | 0.0089 (9)   | -0.0031 (8)  | 0.0004 (8)   |
| C4  | 0.0254 (13) | 0.0278 (12) | 0.0241 (13) | -0.0041 (11) | -0.0031 (10) | 0.0007 (11)  |
| C5  | 0.0249 (12) | 0.0250 (12) | 0.0252 (12) | 0.0006 (10)  | -0.0006 (11) | 0.0016 (11)  |
| C6  | 0.0253 (12) | 0.0255 (12) | 0.0233 (13) | 0.0057 (11)  | -0.0011 (11) | 0.0031 (10)  |
| N7  | 0.0361 (12) | 0.0337 (11) | 0.0253 (11) | 0.0090 (10)  | -0.0035 (10) | -0.0003 (10) |
| N8  | 0.0309 (12) | 0.0300 (11) | 0.0330 (13) | 0.0066 (10)  | 0.0013 (11)  | 0.0030 (11)  |
| N9  | 0.0446 (14) | 0.0544 (16) | 0.0340 (14) | 0.0089 (13)  | -0.0105 (12) | 0.0052 (12)  |
| C10 | 0.0210 (12) | 0.0297 (13) | 0.0221 (11) | 0.0039 (11)  | 0.0023 (11)  | -0.0047 (11) |
| O11 | 0.0255 (9)  | 0.0391 (10) | 0.0322 (10) | -0.0029 (9)  | -0.0047 (8)  | -0.0022 (9)  |
| O12 | 0.0228 (8)  | 0.0246 (8)  | 0.0293 (9)  | -0.0005 (7)  | -0.0023 (7)  | 0.0012 (8)   |
| C13 | 0.0192 (11) | 0.0267 (12) | 0.0292 (14) | 0.0008 (10)  | -0.0021 (11) | 0.0020 (11)  |
| C14 | 0.0327 (14) | 0.0247 (12) | 0.0351 (14) | 0.0018 (12)  | -0.0044 (12) | 0.0045 (12)  |
| O15 | 0.0297 (9)  | 0.0248 (9)  | 0.0509 (12) | 0.0035 (8)   | 0.0037 (9)   | 0.0003 (9)   |
| C16 | 0.0318 (13) | 0.0317 (13) | 0.0274 (13) | 0.0010 (12)  | 0.0036 (11)  | 0.0049 (11)  |
| C17 | 0.0484 (17) | 0.0374 (15) | 0.0297 (14) | 0.0015 (14)  | -0.0060 (14) | -0.0059 (12) |
| C18 | 0.0446 (17) | 0.063 (2)   | 0.0300 (16) | -0.0052 (15) | 0.0033 (13)  | 0.0041 (15)  |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| 01-C2 | 1.442 (3) | C10—O12 | 1.338 (3) |
|-------|-----------|---------|-----------|
| O1—C5 | 1.431 (3) | O12—C13 | 1.458 (3) |
| C2—O3 | 1.428 (3) | C13—C14 | 1.505 (3) |

| C2—C17                     | 1.508 (4)                | C13—H131                      | 0.989       |
|----------------------------|--------------------------|-------------------------------|-------------|
| C2C18                      | 1.496 (4)                | C14—O15                       | 1.417 (3)   |
| O3—C4                      | 1.433 (3)                | C14—H141                      | 0.983       |
| C4—C5                      | 1.544 (3)                | C14—H142                      | 0.987       |
| C4—C13                     | 1.518 (3)                | O15—H151                      | 0.837       |
| C4—H41                     | 0.993                    | C16—H161                      | 0.977       |
| C5—C6                      | 1.512 (3)                | C16—H162                      | 0.972       |
| С5—Н51                     | 0.985                    | C16—H163                      | 0.969       |
| C6—N7                      | 1 486 (3)                | C17—H172                      | 0.967       |
| C6-C10                     | 1 538 (3)                | C17—H171                      | 0.976       |
| C6-C16                     | 1 533 (3)                | C17—H173                      | 0.981       |
| N7N8                       | 1.333(3)                 | C18_H182                      | 0.981       |
| N8 N0                      | 1.236(3)                 | C18 H181                      | 0.931       |
| 100-10                     | 1.130(3)<br>1.203(3)     | $C_{18} = H_{182}$            | 0.972       |
| 011                        | 1.205 (5)                | C18—H185                      | 0.909       |
| C2—O1—C5                   | 106.47 (18)              | C4—C13—O12                    | 111.08 (19) |
| O1—C2—O3                   | 103.17 (18)              | C4—C13—C14                    | 114.0 (2)   |
| O1—C2—C17                  | 110.9 (2)                | O12—C13—C14                   | 106.09 (19) |
| O3—C2—C17                  | 110.6 (2)                | C4—C13—H131                   | 109.0       |
| O1—C2—C18                  | 107.4 (2)                | O12—C13—H131                  | 108.6       |
| O3—C2—C18                  | 109.4 (2)                | C14—C13—H131                  | 108.0       |
| C17—C2—C18                 | 114.7 (2)                | C13—C14—O15                   | 111.0 (2)   |
| C2                         | 109.49 (17)              | C13—C14—H141                  | 107.5       |
| 03—C4—C5                   | 104.14 (19)              | O15-C14-H141                  | 109.0       |
| 03-C4-C13                  | 109 17 (18)              | $C_{13}$ $-C_{14}$ $-H_{142}$ | 109.6       |
| $C_{5} - C_{4} - C_{13}$   | 113 14 (19)              | 015-C14-H142                  | 110.1       |
| 03-C4-H41                  | 109.8                    | H141 - C14 - H142             | 109.7       |
| $C_{5}$ $C_{4}$ $H_{41}$   | 111.0                    | C14-O15-H151                  | 107.9       |
| $C_{13}$ $C_{4}$ $H_{41}$  | 109.5                    | C6_C16_H161                   | 107.5       |
| C4 - C5 - 01               | 103.26 (17)              | C6-C16-H162                   | 110.0       |
| $C_{4} = C_{5} = C_{6}$    | 103.20(17)<br>113.20(19) | H161 C16 H162                 | 100.8       |
| 01 C5 C6                   | 108.46(18)               | C6 C16 H163                   | 110.5       |
| $C_{1} = C_{2} = C_{0}$    | 100.40 (10)              | ЦІ61 СІ6 ЦІ63                 | 100.0       |
| $C_4 = C_5 = H_5 I$        | 110.9                    | 11101 - C10 - 11103           | 109.9       |
| C6 C5 H51                  | 110.7                    | H102 - C10 - H103             | 108.0       |
| $C_{0}$                    | 110.1                    | $C_2 = C_1 / = H_1 / 2$       | 108.4       |
| $C_{2} = C_{0} = N/C_{10}$ | 105.21 (19)              | $C_2 = C_1 = H_1 / I$         | 108.1       |
| $C_{3}$                    | 108.20 (19)              | HI/2 - CI/-HI/I               | 110.3       |
| N/                         | 108.84 (18)              | C2—C17—H173                   | 108.3       |
| C5-C6-C16                  | 111.2 (2)                | H1/2—C1/—H1/3                 | 110.7       |
| N/                         | 109.39 (19)              | H1/1—C1/—H1/3                 | 111.0       |
| C10_C6_C16                 | 113.6 (2)                | C2—C18—H182                   | 108.8       |
| C6—N7—N8                   | 114.5 (2)                | C2—C18—H181                   | 109.6       |
| N'/—N8—N9                  | 172.4 (3)                | H182—C18—H181                 | 110.4       |
| C6—C10—O11                 | 123.4 (2)                | C2—C18—H183                   | 108.6       |
| C6—C10—O12                 | 116.6 (2)                | H182—C18—H183                 | 110.0       |
| O11—C10—O12                | 120.0 (2)                | H181—C18—H183                 | 109.4       |
| C10—O12—C13                | 119.50 (19)              |                               |             |
|                            |                          |                               |             |

| D—H···A                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |  |
|------------------------------|-------------|--------------|--------------|---------|--|
| C5—H51…O15 <sup>i</sup>      | 0.99        | 2.28         | 3.141 (4)    | 146     |  |
| C13—H131…O11 <sup>ii</sup>   | 0.99        | 2.57         | 3.473 (4)    | 152     |  |
| C16—H161…O11 <sup>iii</sup>  | 0.98        | 2.46         | 3.333 (4)    | 149     |  |
| C16—H163…O11 <sup>ii</sup>   | 0.97        | 2.54         | 3.465 (4)    | 159     |  |
| O15—H151…O1 <sup>iv</sup>    | 0.84        | 2.14         | 2.930 (4)    | 157     |  |
| O15—H151····N7 <sup>iv</sup> | 0.84        | 2.52         | 3.072 (4)    | 125     |  |
|                              |             |              |              |         |  |

# Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+2, y+1/2, -z+3/2; (ii) x+1, y, z; (iii) x+1/2, -y+3/2, -z+1; (iv) -x+1, y-1/2, -z+3/2.