

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4-Dimethyl-1H-1,2,4-triazepino[2,3-a]benzimidazol-2(3H)-one

Asmae Saber,^a Abdusalam Al Subari,^a Hafid Zouihri,^b El Mokhtar Essassi^a and Seik Weng Ng^c*

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, 10000 Rabat, Morocco, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 9 April 2010; accepted 12 April 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.157; data-to-parameter ratio = 19.3.

In the molecule of the title compound, C₁₂H₁₂N₄O, a C atom and an N atom of the benzimidazole fused-ring portion are part of a seven-membered ring; this ring adopts a boat-shaped conformation (with the fused-ring atoms representing the stern and the sp^3 -hybridized C atom the prow). The amino group is a hydrogen-bond donor to the imidazole group of an inversion-related molecule, the pair of N-H···N hydrogen bonds giving rise to a hydrogen-bonded dimer.

Related literature

For the synthesis, see: Romano et al. (1988).

1823 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.034$

Experimental

Crystal data

$C_{12}H_{12}N_4O$	V = 1125.08 (7) Å ³
$M_r = 228.26$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.2899 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 14.4888 (5) Å	T = 293 K
c = 10.9932 (4) Å	0.21 \times 0.19 \times 0.16 mm
$\beta = 104.314 \ (1)^{\circ}$	

Data collection

Bruker X8 APEXII diffractometer 14670 measured reflections 3095 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$ $\nu R(F^2) = 0.157$ S = 1.01 60 parameters	H atoms treated by a mixture of independent and constrained refinement $\begin{split} & \Delta\rho_{\rm max} = 0.24 \text{ e } {\rm \AA}^{-3} \\ & \Delta\rho_{\rm min} = -0.19 \text{ e } {\rm \AA}^{-3} \end{split}$
restraint	$\Delta \rho_{\rm min} = -0.19$ C A

Table 1 H

Hydrogen-bond	geometry	(A, 1).	

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $N1\!-\!H1\!\cdots\!N4^i$ 2.01 (1) 2.867 (2) 174 (2) 0.86(1)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2255).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Romano, C., De la Cuesta, E., Avendano, C., Florencio, F. & Sainz-Aparicio, J. (1988). Tetrahedron, 44, 7185-7192.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). publCIF. In preparation.

supporting information

Acta Cryst. (2010). E66, o1093 [https://doi.org/10.1107/S1600536810013498]

3,4-Dimethyl-1*H*-1,2,4-triazepino[2,3-*a*]benzimidazol-2(3*H*)-one

Asmae Saber, Abdusalam Al Subari, Hafid Zouihri, El Mokhtar Essassi and Seik Weng Ng

S1. Comment

1,2-Diaminobenzimidazoles react with β -dicarbonyl compounds to form 1,2,4-triazepino[2,3-*a*]benzimidazoles (Romano *et al.*, 1988), a class of compounds used in the treatment of neuronal disorders. The title compound (Scheme I, Fig. 1) was synthesized from 2-aminobenzimidazole and ethyl 2-methylacetoacetate. A carbon atom and a nitrogen atom of the benzimidazole fused-ring portion are part of a seven-membered ring; this ring adopts a boat-shaped conformation (with the fused-ring atoms representing the stern and the *sp*³-hybridized carbon atom the prow). Its methyl substitent occupies a quasi-equatorial position. The amino group is hydrogen-bond donor to the imidazole group (Table 1) of an inversion-related molecule, the pair of N—H···N hydrogen bonds (Fig. 1) giving rise to a hydrogen-bonded dimer.

S2. Experimental

2-Aminobenzimidazole (1 g, 6.75 mmol) and a slight excess of ethyl 2-methylacetoacetate (1.69 ml) were refluxed in xylene (10 ml) and acetic acid (0.5 ml) for 3 hours. The mixture was concentrated under reduced pressure and the resulting residue was recrystallized from ethanol. Brown crystals were isolated when the solvent was allowed to evaporate.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to $1.2U_{eq}(C)$. The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.86 (1) Å.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of the hydrogen-bonded dimeric structure of $C_{12}H_{12}N_4O$ at the 50% probability level; hydrogen atoms are drawn as arbitrary radius. Symmetry code for the inversion related molecule: 1 - x, 1 - y, 1 - z.

3,4-Dimethyl-1H-1,2,4-triazepino[2,3-a]benzimidazol- 2(3H)-one

Crystal data	
C ₁₂ H ₁₂ N ₄ O $M_r = 228.26$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.2899 (3) Å b = 14.4888 (5) Å c = 10.9932 (4) Å $\beta = 104.314$ (1)° V = 1125.08 (7) Å ³	F(000) = 480 $D_x = 1.348 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3188 reflections $\theta = 2.4-24.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K Prism, brown $0.21 \times 0.19 \times 0.16 \text{ mm}$
Data collection Bruker X8 APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 14670 measured reflections 3095 independent reflections	1823 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$ $\theta_{\text{max}} = 29.4^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$ $h = -9 \rightarrow 10$ $k = -20 \rightarrow 19$ $l = -15 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.157$	neighbouring sites
S = 1.01	H atoms treated by a mixture of independent
3095 reflections	and constrained refinement
160 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0742P)^2 + 0.1838P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\min} = -0.19 \text{ e} \text{ Å}^{-3}$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.40956 (19)	0.51793 (12)	0.14398 (13)	0.0762 (5)
N1	0.5626 (2)	0.53766 (12)	0.34574 (15)	0.0574 (4)
H1	0.486 (3)	0.5002 (13)	0.3696 (19)	0.075 (7)*
N2	0.95622 (19)	0.59291 (9)	0.32932 (14)	0.0508 (4)
N3	0.86966 (19)	0.60627 (9)	0.42759 (13)	0.0475 (4)
N4	0.6799 (2)	0.58224 (10)	0.55706 (13)	0.0552 (4)
C1	0.6977 (2)	0.57641 (11)	0.44172 (16)	0.0488 (4)
C2	0.5294 (2)	0.55903 (14)	0.22125 (17)	0.0569 (5)
C3	0.6491 (2)	0.63705 (13)	0.18892 (16)	0.0551 (5)
H3	0.6428	0.6886	0.2454	0.066*
C4	0.8529 (2)	0.60475 (11)	0.21815 (17)	0.0498 (4)
C5	0.5699 (3)	0.67076 (16)	0.05638 (19)	0.0797 (7)
H5A	0.6472	0.7202	0.0387	0.120*
H5B	0.4429	0.6926	0.0475	0.120*
H5C	0.5692	0.6210	-0.0014	0.120*
C6	0.9446 (3)	0.58710 (16)	0.11287 (19)	0.0694 (6)
H6A	1.0719	0.5659	0.1463	0.104*
H6B	0.9466	0.6432	0.0667	0.104*
H6C	0.8742	0.5409	0.0580	0.104*
C7	0.9748 (2)	0.62947 (10)	0.54769 (16)	0.0486 (4)
C8	1.1602 (3)	0.65870 (13)	0.59037 (19)	0.0636 (5)
H8	1.2399	0.6664	0.5369	0.076*
C9	1.2194 (3)	0.67573 (16)	0.7180 (2)	0.0790 (7)
H9	1.3432	0.6950	0.7517	0.095*
C10	1.0993 (4)	0.66492 (16)	0.7969 (2)	0.0780 (7)
H10	1.1444	0.6782	0.8819	0.094*
C11	0.9147 (3)	0.63502 (14)	0.75350 (18)	0.0653 (5)
H11	0.8348	0.6279	0.8070	0.078*
C12	0.8542 (3)	0.61603 (11)	0.62561 (16)	0.0516 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0480 (8)	0.1131 (12)	0.0627 (9)	-0.0193 (7)	0.0049 (6)	-0.0313 (8)

N1	0.0401 (8)	0.0756 (10)	0.0538 (9)	-0.0152 (7)	0.0068 (7)	-0.0171 (7)
N2	0.0385 (7)	0.0536 (8)	0.0580 (9)	-0.0022 (6)	0.0074 (7)	-0.0016 (6)
N3	0.0368 (7)	0.0521 (8)	0.0487 (8)	-0.0038 (6)	0.0012 (6)	-0.0036 (6)
N4	0.0461 (8)	0.0639 (9)	0.0520 (9)	-0.0080 (7)	0.0055 (7)	-0.0121 (7)
C1	0.0378 (8)	0.0540 (9)	0.0505 (9)	-0.0027 (7)	0.0035 (7)	-0.0103 (7)
C2	0.0349 (9)	0.0763 (12)	0.0565 (10)	0.0011 (8)	0.0056 (8)	-0.0202 (9)
C3	0.0468 (10)	0.0591 (10)	0.0536 (10)	0.0051 (8)	0.0014 (8)	-0.0080(8)
C4	0.0404 (9)	0.0497 (9)	0.0563 (10)	-0.0035 (7)	0.0066 (8)	-0.0038 (7)
C5	0.0758 (15)	0.0797 (14)	0.0688 (13)	0.0114 (11)	-0.0103 (11)	-0.0030 (11)
C6	0.0578 (12)	0.0891 (15)	0.0640 (12)	-0.0009 (10)	0.0202 (10)	-0.0015 (10)
C7	0.0439 (9)	0.0417 (8)	0.0517 (9)	-0.0036 (7)	-0.0045 (8)	0.0010 (7)
C8	0.0482 (10)	0.0662 (11)	0.0657 (11)	-0.0128 (8)	-0.0065 (9)	0.0088 (9)
C9	0.0628 (13)	0.0825 (14)	0.0724 (14)	-0.0247 (11)	-0.0200 (11)	0.0067 (11)
C10	0.0816 (16)	0.0786 (14)	0.0575 (12)	-0.0199 (11)	-0.0137 (11)	-0.0014 (10)
C11	0.0708 (13)	0.0655 (11)	0.0521 (10)	-0.0082 (10)	0.0009 (9)	-0.0061 (8)
C12	0.0501 (10)	0.0467 (9)	0.0507 (9)	-0.0036 (7)	-0.0012 (8)	-0.0047 (7)

Geometric parameters (Å, °)

01—C2	1.213 (2)	C5—H5B	0.9600
N1—C2	1.365 (2)	С5—Н5С	0.9600
N1C1	1.373 (2)	С6—Н6А	0.9600
N1—H1	0.864 (9)	C6—H6B	0.9600
N2—C4	1.279 (2)	С6—Н6С	0.9600
N2—N3	1.393 (2)	C7—C8	1.383 (2)
N3—C1	1.371 (2)	C7—C12	1.385 (3)
N3—C7	1.394 (2)	C8—C9	1.384 (3)
N4—C1	1.309 (2)	C8—H8	0.9300
N4—C12	1.396 (2)	C9—C10	1.386 (3)
C2—C3	1.523 (3)	С9—Н9	0.9300
C3—C5	1.510 (3)	C10-C11	1.382 (3)
C3—C4	1.515 (2)	C10—H10	0.9300
С3—Н3	0.9800	C11—C12	1.393 (2)
C4—C6	1.495 (3)	C11—H11	0.9300
С5—Н5А	0.9600		
C2—N1—C1	126.41 (17)	H5A—C5—H5C	109.5
C2—N1—H1	118.6 (14)	H5B—C5—H5C	109.5
C1—N1—H1	114.7 (14)	C4—C6—H6A	109.5
C4—N2—N3	116.74 (14)	C4—C6—H6B	109.5
C1—N3—N2	130.27 (13)	H6A—C6—H6B	109.5
C1—N3—C7	105.84 (14)	C4—C6—H6C	109.5
N2—N3—C7	121.30 (14)	H6A—C6—H6C	109.5
C1—N4—C12	104.53 (15)	H6B—C6—H6C	109.5
N4—C1—N3	113.68 (14)	C8—C7—C12	123.37 (17)
N4-C1-N1	123.18 (16)	C8—C7—N3	131.12 (19)
N3—C1—N1	122.98 (16)	C12—C7—N3	105.50 (14)
01—C2—N1	120.60 (19)	C7—C8—C9	115.6 (2)

O1—C2—C3	123.76 (18)	С7—С8—Н8	122.2
N1—C2—C3	115.63 (14)	С9—С8—Н8	122.2
C5—C3—C4	115.20 (18)	C8—C9—C10	121.89 (19)
C5—C3—C2	111.16 (15)	С8—С9—Н9	119.1
C4—C3—C2	108.05 (14)	С10—С9—Н9	119.1
С5—С3—Н3	107.4	C11—C10—C9	122.06 (19)
С4—С3—Н3	107.4	C11—C10—H10	119.0
С2—С3—Н3	107.4	C9—C10—H10	119.0
N2—C4—C6	116.53 (16)	C10-C11-C12	116.7 (2)
N2—C4—C3	124.01 (16)	C10-C11-H11	121.7
C6—C4—C3	119.45 (16)	C12—C11—H11	121.7
С3—С5—Н5А	109.5	C7—C12—C11	120.37 (17)
C3—C5—H5B	109.5	C7—C12—N4	110.36 (15)
H5A—C5—H5B	109.5	C11—C12—N4	129.27 (19)
С3—С5—Н5С	109.5		
C4—N2—N3—C1	45.3 (2)	C5—C3—C4—C6	-14.2 (2)
C4—N2—N3—C7	-155.63 (15)	C2—C3—C4—C6	110.73 (19)
C12—N4—C1—N3	-1.68 (19)	C1—N3—C7—C8	176.13 (18)
C12—N4—C1—N1	173.69 (17)	N2—N3—C7—C8	12.6 (3)
N2—N3—C1—N4	164.44 (16)	C1—N3—C7—C12	-2.84 (17)
C7—N3—C1—N4	2.94 (19)	N2—N3—C7—C12	-166.39 (14)
N2—N3—C1—N1	-10.9 (3)	C12—C7—C8—C9	-1.1 (3)
C7—N3—C1—N1	-172.44 (16)	N3—C7—C8—C9	-179.90 (18)
C2—N1—C1—N4	152.30 (18)	C7—C8—C9—C10	-0.6 (3)
C2—N1—C1—N3	-32.8 (3)	C8—C9—C10—C11	1.2 (4)
C1—N1—C2—O1	177.59 (18)	C9—C10—C11—C12	0.0 (3)
C1—N1—C2—C3	-3.3 (3)	C8—C7—C12—C11	2.3 (3)
O1—C2—C3—C5	13.2 (3)	N3—C7—C12—C11	-178.66 (16)
N1—C2—C3—C5	-165.91 (17)	C8—C7—C12—N4	-177.09 (16)
O1—C2—C3—C4	-114.2 (2)	N3—C7—C12—N4	1.99 (18)
N1—C2—C3—C4	66.8 (2)	C10-C11-C12-C7	-1.6 (3)
N3—N2—C4—C6	-177.91 (15)	C10-C11-C12-N4	177.58 (18)
N3—N2—C4—C3	3.5 (2)	C1—N4—C12—C7	-0.27 (19)
C5-C3-C4-N2	164.30 (17)	C1-N4-C12-C11	-179.55 (19)
C2—C3—C4—N2	-70.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···N4 ⁱ	0.86 (1)	2.01 (1)	2.867 (2)	174 (2)

Symmetry code: (i) -x+1, -y+1, -z+1.