

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,9-Di-1-naphthyl-2,4,8,10-tetraoxaspiro[5.5]undecane

Xiuqin Zhang,^a Yuan Cui,^b Bin Yu,^b Xiaoqiang Sun^b* and Qiang Chen^a

^aHigh Technology Research Institute of Nanjing University, Changzhou 213162, People's Republic of China, and ^bKey Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213162, People's Republic of China Correspondence e-mail: ycui_rong@163.com

Received 15 April 2010; accepted 22 April 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.158; data-to-parameter ratio = 14.5.

In the title compound, $C_{27}H_{24}O_4$, the 1,3-dioxane rings have chair conformations. The molecule has non-crystallographic twofold rotation symmetry. The dihedral angle between the naphthalene ring systems is 17.96(4)° In the crystal structure, weak intermolecular $C-H\cdots\pi$ interactions contribute to the crystal packing.

Related literature

For a related 3,9-diphenyl structure, see: Wang *et al.* (2006). For other oxaspiro structures, see: Mihis *et al.* (2008); Shi *et al.* (2009).

b = 5.7761 (6) Å

c = 24.238 (2) Å

V = 2077.1 (4) Å³

 $\beta = 95.447 (2)^{\circ}$

Experimental

Crystal data	
$C_{27}H_{24}O_4$	
$M_r = 412.46$	
Monoclinic, $P2_1/c$	
a = 14.9040 (15) Å	

Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
T_{\rm min} = 0.981, T_{\rm max} = 0.984
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.158$ S = 1.034067 reflections

Table 1 Hydrogen-bond geometry (Å, °).

Cg5 and Cg6 are the centroids of the C18–C23 and C22–C27 rings, respectively.

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C16-H16 $B\cdots Cg5^{i}$ C27-H27 $\cdots Cg6^{ii}$	0.97 0.93	2.95 2.94	3.5827 (19) 3.754 (2)	124 147
Summature and an (i)	1 (::)			

Symmetry codes: (i) x, y - 1, z; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors are grateful to Jiangsu Polytechnic University and the Natural Science Foundation of China (No.20872051) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2258).

References

- Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mihis, A., Condamine, E., Bogdan, E., Terec, A., Kurtan, T. & Grosu, I. (2008). *Molecules*, 13, 2848–2858.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, J.-H., Yuan, X.-Y., Zhang, M. & Ng, S. W. (2009). Acta Cryst. E65, o2712. Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Wang, J.-K., Yan, D.-Y., Liu, L.-J., Liu, S. & Wang, J.-T. (2006). Acta Cryst. E62, 03062–03063.

 $0.22 \times 0.21 \times 0.19 \text{ mm}$

11731 measured reflections

4067 independent reflections

2961 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 295 K

 $R_{\rm int} = 0.024$

280 parameters

 $\Delta \rho_{\text{max}} = 0.16 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.17$ e Å⁻³

supporting information

Acta Cryst. (2010). E66, o1191 [https://doi.org/10.1107/S1600536810014741] 3,9-Di-1-naphthyl-2,4,8,10-tetraoxaspiro[5.5]undecane

Xiuqin Zhang, Yuan Cui, Bin Yu, Xiaoqiang Sun and Qiang Chen

S1. Comment

The title compound is an important intermediate in the synthesis of pesticides. Several related structures were synthesized and reported (Wang *et al.*,2006; Mihis *et al.*,2008; Shi *et al.*,2009). The X-ray structural analysis confirmed the assignment of the structure of the title compound from spectroscopic data. The molecular structure is depicted in Fig. 1. The title molecule has a non-crystallographic twofold rotation symmetry. In the molecules, the naphthalene planes make a dihedral angle of 17.96 (4) °. Weak intermolecular C–H··· π interactions contribute to the crystal packing (Table 1).

S2. Experimental

Pentaerythritol (0.22 g, 1.6 mmol), α -naphthaldehyde (0.5 g, 3.2 mmol), *p*-toluene sulphonic acid (0.02 g, 0.12 mmol) and dimethylbenzene (10 ml) were heated for six hours. The mixture was cooled and then filtered. The organic phase was evaporated on a rotary evaporator and the resulting solid was recrystallized in ethyl acetate, yielding the title compound (0.53 g, 80%); m.p. 445-446 K.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H=0.93 Å, 0.97 Å or 0.98 Å, and U_{iso} (H)=1.2 U_{eq} (C-methylene, C-aromatic).

Figure 1

Molecular structure of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as small spheres of arbitrary radii.

3,9-Di-1-naphthyl-2,4,8,10-tetraoxaspiro[5.5]undecane

Crystal data

 $C_{27}H_{24}O_4$ $M_r = 412.46$ Monoclinic, $P2_1/c$ a = 14.9040 (15) Å b = 5.7761 (6) Å c = 24.238 (2) Å $\beta = 95.447$ (2)° V = 2077.1 (4) Å³ Z = 4

Data collection

Bruker APEXII CCD	11731 measured reflections
diffractometer	4067 independent reflections
Radiation source: fine-focus sealed tube	2961 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
φ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 16$
(SADABS; Bruker, 2003)	$k = -6 \rightarrow 7$
$T_{\min} = 0.981, \ T_{\max} = 0.984$	$l = -29 \rightarrow 29$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.158$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
4067 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.1334P]$
280 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 872

 $\theta = 2.8 - 28.9^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 295 K

Block, colorless

 $0.22 \times 0.21 \times 0.19 \text{ mm}$

 $D_{\rm x} = 1.319 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4101 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.13414 (8)	0.84377 (18)	0.45655 (4)	0.0446 (3)	
O2	0.22638 (8)	0.6064 (2)	0.40974 (4)	0.0515 (3)	
O3	0.26584 (7)	0.18521 (18)	0.56082 (5)	0.0480 (3)	
O4	0.36401 (8)	0.4833 (2)	0.54471 (5)	0.0547 (3)	
C1	0.34069 (15)	-0.1745 (4)	0.71697 (8)	0.0678 (6)	

H1	0.2942	-0.1732	0.7400	0.081*
C2	0.40805 (16)	-0.3418 (4)	0.72465 (9)	0.0720 (6)
H2	0.4063	-0.4513	0.7527	0.086*
C3	0.47631 (14)	-0.3452 (3)	0.69128 (9)	0.0650 (6)
Н3	0.5207	-0.4584	0.6965	0.078*
C4	0.48080(12)	-0.1802(3)	0.64906 (8)	0.0539 (5)
C5	0.55262 (13)	-0.1798 (4)	0.61468 (9)	0.0700 (6)
Н5	0.5969	-0.2934	0.6193	0.084*
C6	0.55731 (14)	-0.0168(4)	0.57552 (10)	0.0790 (7)
H6	0.6062	-0.0149	0.5543	0.095*
C7	0.48923(13)	0.1507(4)	0 56622 (9)	0.0653 (5)
е <i>т</i> Н7	0 4933	0.2611	0.5386	0.078*
C8	0.1933 0.41737(12)	0.2011 0.1540 (3)	0.59693 (7)	0.078 0.0488(4)
C9	0.41727(12) 0.41222(11)	-0.0103(3)	0.59095(7) 0.64054(7)	0.0463(4)
C10	0.41222(11) 0.34223(12)	-0.0132(3)	0.04034(7) 0.67623(7)	0.0556 (5)
H10	0.2966	0.0132 (5)	0.6717	0.0550(5)
C11	0.2900 0.34087 (11)	0.0970	0.0717 0.58327(7)	0.007
	0.34087 (11)	0.3197 (3)	0.58527(7)	0.0400 (4)
	0.5259	0.3980	0.01/1	0.033
	0.18839(11)	0.3248 (3)	0.54002 (7)	0.0488 (4)
ПIZA UI2D	0.10/9	0.3917	0.5795	0.039*
HI2B	0.1406	0.2285	0.5288	0.059*
	0.29204 (12)	0.6434 (3)	0.55145(7)	0.0523 (5)
HI3A	0.3104	0.7575	0.5054	0.063*
HI3B	0.2784	0.7239	0.5648	0.063*
C14	0.20848 (10)	0.5180 (3)	0.50633 (6)	0.0406 (4)
C15	0.12684 (12)	0.6778 (3)	0.49917 (7)	0.0495 (4)
H15A	0.0729	0.5857	0.4904	0.059*
H15B	0.1207	0.7576	0.5338	0.059*
C16	0.22281 (12)	0.4224 (3)	0.44935 (7)	0.0506 (4)
H16A	0.2787	0.3353	0.4515	0.061*
H16B	0.1739	0.3179	0.4373	0.061*
C17	0.14617 (11)	0.7325 (3)	0.40554 (6)	0.0413 (4)
H17	0.0954	0.6281	0.3956	0.050*
C18	0.14747 (11)	0.9196 (3)	0.36260 (6)	0.0430 (4)
C19	0.22421 (13)	0.9714 (3)	0.33883 (7)	0.0554 (5)
H19	0.2755	0.8813	0.3470	0.066*
C20	0.22692 (15)	1.1598 (4)	0.30208 (8)	0.0674 (6)
H20	0.2796	1.1916	0.2858	0.081*
C21	0.15360 (16)	1.2942 (4)	0.29038 (7)	0.0670 (6)
H21	0.1569	1.4206	0.2669	0.080*
C22	0.07234 (14)	1.2462 (3)	0.31316 (7)	0.0535 (5)
C23	0.06793 (12)	1.0532 (3)	0.34917 (6)	0.0442 (4)
C24	-0.01615 (12)	1.0029 (3)	0.36927 (7)	0.0543 (5)
H24	-0.0207	0.8775	0.3929	0.065*
C25	-0.09045 (14)	1.1344 (4)	0.35467 (8)	0.0687 (6)
H25	-0.1452	1.0951	0.3676	0.082*
C26	-0.08524 (17)	1.3280 (4)	0.32048 (9)	0.0761 (7)
H26	-0.1359	1.4193	0.3114	0.091*

supporting information

C27	-0.00558 (17)	1 3820 (4)	0 30050 (8)	0 0711 (6)
H27	-0.0024	1.5114	0.2780	0.085*

Atomic displacement parameters $(Å^2)$

	· · · · ·					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0659 (7)	0.0329 (6)	0.0345 (6)	0.0103 (5)	0.0018 (5)	0.0004 (4)
O2	0.0625 (8)	0.0500 (7)	0.0416 (6)	0.0150 (6)	0.0034 (5)	-0.0012 (5)
O3	0.0504 (7)	0.0305 (6)	0.0603 (7)	0.0003 (5)	-0.0103 (5)	0.0055 (5)
O4	0.0552 (7)	0.0417 (7)	0.0639 (8)	-0.0075 (5)	-0.0122 (6)	0.0112 (6)
C1	0.0774 (14)	0.0711 (14)	0.0534 (11)	-0.0021 (11)	-0.0019 (9)	0.0115 (10)
C2	0.0816 (15)	0.0645 (14)	0.0651 (12)	-0.0064 (11)	-0.0180 (11)	0.0232 (10)
C3	0.0643 (12)	0.0498 (11)	0.0750 (13)	-0.0001 (9)	-0.0245 (10)	0.0110 (9)
C4	0.0495 (10)	0.0471 (10)	0.0603 (10)	-0.0024 (8)	-0.0204 (8)	0.0018 (8)
C5	0.0489 (11)	0.0699 (14)	0.0879 (15)	0.0110 (10)	-0.0104 (10)	0.0089 (12)
C6	0.0557 (12)	0.0890 (17)	0.0927 (16)	0.0088 (12)	0.0089 (11)	0.0187 (14)
C7	0.0582 (12)	0.0679 (13)	0.0684 (12)	-0.0001 (10)	-0.0016 (9)	0.0152 (10)
C8	0.0509 (10)	0.0427 (9)	0.0494 (9)	-0.0029 (8)	-0.0131 (7)	-0.0005 (7)
C9	0.0490 (9)	0.0402 (9)	0.0458 (9)	-0.0050 (7)	-0.0161 (7)	-0.0032 (7)
C10	0.0614 (11)	0.0527 (11)	0.0502 (10)	0.0036 (9)	-0.0078 (8)	0.0022 (8)
C11	0.0553 (10)	0.0358 (9)	0.0443 (8)	-0.0043 (7)	-0.0088 (7)	-0.0008 (7)
C12	0.0504 (10)	0.0360 (9)	0.0587 (10)	0.0043 (7)	-0.0019 (8)	0.0086 (7)
C13	0.0690 (12)	0.0320 (9)	0.0525 (10)	-0.0035 (8)	-0.0110 (8)	0.0037 (7)
C14	0.0500 (9)	0.0295 (8)	0.0410 (8)	0.0029 (7)	-0.0025 (7)	-0.0009 (6)
C15	0.0640 (11)	0.0422 (9)	0.0428 (9)	0.0111 (8)	0.0075 (8)	0.0072 (7)
C16	0.0658 (11)	0.0363 (9)	0.0476 (9)	0.0127 (8)	-0.0055 (8)	-0.0054 (7)
C17	0.0498 (9)	0.0358 (8)	0.0369 (8)	0.0040 (7)	-0.0028 (6)	-0.0062 (6)
C18	0.0547 (10)	0.0423 (9)	0.0307 (7)	-0.0015 (8)	-0.0035 (6)	-0.0065 (7)
C19	0.0613 (11)	0.0614 (12)	0.0429 (9)	-0.0007 (9)	0.0020 (8)	-0.0036 (8)
C20	0.0767 (14)	0.0766 (15)	0.0497 (11)	-0.0168 (12)	0.0099 (10)	0.0028 (10)
C21	0.1016 (17)	0.0567 (12)	0.0406 (9)	-0.0183 (12)	-0.0041 (10)	0.0068 (8)
C22	0.0810 (13)	0.0434 (9)	0.0326 (8)	0.0004 (9)	-0.0125 (8)	-0.0030(7)
C23	0.0622 (10)	0.0398 (9)	0.0283 (7)	0.0006 (8)	-0.0074 (7)	-0.0060 (6)
C24	0.0612 (11)	0.0571 (11)	0.0429 (9)	0.0068 (9)	-0.0034 (8)	-0.0002 (8)
C25	0.0664 (13)	0.0836 (15)	0.0534 (11)	0.0179 (11)	-0.0090 (9)	-0.0104 (10)
C26	0.0882 (16)	0.0758 (16)	0.0589 (12)	0.0347 (13)	-0.0216 (11)	-0.0084 (11)
C27	0.1127 (19)	0.0499 (11)	0.0449 (10)	0.0161 (12)	-0.0234 (11)	0.0012 (9)

Geometric parameters (Å, °)

01—C17	1.4198 (18)	C12—H12B	0.9700
O1—C15	1.4211 (19)	C13—C14	1.517 (2)
O2—C17	1.3954 (18)	C13—H13A	0.9700
O2—C16	1.437 (2)	C13—H13B	0.9700
O3—C12	1.4233 (18)	C14—C16	1.521 (2)
O3—C11	1.4265 (19)	C14—C15	1.524 (2)
O4—C11	1.395 (2)	C15—H15A	0.9700
O4—C13	1.429 (2)	C15—H15B	0.9700

C1—C10	1.360 (3)	C16—H16A	0.9700
C1—C2	1.393 (3)	C16—H16B	0.9700
C1—H1	0.9300	C17—C18	1.502 (2)
С2—С3	1.359 (3)	C17—H17	0.9800
C2—H2	0.9300	C18—C19	1.362 (2)
C3—C4	1 404 (3)	C18—C23	1426(2)
C3—H3	0.9300	C19 - C20	1.120(2) 1.409(3)
C4—C5	1.418(3)	C19—H19	0.9300
C4 - C9	1.418(3) 1 418(2)	C_{20}	1.349(3)
$C_{1}^{-}C_{2}^{-}$	1.410(2) 1.242(3)	C20 H20	1.349(3)
C5 H5	0.0200	C_{20} C_{21} C_{22}	1.406(2)
С5—П5	0.9300	$\begin{array}{c} C_{21} \\ C_{21} \\ H_{21} \\ \end{array}$	1.400(3)
	1.403 (3)	C21—H21	0.9300
	0.9300	$C_{22} - C_{27}$	1.411 (3)
	1.361 (3)	C22—C23	1.421 (2)
С/—Н/	0.9300	C23—C24	1.417 (2)
C8—C9	1.428 (2)	C24—C25	1.362 (3)
C8—C11	1.502 (2)	C24—H24	0.9300
C9—C10	1.417 (3)	C25—C26	1.398 (3)
C10—H10	0.9300	C25—H25	0.9300
C11—H11	0.9800	C26—C27	1.360 (3)
C12—C14	1.521 (2)	C26—H26	0.9300
C12—H12A	0.9700	С27—Н27	0.9300
C17 O1 C15	110.62 (12)	C12 C14 C16	110 20 (14)
C17 = 01 = C13	110.03(12) 110.42(12)	C13 - C14 - C10	110.69(14) 111.14(12)
C1/-O2-C10	110.43(13)	C12 - C14 - C10	111.14(13) 111.99(14)
	111.94 (13)	C13 - C14 - C15	111.88 (14)
CII - 04 - CI3	111.16 (14)	C12-C14-C15	108.36 (13)
C10-C1-C2	120.7 (2)	C16-C14-C15	107.20 (12)
Cl0—Cl—Hl	119.6	01	112.09 (13)
C2—C1—H1	119.6	O1—C15—H15A	109.2
C3—C2—C1	120.09 (19)	C14—C15—H15A	109.2
C3—C2—H2	120.0	O1—C15—H15B	109.2
C1—C2—H2	120.0	C14—C15—H15B	109.2
C2—C3—C4	120.93 (19)	H15A—C15—H15B	107.9
С2—С3—Н3	119.5	O2—C16—C14	110.83 (13)
С4—С3—Н3	119.5	O2—C16—H16A	109.5
C3—C4—C5	121.35 (18)	C14—C16—H16A	109.5
C3—C4—C9	119.49 (19)	O2—C16—H16B	109.5
C5—C4—C9	119.16 (17)	C14—C16—H16B	109.5
C6—C5—C4	120.62 (19)	H16A—C16—H16B	108.1
С6—С5—Н5	119.7	O2—C17—O1	110.54 (11)
С4—С5—Н5	119.7	O2—C17—C18	111.03 (13)
C5—C6—C7	120.7 (2)	O1—C17—C18	106.80 (12)
С5—С6—Н6	119.6	O2—C17—H17	109.5
С7—С6—Н6	119.6	O1—C17—H17	109.5
C8—C7—C6	121.05 (19)	C18—C17—H17	109.5
С8—С7—Н7	119.5	C19-C18-C23	119 86 (16)
С6—С7—Н7	119.5	C19—C18—C17	121.19 (15)

С7—С8—С9	119.73 (16)	C23—C18—C17	118.84 (14)
C7—C8—C11	120.58 (16)	C18—C19—C20	120.83 (18)
C9—C8—C11	119.59 (16)	C18—C19—H19	119.6
C10—C9—C4	117.72 (16)	C20—C19—H19	119.6
С10—С9—С8	123.65 (16)	C21—C20—C19	120.41 (19)
C4—C9—C8	118.63 (17)	C21—C20—H20	119.8
C1-C10-C9	121.03 (18)	C19 - C20 - H20	119.8
C1-C10-H10	119 5	C_{20} C_{21} C_{22}	121.00(18)
C9-C10-H10	119.5	$C_{20} = C_{21} = H_{21}$	119.5
04-C11-O3	110.36(12)	C^{22} C^{21} H^{21}	119.5
04-C11-C8	110.30(12) 110.41(14)	C_{21} C_{22} C_{27} C_{27}	121.80 (19)
03-C11-C8	106 74 (13)	$C_{21} = C_{22} = C_{23}$	119 21 (18)
04-C11-H11	109.8	C_{27} C_{22} C_{23}	118 98 (19)
O_{3} C_{11} H_{11}	109.8	C_{24} C_{23} C_{23}	117.77 (16)
C8-C11-H11	109.8	$C_{24} = C_{23} = C_{22}$	123 62 (15)
03 - C12 - C14	111.92 (13)	$C_{22} = C_{23} = C_{18}$	118 60 (16)
$O_{3} = C_{12} = C_{14}$	100.2	$C_{22} = C_{23} = C_{13}$	121.35(10)
C_{14} C_{12} H_{12A}	109.2	$C_{23} = C_{24} = C_{23}$	121.35 (19)
C14 $C12$ $H12R$	109.2	$C_{23} = C_{24} = H_{24}$	119.3
C_{14} C_{12} H_{12B}	109.2	$C_{23} = C_{24} = 1124$	119.3 120.7(2)
$C14$ — $C12$ — $\Pi12B$	109.2	$C_{24} = C_{25} = C_{26}$	120.7 (2)
H12A - C12 - H12B	107.9	С24—С25—Н25	119.7
04 - 013 - 014	110.57 (15)	C20-C25-H25	119.7
04—C13—H13A	109.5	$C_2/-C_{20}-C_{23}$	119.58 (19)
CI4—CI3—HI3A	109.5	$C_2/-C_{26}-H_{26}$	120.2
04—C13—H13B	109.5	C25—C26—H26	120.2
С14—С13—Н13В	109.5	$C_{26} - C_{27} - C_{22}$	121.57 (19)
H13A—C13—H13B	108.1	С26—С27—Н27	119.2
C13—C14—C12	107.37 (13)	C22—C27—H27	119.2
C10-C1-C2-C3	0.0 (3)	C17—O1—C15—C14	56.96 (17)
C1—C2—C3—C4	0.6 (3)	C13—C14—C15—O1	70.48 (17)
C2—C3—C4—C5	178.8 (2)	C12—C14—C15—O1	-171.34 (13)
C2—C3—C4—C9	-1.1 (3)	C16—C14—C15—O1	-51.30 (18)
C3—C4—C5—C6	-178.1(2)	C17—O2—C16—C14	-59.81 (17)
C9—C4—C5—C6	1.9 (3)	C13—C14—C16—O2	-70.38 (17)
C4—C5—C6—C7	-2.7 (4)	C12—C14—C16—O2	170.25 (13)
C5—C6—C7—C8	0.7 (3)	C15—C14—C16—O2	52.01 (18)
C6—C7—C8—C9	2.1 (3)	C16—O2—C17—O1	63.95 (16)
C6—C7—C8—C11	-174.38 (18)	C16—O2—C17—C18	-177.72 (12)
C3—C4—C9—C10	1.0 (2)	C15—O1—C17—O2	-62.50 (17)
C5—C4—C9—C10	-178.95 (17)	C15—O1—C17—C18	176.62 (13)
C3—C4—C9—C8	-179.18 (15)	O2—C17—C18—C19	-9.1 (2)
C5—C4—C9—C8	0.9 (2)	O1—C17—C18—C19	111.48 (16)
C7—C8—C9—C10	177.00 (17)	O2—C17—C18—C23	174.59 (12)
C11—C8—C9—C10	-6.5 (2)	O1—C17—C18—C23	-64.84 (17)
C7—C8—C9—C4	-2.8 (2)	C23—C18—C19—C20	1.7 (2)
C11—C8—C9—C4	173.70 (14)	C17—C18—C19—C20	-174.60 (15)
C2-C1-C10-C9	-0.1 (3)	C18—C19—C20—C21	0.9 (3)
	x = 7		(- <i>)</i>

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.4 (2)	C19—C20—C21—C22	-1.8 (3)
	179.76 (17)	C20—C21—C22—C27	-178.67 (17)
	62.51 (17)	C20—C21—C22—C23	0.2 (3)
	-179.72 (12)	C21—C22—C23—C24	-176.99 (15)
	-59.83 (17)	C27—C22—C23—C24	1.9 (2)
	-179.84 (13)	C21—C22—C23—C18	2.3 (2)
	-11.1 (2)	C27—C22—C23—C18	-178.80 (14)
	172.40 (13)	C19—C18—C23—C24	176.01 (15)
	108.84 (19)	C17—C18—C23—C24	-7.6 (2)
C9-C8-C11-O3	-67.62 (18)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3.2 (2)
C11-O3-C12-C14	55.23 (17)		173.15 (13)
C11-O4-C13-C14	-60.70 (17)		0.0 (2)
O4-C13-C14-C12	53.24 (18)		-179.21 (16)
O4-C13-C14-C16	-68.36 (17)		-1.8 (3)
O4-C13-C14-C15	172.01 (13)		1.6 (3)
O3-C12-C14-C13	-51.13 (18)		0.4 (3)
O3-C12-C14-C16	70.32 (17)		176.72 (19)
O3-C12-C14-C15	-172.14 (13)		-2.2 (3)

Hydrogen-bond geometry (Å, °)

Cg5 and Cg6 are the centroids of the C18–C23 and C22–C27 naphthyl rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C16—H16 <i>B</i> ··· <i>Cg</i> 5 ⁱ	0.97	2.95	3.5827 (19)	124
C27—H27··· <i>Cg</i> 6 ⁱⁱ	0.93	2.94	3.754 (2)	147

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) –*x*, *y*+1/2, –*z*+1/2.