

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368

Bis(1,3-benzothiazole-2-thiolato)[(Z)methyl 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetate]nickel(II)

Islam Ullah Khan,^a* Onur Şahin,^b* Shehzada Muhammad Sajid Jillani,^a Shahzad Sharif^a and Orhan Büyükgüngör^b

^aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and ^bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: iuklodhi@yahoo.com, onurs@omu.edu.tr

Received 14 April 2010; accepted 24 April 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.043; wR factor = 0.131; data-to-parameter ratio = 19.0.

In the title compound, $[Ni(C_7H_4NS_2)_2(C_7H_9N_3O_3S)]$, the Ni^{II} ion is in a slightly distorted N₄S₂ octahedral coordination environment. The two benzothiazole-2-thiolate ligands chelate *via* their thiazole N and thiolate S atoms while the methyl 2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetate also acts as a chelate ligand binding through the thiazole and imino N atoms. Intramolecular N-H···N, C-H···N and C-H···O interactions contribute to the molecular conformation. In the crystal structure, intermolecular N-H···O hydrogen bonds produce $R_1^2(6)$ rings and generate chains along the *c* axis. An extensive one-dimensional supramolecular network of N-H···O hydrogen bonds and C-H··· π interactions is responsible for the crystal structure stabilization.

Related literature

For the graph-set analysis of hydrogen-bond patterns, see: Bernstein *et al.* (1995). For related structures, see: Bati *et al.* (2006); Sieroń (2007); Liu & Xu (2004); Sharif *et al.* (2009); Song *et al.* (2005); Tashpulatov *et al.* (1957).

6164 independent reflections

 $R_{\rm int} = 0.056$

3512 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

	° .
$Ni(C_7H_4NS_2)_2(C_7H_9N_3O_3S)$]	V = 2496.5 (3) A ³
$M_r = 606.41$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 17.8387 (11) Å	$\mu = 1.23 \text{ mm}^{-1}$
p = 7.8701 (5) Å	T = 296 K
z = 17.9861 (10) Å	$0.42 \times 0.37 \times 0.34 \text{ mm}$
$3 = 98.639.(2)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector
diffractometer
26981 measured reflections

Refinement

restrumes	$R[F^2 > 2\sigma(F^2)] = 0.043$ $\nu R(F^2) = 0.131$ S = 1.03 164 reflections 24 parameters restraints	H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$
-----------	---	---

Table 1 Selected bond lengths (Å).

N1-Ni1	2.103 (3)	N4-Ni1	2.153 (3)
N2-Ni1	2.108 (2)	S2-Ni1	2.5410 (11)
N3-Ni1	2.042 (3)	S4-Ni1	2.5123 (10)

Table 2

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.

D II 4	DII	TT 4	D 4	D II 4
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N5-H5A\cdots N2$	0.85 (2)	2.25 (3)	3.036 (5)	154 (4)
$N5-H5B\cdots O2^{i}$	0.86(2)	2.24 (3)	3.025 (5)	150 (4)
$N5-H5B\cdots O1^{i}$	0.86 (2)	2.38 (3)	3.036 (4)	133 (3)
C16−H16···O3	0.93	2.40	2.898 (4)	114
$C21 - H21B \cdots N1$	0.96	2.41	3.282 (5)	151
$C4-H4\cdots Cg2^{ii}$	0.93	2.93	3.588 (6)	129
$C9-H9\cdots Cg1^{i}$	0.93	2.99	3.636 (4)	128
$C21 - H21A \cdots Cg2^{iii}$	0.96	2.76	3.556 (4)	141

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x, -y, -z + 2; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

IUK thanks the Higher Education Commission of Pakistan for financial support under the project 'Strengthening of the Materials Chemistry Laboratory' at GCUL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2774).

References

- Batı, H., Yüksektepe, Ç., Çalıskan, N. & Büyükgüngör, O. (2006). Acta Cryst. E62, m2313-m2315.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565. Farrugia, L. J. (1999). J. Appl. Cryst. **32**, 837–838.

- Liu, J.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m403-m405.
- Sharif, S., Khan, I. U., Arshad, M. N., Sheikh, T. A. & Qureshi, M. Z. (2009). Acta Cryst. E65, 01805.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sieroń, L. (2007). Acta Cryst. E63, m598-m600.
- Song, R.-F., Liu, J.-H., Qian, H. & Zhao, K.-Y. (2005). Acta Cryst. E61, m2142m2144.
- Tashpulatov, Yu., Zvonkova, Z. V. & Zhdanov, G. S. (1957). Kristallografiya, 2, 33.

Acta Cryst. (2010). E66, m587–m588 [https://doi.org/10.1107/S1600536810015072]

Bis(1,3-benzothiazole-2-thiolato)[(Z)-methyl 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetate]nickel(II)

Islam Ullah Khan, Onur Şahin, Shehzada Muhammad Sajid Jillani, Shahzad Sharif and Orhan Büyükgüngör

S1. Comment

This work was performed to explore the ligand properties of (2Z)-Methyl 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)ethanoate (Sharif *et al.*, 2009), one of the precursors of *S*-1,3-Benzothiazol-2-yl(2Z)-2-(2-amino-1,3-thiazol-4yl)-2- (methoxyimino)-ethanethioate (MAEM). A study of the ligand behaviour of a second MAEM component 2mercapto-benzothiazole has also been reported (Tashpulatov *et al.*, 1957). We report here the structure of the title compound, (I), in which hydrogen bonds and C—H··· π interactions lead to a one-dimensional supramolecular network.

The molecular structure of (I) and atom-labelling scheme are shown in Fig. 1. The Ni^{II} ion is coordinated by two S atoms (S2 and S4) and four N atoms (N1, N2, N3 and N4). The geometry around the Ni^{II} ion is that of a slightly distorted octahedron. The title compound (I) has got two chelate ring types. In the first of these, atoms N3 and N4 are bonded to Ni1, thus generating five-membered chelate ring (C17/N3/Ni1/N4/C18). The other type, atoms N1, N2, S2 and S4 are bonded to Ni1 to form four-membered chelate rings (N1/Ni1/S2/C7) and (N2/Ni1/S4/C14). The two Ni—S distances are 2.5123 (10) and 2.5410 (11) Å. The Ni— $N_{thiazol}$ distance of 2.042 (3)Å in (I) is almost equal to that in [Ni(NCS) (C₆H₆N₄S₂)(CH₄O)]Cl (Liu and Xu, 2004). The Ni— $N_{benzothiazol}$ distances in (I) are longer than the equivalent Pd—N bond distance (Song *et al.*, 2005), Co—N bond distances (Batt *et al.*, 2006) and Cu—N bond distance (Sieroń, 2007). The N1 —C7 and N2—C14 bond lengths are indicative of significant double-bond character. These values are comparable with those found for similar compounds (Batt *et al.*, 2006; Sieroń, 2007). The N4=C18 and C19=O2 bond lengths are 1.281 (4) and 1.194 (4) Å, respectively, and agree with the corresponding distances in *S*-1,3-Benzothiazol-2-y-l-(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)- ethanethioate [1.281 (3) and 1.190 (3) Å, respectively; Sharif *et al.*, 2009]. The C15—N3 bond is somewhat shorter than the C17—N3 bond, as a result of pronounced delocalization in the -N—C=N- fragment of the 2-aminothiazole ring. Each benzothiazole ligand is planar; the angles between the mean planes through the five-and six-membered rings of each ligand being 2.18 (14)° and 1.37 (20)°.

The molecules of (I) are linked by intermolecular hydrogen bonding, and we employ graph-set notation (Bernstein *et al.*, 1995) to describe the patterns of hydrogen bonding. Molecules of (I) are linked into sheets by a combination of N— H···O hydrogen bonds (Table 2). Within the selected asymmetric unit, intramolecular N—H···N, C—H···N and C—H···O hydrogen bonds define S(6) motifs (Fig. 1). Amino atom N5 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via atom H5B, to atom O1 in the molecule at (x, 1/2-y, z-1/2), so forming a C(7) chain running parallel to the [00-1] direction. Similarly, amino atom N5 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via atom H5B, to atom O2 in the molecule at (x, 1/2-y, z-1/2), so forming a C(8) chain running parallel to the [00-1] direction. The combination of C(7) and C(8) chains generates a chain of edge-fused R₁²(6) rings running parallel to the [001] direction (Fig. 2).

Compound (I) also contains three intermolecular C—H^{...} π interactions. In the first, atom C21 in the molecule at (x, y, z) acts as hydrogen-bond donor to the C8—C13 benzene ring in the molecule at (x, 1/2-y, 1/2+z), so forming a C(8) chain running parallel to the [001] direction. The combination of N—H^{...}O hydrogen bonds and C—H^{...} π interactions produce R₂²(11) rings (Fig. 2). In the second, atom C4 in the molecule at (x, y, z) acts as hydrogen-bond donor to the C8—C13 benzene ring in the molecule at (-x, -y, 2-z), so forming a centrosymmetric R₂²(20) rings centred at (0, 0, n+1) (n = zero or integer) (Fig. 3). Finally, atom C9 in the molecule at (x, y, z) acts as hydrogen-bond donor to the C1—C6 benzene ring in the molecule at (x, 1/2-y, z-1/2), so forming a C(9) chain running parallel to the [00-1] direction. Details of these interactions are given in Table 2. The combination of C—H^{...} π interactions generates a chain of edge-fused R₂²(20) and R₆⁶(30) rings running parallel to the [001] direction (Fig. 3).

S2. Experimental

MAEM (0.25 g, 0.71 mmol) was dissolved in 20 ml methanol and refluxed for 10 minutes. A solution of nickel acetate (0.25 g, 0.18 mmol) previously prepared in 5 ml methanol was added dropwise, the mixture was refluxed further for one hour. The resulting solution was filtered. The filtrate was kept for slow evaporation, after three days light yellow crystals suitable for crystallography were obtained.

S3. Refinement

All H-atoms bound to C were refined using a riding model with d(C-H) = 0.93Å ($U_{iso}=1.2U_{eq}$ of the parent atom) for aromatic carbon atoms and d(C-H) = 0.96Å ($U_{iso}=1.5U_{eq}$ of the parent atom) for methyl carbon atoms. Amino H atoms were located in difference maps and refined subject to the DFIX restraint N-H = 0.87 (2) Å.

Figure 1

A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.

Figure 2

Part of the crystal structure of (I), showing the formation of $R_1^2(6)$ and $R_2^2(11)$ rings. N—H…O hydrogen bonds and C— H… π interactions are indicated by dashed lines. H atoms not involved in these interactions have been omitted for clarity. (Symmetry codes as in Table 2.)

Figure 3

Part of the crystal structure of (I), showing the formation of a chain along [001] generated by the C—H $\cdots\pi$ interactions (dashed lines; see Table 2). For the sake of clarity, H atoms not involved in the motif shown have been omitted. (Symmetry codes as in Table 2.)

Bis(1,3-benzothiazole-2-thiolato)[(Z)-methyl 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetate]nickel(II)

Crystal data
$[Ni(C_7H_4NS_2)_2(C_7H_9N_3O_3S)]$
$M_r = 606.41$
Monoclinic, $P2_1/c$

Hall symbol: -P 2ybc a = 17.8387 (11) Åb = 7.8701 (5) Å c = 17.9861 (10) Å $\beta = 98.639 (2)^{\circ}$ $V = 2496.5 (3) \text{ Å}^3$ Z = 4 F(000) = 1240 $D_x = 1.613 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Bruker APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
26981 measured reflections
6164 independent reflections

Primary atom site location: structure-invariant

Refinement

Refinement on F^2

 $wR(F^2) = 0.131$

6164 reflections

324 parameters

direct methods

2 restraints

S = 1.03

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.043$

Cell parameters from 4277 reflections $\theta = 2.3-23.3^{\circ}$ $\mu = 1.23 \text{ mm}^{-1}$ T = 296 KNeedle, colourless $0.42 \times 0.37 \times 0.34 \text{ mm}$

3512 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 1.2^\circ$ $h = -23 \rightarrow 23$ $k = -10 \rightarrow 10$ $l = -20 \rightarrow 23$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0609P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.39$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic	or	equivalent	isotropic	displacement	parameters	(Å	2
						1		1	1		

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.1273 (2)	0.1742 (5)	1.06227 (18)	0.0477 (9)	
0.0859 (2)	0.3229 (6)	1.0511 (2)	0.0597 (11)	
0.1078	0.4225	1.0367	0.072*	
0.0109 (3)	0.3189 (8)	1.0620 (3)	0.0794 (15)	
-0.0182	0.4171	1.0540	0.095*	
-0.0216 (3)	0.1725 (9)	1.0845 (3)	0.0903 (18)	
-0.0722	0.1741	1.0916	0.108*	
0.0185 (3)	0.0264 (8)	1.0963 (3)	0.0841 (16)	
-0.0040	-0.0717	1.1115	0.101*	
0.0942 (2)	0.0261 (6)	1.0853 (2)	0.0607 (11)	
	$\begin{array}{c} x \\ 0.1273 (2) \\ 0.0859 (2) \\ 0.1078 \\ 0.0109 (3) \\ -0.0182 \\ -0.0216 (3) \\ -0.0722 \\ 0.0185 (3) \\ -0.0040 \\ 0.0942 (2) \end{array}$	xy 0.1273 (2) 0.1742 (5) 0.0859 (2) 0.3229 (6) 0.1078 0.4225 0.0109 (3) 0.3189 (8) -0.0182 0.4171 -0.0216 (3) 0.1725 (9) -0.0722 0.1741 0.0185 (3) 0.0264 (8) -0.0040 -0.0717 0.0942 (2) 0.0261 (6)	xyz 0.1273 (2) 0.1742 (5) 1.06227 (18) 0.0859 (2) 0.3229 (6) 1.0511 (2) 0.1078 0.4225 1.0367 0.0109 (3) 0.3189 (8) 1.0620 (3) -0.0182 0.4171 1.0540 -0.0216 (3) 0.1725 (9) 1.0845 (3) -0.0722 0.1741 1.0916 0.0185 (3) 0.0264 (8) 1.0963 (3) -0.0040 -0.0717 1.1115 0.0942 (2) 0.0261 (6) 1.0853 (2)	xyz U_{iso}^*/U_{eq} 0.1273 (2)0.1742 (5)1.06227 (18)0.0477 (9)0.0859 (2)0.3229 (6)1.0511 (2)0.0597 (11)0.10780.42251.03670.072*0.0109 (3)0.3189 (8)1.0620 (3)0.0794 (15)-0.01820.41711.05400.095*-0.0216 (3)0.1725 (9)1.0845 (3)0.0903 (18)-0.07220.17411.09160.108*0.0185 (3)0.0264 (8)1.0963 (3)0.0841 (16)-0.0040-0.07171.11150.101*0.0942 (2)0.0261 (6)1.0853 (2)0.0607 (11)

C7	0 2252 (2)	-0.0042(5)	1 06440 (18)	0.0443(0)
C8	0.2233(2) 0.1283(2)	0.0043(5) 0.1743(5)	0.80170(18)	0.0443(9)
C9	0.1203(2) 0.0844(2)	0.1743(5) 0.0802(6)	0.30170(10) 0.7465(2)	0.0440(9) 0.0593(11)
НО	0.0044 (2)	0.1301	0.7405(2)	0.0555 (11)
C10	0.0440 0.1000(2)	-0.0861(6)	0.7140 0.7403 (2)	0.071 0.0646 (12)
U10	0.1009 (2)	-0.1508	0.7403 (2)	0.0040 (12)
C11	0.0720 0.1503 (3)	-0.1627(5)	0.7032 0.7872 (2)	0.078°
	0.1595 (5)	-0.2774	0.7872(2)	0.0002 (11)
	0.1093 0.2022(2)	-0.2774 -0.0723(5)	0.7810 0.8421 (2)	0.072°
U12 U12	0.2033 (2)	-0.0723(3)	0.0431(2)	0.0474 (9)
П12 С12	0.2420	-0.1248	0.8733	0.037°
C13	0.18813(18)	0.0992(4)	0.84980 (10)	0.0342(7)
C14	0.20073 (18)	0.36/2 (4)	0.89389 (18)	0.0396 (8)
	0.4252 (2)	0.2366 (5)	0.908/6 (18)	0.0449 (9)
C16	0.5309 (2)	0.2658 (5)	1.01051 (19)	0.0511 (10)
HI6	0.5764	0.2740	1.0431	0.061*
C17	0.46199 (18)	0.2752 (4)	1.03122 (17)	0.0395 (8)
C18	0.44057 (19)	0.3070 (5)	1.10545 (17)	0.0400 (8)
C19	0.4991 (2)	0.3044 (5)	1.17575 (19)	0.0480 (10)
C20	0.6241 (2)	0.3713 (7)	1.2288 (2)	0.0851 (16)
H20A	0.6677	0.4288	1.2156	0.128*
H20B	0.6367	0.2549	1.2407	0.128*
H20C	0.6085	0.4257	1.2718	0.128*
C21	0.2788 (2)	0.4476 (6)	1.1692 (2)	0.0766 (14)
H21A	0.2668	0.4729	1.2183	0.115*
H21B	0.2407	0.3734	1.1434	0.115*
H21C	0.2801	0.5511	1.1412	0.115*
N1	0.20268 (14)	0.1531 (4)	1.05239 (14)	0.0379 (7)
N2	0.22816 (14)	0.2105 (3)	0.90121 (14)	0.0341 (6)
N3	0.40088 (14)	0.2583 (4)	0.97356 (14)	0.0390 (7)
N4	0.36948 (16)	0.3292 (4)	1.10589 (14)	0.0421 (7)
N5	0.3796 (2)	0.2109 (6)	0.84349 (18)	0.0689 (11)
H5A	0.3330 (13)	0.195 (6)	0.846 (3)	0.099 (18)*
H5B	0.400 (2)	0.197 (5)	0.8034 (15)	0.075 (14)*
01	0.35067 (14)	0.3667 (4)	1.17628 (12)	0.0565 (7)
O2	0.48854 (16)	0.2341 (4)	1.23206 (15)	0.0793 (10)
O3	0.56225 (14)	0.3783 (4)	1.16549 (13)	0.0603 (7)
S1	0.15776 (7)	-0.14012 (16)	1.09195 (7)	0.0752 (4)
S2	0.31353 (5)	-0.06091 (13)	1.04963 (6)	0.0561 (3)
S3	0.12298 (6)	0.38890 (12)	0.82287 (6)	0.0565 (3)
S4	0.24041 (6)	0.52105 (12)	0.95328 (5)	0.0520 (3)
S5	0.52295 (5)	0.23624 (15)	0.91477 (5)	0.0567 (3)
Ni1	0.29632 (2)	0.24588 (5)	1.00641 (2)	0.03629 (14)
			× /	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.035 (2)	0.077 (3)	0.0312 (18)	0.0005 (19)	0.0061 (15)	0.0008 (18)
C2	0.038 (2)	0.086 (3)	0.055 (2)	0.015 (2)	0.0075 (18)	-0.003(2)

Acta Cryst. (2010). E66, m587-m588

C3	0.042 (3)	0.134 (5)	0.065 (3)	0.022 (3)	0.018 (2)	-0.010 (3)
C4	0.035 (3)	0.180 (6)	0.059 (3)	0.001 (3)	0.022 (2)	-0.014 (3)
C5	0.049 (3)	0.143 (5)	0.067 (3)	-0.024 (3)	0.028 (2)	0.000 (3)
C6	0.045 (2)	0.095 (3)	0.045 (2)	-0.013 (2)	0.0139 (18)	0.002 (2)
C7	0.041 (2)	0.057 (2)	0.0363 (18)	-0.0005 (17)	0.0095 (15)	0.0108 (16)
C8	0.043 (2)	0.052 (2)	0.0368 (19)	-0.0017 (17)	0.0051 (16)	0.0007 (16)
C9	0.051 (2)	0.079 (3)	0.045 (2)	-0.006 (2)	-0.0011 (18)	-0.004(2)
C10	0.069 (3)	0.074 (3)	0.051 (2)	-0.021 (2)	0.011 (2)	-0.019 (2)
C11	0.080 (3)	0.045 (2)	0.061 (3)	-0.016 (2)	0.031 (2)	-0.009 (2)
C12	0.055 (2)	0.043 (2)	0.047 (2)	-0.0021 (18)	0.0171 (18)	0.0041 (17)
C13	0.0340 (18)	0.042 (2)	0.0288 (16)	-0.0045 (15)	0.0114 (13)	0.0041 (14)
C14	0.0390 (19)	0.042 (2)	0.0379 (18)	0.0000 (16)	0.0066 (14)	0.0059 (15)
C15	0.0353 (19)	0.070 (3)	0.0310 (17)	0.0007 (17)	0.0116 (14)	0.0010 (17)
C16	0.035 (2)	0.084 (3)	0.0359 (18)	0.0064 (19)	0.0094 (15)	0.0042 (18)
C17	0.0318 (18)	0.058 (2)	0.0298 (16)	0.0000 (15)	0.0078 (13)	0.0029 (15)
C18	0.0311 (18)	0.063 (2)	0.0272 (16)	0.0015 (16)	0.0076 (13)	0.0020 (15)
C19	0.035 (2)	0.081 (3)	0.0286 (19)	0.0021 (18)	0.0049 (15)	0.0021 (17)
C20	0.041 (2)	0.140 (5)	0.067 (3)	-0.006 (3)	-0.019 (2)	0.011 (3)
C21	0.047 (3)	0.131 (4)	0.054 (2)	0.021 (3)	0.014 (2)	-0.028 (3)
N1	0.0304 (15)	0.0493 (18)	0.0359 (15)	0.0019 (13)	0.0111 (11)	0.0052 (13)
N2	0.0316 (15)	0.0374 (16)	0.0335 (14)	-0.0010 (12)	0.0052 (11)	0.0032 (12)
N3	0.0300 (15)	0.062 (2)	0.0258 (13)	-0.0044 (13)	0.0061 (11)	-0.0009 (13)
N4	0.0345 (16)	0.067 (2)	0.0276 (14)	0.0020 (14)	0.0120 (12)	-0.0021 (13)
N5	0.043 (2)	0.136 (4)	0.0301 (17)	-0.014 (2)	0.0131 (15)	-0.0117 (19)
01	0.0418 (15)	0.102 (2)	0.0273 (12)	0.0106 (14)	0.0117 (10)	-0.0078 (13)
O2	0.0513 (18)	0.146 (3)	0.0385 (16)	-0.0071 (17)	0.0009 (13)	0.0277 (17)
03	0.0345 (15)	0.099 (2)	0.0440 (14)	-0.0096 (14)	-0.0039 (11)	0.0060 (14)
S1	0.0697 (8)	0.0732 (8)	0.0864 (8)	-0.0135 (6)	0.0235 (6)	0.0291 (7)
S2	0.0450 (6)	0.0578 (6)	0.0653 (6)	0.0135 (5)	0.0076 (5)	0.0124 (5)
S3	0.0585 (7)	0.0500 (6)	0.0549 (6)	0.0118 (5)	-0.0118 (5)	0.0046 (5)
S4	0.0647 (7)	0.0398 (5)	0.0495 (5)	-0.0027 (5)	0.0023 (5)	-0.0028 (4)
S5	0.0347 (5)	0.1025 (9)	0.0359 (5)	0.0064 (5)	0.0150 (4)	0.0007 (5)
Ni1	0.0291 (2)	0.0506 (3)	0.0298 (2)	0.0005 (2)	0.00674 (16)	0.00160 (19)

Geometric parameters (Å, °)

C1—C2	1.382 (6)	C15—N3	1.315 (4)	
C1—N1	1.392 (4)	C15—N5	1.340 (4)	
C1—C6	1.398 (5)	C15—S5	1.730 (4)	
C2—C3	1.380 (6)	C16—C17	1.339 (5)	
С2—Н2	0.9300	C16—S5	1.722 (4)	
C3—C4	1.378 (8)	C16—H16	0.9300	
С3—Н3	0.9300	C17—N3	1.394 (4)	
C4—C5	1.354 (7)	C17—C18	1.464 (5)	
C4—H4	0.9300	C18—N4	1.281 (4)	
C5—C6	1.394 (6)	C18—C19	1.514 (4)	
С5—Н5	0.9300	C19—O2	1.194 (4)	
C6—S1	1.724 (5)	C19—O3	1.305 (4)	

C7—N1	1.311 (4)	С20—О3	1.463 (4)
C7—S2	1.695 (4)	C20—H20A	0.9600
C7—S1	1.737 (4)	C20—H20B	0.9600
C8—C9	1.383 (5)	C20—H20C	0.9600
C8—C13	1.401 (4)	C21—O1	1.421 (4)
C8—S3	1.737 (4)	C21—H21A	0.9600
C9—C10	1.350 (6)	C21—H21B	0.9600
С9—Н9	0.9300	C21—H21C	0.9600
C10—C11	1.377 (6)	N1—Ni1	2.103 (3)
C10—H10	0.9300	N2—Ni1	2.108 (2)
C_{11} C_{12}	1 376 (5)	N3—Ni1	2.042(3)
C11—H11	0.9300	N4	1389(3)
C12-C13	1 385 (5)	N4—Ni1	2 153 (3)
C12—H12	0.9300	N5—H5A	0.848(19)
C12 M2	1 390 (4)	N5—H5B	0.843(19)
C13 = N2	1 326 (4)	S2Ni1	25410(11)
C14 = N2	1.520 (4)	S4 Ni1	2.5410 (11)
C14 S2	1.097(3)	54-111	2.5125 (10)
014-55	1.747 (3)		
C2 C1 N1	126.0(4)	C17 C18 C10	121 1 (2)
$C_2 = C_1 = C_1$	120.0(4) 120.5(4)	C_{1}^{-} C_{10}^{-} C_{13}^{-} C_{1	121.1(3) 125.2(3)
$C_2 = C_1 = C_0$	120.3(4)	02 - C19 - C18	123.2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113.4(4) 117.0(5)	02 - C19 - C18	122.3(3)
C_{3}	117.9 (3)	03 - 019 - 018	112.2 (3)
$C_3 = C_2 = H_2$	121.0	$O_3 = C_2 O_2 = H_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O$	109.5
C1 = C2 = H2	121.0	$U_3 - U_2 - H_2 U_2 $	109.5
C4 - C3 - C2	121.4 (5)	H20A—C20—H20B	109.5
C4 - C3 - H3	119.3	$U_3 = C_2 U_2 = H_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U$	109.5
C2—C3—H3	119.3	H20A—C20—H20C	109.5
C5—C4—C3	121.3 (5)	H20B—C20—H20C	109.5
C5—C4—H4	119.3	OI—C2I—H2IA	109.5
C3—C4—H4	119.3	OI—C2I—H2IB	109.5
C4—C5—C6	118.7 (5)	H21A—C21—H21B	109.5
C4—C5—H5	120.7	O1—C21—H21C	109.5
С6—С5—Н5	120.7	H21A—C21—H21C	109.5
C5—C6—C1	120.2 (4)	H21B—C21—H21C	109.5
C5—C6—S1	129.3 (4)	C7—N1—C1	111.8 (3)
C1—C6—S1	110.5 (3)	C7—N1—Ni1	98.7 (2)
N1—C7—S2	119.5 (3)	C1—N1—Ni1	148.0 (2)
N1—C7—S1	114.8 (3)	C14—N2—C13	112.0 (3)
S2—C7—S1	125.7 (2)	C14—N2—Ni1	96.95 (19)
C9—C8—C13	120.9 (4)	C13—N2—Ni1	148.1 (2)
C9—C8—S3	129.4 (3)	C15—N3—C17	110.3 (3)
C13—C8—S3	109.6 (2)	C15—N3—Ni1	133.5 (2)
С10—С9—С8	118.2 (4)	C17—N3—Ni1	115.8 (2)
С10—С9—Н9	120.9	C18—N4—O1	114.2 (3)
С8—С9—Н9	120.9	C18—N4—Ni1	115.5 (2)
C9—C10—C11	121.8 (4)	O1—N4—Ni1	128.5 (2)
C9—C10—H10	119.1	C15—N5—H5A	116 (3)

C11—C10—H10	119.1	C15—N5—H5B	118 (3)
C12—C11—C10	121.1 (4)	H5A—N5—H5B	125 (4)
C12—C11—H11	119.4	N4	110.6 (2)
C10—C11—H11	119.4	C19—O3—C20	116.0 (3)
C11—C12—C13	118.1 (3)	C6—S1—C7	89.47 (19)
C11—C12—H12	121.0	C7—S2—Ni1	74 11 (13)
C13 - C12 - H12	121.0	C8 = S3 = C14	90.12 (16)
C_{12} C_{13} N_{2}	125.8 (3)	C14 $S4$ $Ni1$	74 26 (11)
$C_{12} = C_{13} = C_{8}$	129.8(3)	$C_{16} = S_{5} = C_{15}$	89.61 (17)
$N_2 C_{13} C_8$	117.0(3) 114.4(3)	N2 N1 N1	160.83(11)
N2 - C14 - S4	114.4(3)	NJ-INII-INI NJ2 NK1 NJ2	100.83(11)
$N_2 = C_{14} = S_4$	119.2(2)	$\frac{1}{1} \frac{1}{1} \frac{1}$	100.11(10)
N2-C14-53	113.8 (2)	NI - NII - NZ	85.55 (10)
S4	126.9 (2)	N3—N11—N4	/6.10 (10)
N3—C15—N5	123.9 (3)	N1—N11—N4	101.37 (10)
N3—C15—S5	114.1 (2)	N2—N11—N4	169.15 (11)
N5—C15—S5	121.9 (3)	N3—Ni1—S4	100.16 (8)
C17—C16—S5	110.2 (3)	N1—Ni1—S4	98.95 (8)
C17—C16—H16	124.9	N2—Ni1—S4	68.27 (7)
S5—C16—H16	124.9	N4—Ni1—S4	102.12 (8)
C16—C17—N3	115.8 (3)	N3—Ni1—S2	93.47 (8)
C16—C17—C18	129.7 (3)	N1—Ni1—S2	67.44 (8)
N3—C17—C18	114.4 (3)	N2—Ni1—S2	100.15 (7)
N4—C18—C17	115.0 (3)	N4—Ni1—S2	90.28 (9)
N4—C18—C19	123.8 (3)	S4—Ni1—S2	163.39 (4)
N1-C1-C2-C3	178.5 (3)	C1—C6—S1—C7	0.4(3)
C6-C1-C2-C3	-13(5)	N1 - C7 - S1 - C6	0.9(3)
C1 - C2 - C3 - C4	10(6)	82-C7-81-C6	-1767(3)
$C_2 - C_3 - C_4 - C_5$	-0.4(7)	N1 - C7 - S2 - Ni1	-50(2)
$C_2 = C_3 = C_4 = C_5$	0.4(7)	S1 C7 S2 Ni1	172 A (2)
$C_{3} - C_{4} - C_{5} - C_{6}$	-0.2(6)	S1 - C7 - S2 - N11	172.4(2)
C4 = C5 = C6 = C1	-0.2(0)	$C_{9} = C_{0} = S_{3} = C_{14}$	-1/6.4(4)
C4 - C5 - C6 - S1	-1/.0(4)	C13 - C8 - S3 - C14	0.4(3)
$C_2 - C_1 - C_6 - C_5$	0.9 (6)	N2	-0.3(3)
NI-CI-C6-C5	-178.9 (3)	S4—C14—S3—C8	-178.2 (3)
C2-C1-C6-S1	178.2 (3)	N2—C14—S4—N11	-10.3 (2)
N1—C1—C6—S1	-1.6 (4)	S3—C14—S4—Nil	167.6 (3)
C13—C8—C9—C10	-0.1 (6)	C17—C16—S5—C15	-0.5(3)
S3—C8—C9—C10	178.6 (3)	N3—C15—S5—C16	0.4 (3)
C8—C9—C10—C11	0.3 (6)	N5-C15-S5-C16	-177.5 (4)
C9—C10—C11—C12	0.4 (6)	C15—N3—Ni1—N1	100.0 (4)
C10-C11-C12-C13	-1.4 (6)	C17—N3—Ni1—N1	-71.8 (4)
C11—C12—C13—N2	-177.8 (3)	C15—N3—Ni1—N2	-5.8 (4)
C11—C12—C13—C8	1.6 (5)	C17—N3—Ni1—N2	-177.5 (2)
C9—C8—C13—C12	-0.9 (5)	C15—N3—Ni1—N4	-175.4 (4)
S3—C8—C13—C12	-179.8 (3)	C17—N3—Ni1—N4	12.9 (2)
C9—C8—C13—N2	178.5 (3)	C15—N3—Ni1—S4	-75.3 (3)
S3—C8—C13—N2	-0.4 (4)	C17—N3—Ni1—S4	113.0 (2)
S5—C16—C17—N3	0.5 (4)	C15—N3—Ni1—S2	95.2 (3)
	- > /		- · · · · ·

S5-C16-C17-C18	-176.9 (3)	C17—N3—Ni1—S2	-76.6(2)
C16—C17—C18—N4	171.8 (4)	C7—N1—Ni1—N3	-8.9 (4)
N3—C17—C18—N4	-5.7 (5)	C1—N1—Ni1—N3	-170.9 (4)
C16—C17—C18—C19	-11.0 (6)	C7—N1—Ni1—N2	99.2 (2)
N3—C17—C18—C19	171.5 (3)	C1—N1—Ni1—N2	-62.8 (4)
N4—C18—C19—O2	41.7 (6)	C7—N1—Ni1—N4	-89.2 (2)
C17—C18—C19—O2	-135.2 (4)	C1—N1—Ni1—N4	108.7 (4)
N4—C18—C19—O3	-141.9 (4)	C7—N1—Ni1—S4	166.38 (19)
C17—C18—C19—O3	41.1 (5)	C1—N1—Ni1—S4	4.3 (4)
S2—C7—N1—C1	175.8 (2)	C7—N1—Ni1—S2	-3.72 (18)
S1—C7—N1—C1	-1.9 (4)	C1—N1—Ni1—S2	-165.8 (4)
S2—C7—N1—Ni1	5.9 (3)	C14—N2—Ni1—N3	-104.5 (2)
S1—C7—N1—Ni1	-171.79 (17)	C13—N2—Ni1—N3	99.9 (4)
C2-C1-N1-C7	-177.5 (3)	C14—N2—Ni1—N1	94.0 (2)
C6-C1-N1-C7	2.3 (4)	C13—N2—Ni1—N1	-61.6 (4)
C2-C1-N1-Ni1	-16.7 (6)	C14—N2—Ni1—N4	-36.0 (6)
C6—C1—N1—Ni1	163.1 (3)	C13—N2—Ni1—N4	168.4 (5)
S4—C14—N2—C13	178.3 (2)	C14—N2—Ni1—S4	-7.52 (18)
S3—C14—N2—C13	0.1 (4)	C13—N2—Ni1—S4	-163.1 (4)
S4-C14-N2-Ni1	11.9 (3)	C14—N2—Ni1—S2	160.08 (19)
S3—C14—N2—Ni1	-166.23 (18)	C13—N2—Ni1—S2	4.5 (4)
C12-C13-N2-C14	179.5 (3)	C18—N4—Ni1—N3	-16.6 (3)
C8—C13—N2—C14	0.1 (4)	O1—N4—Ni1—N3	179.9 (3)
C12—C13—N2—Ni1	-26.7 (6)	C18—N4—Ni1—N1	144.0 (3)
C8—C13—N2—Ni1	153.9 (3)	O1—N4—Ni1—N1	-19.6 (3)
N5—C15—N3—C17	177.6 (4)	C18—N4—Ni1—N2	-87.2 (6)
S5-C15-N3-C17	-0.2 (4)	O1—N4—Ni1—N2	109.2 (6)
N5—C15—N3—Ni1	5.6 (6)	C18—N4—Ni1—S4	-114.2 (3)
S5-C15-N3-Ni1	-172.25 (18)	O1—N4—Ni1—S4	82.2 (3)
C16—C17—N3—C15	-0.2 (5)	C18—N4—Ni1—S2	76.9 (3)
C18—C17—N3—C15	177.6 (3)	O1—N4—Ni1—S2	-86.6 (3)
C16—C17—N3—Ni1	173.4 (3)	C14—S4—Ni1—N3	102.97 (14)
C18—C17—N3—Ni1	-8.8 (4)	C14—S4—Ni1—N1	-75.46 (14)
C17—C18—N4—O1	-177.3 (3)	C14—S4—Ni1—N2	6.05 (15)
C19—C18—N4—O1	5.6 (5)	C14—S4—Ni1—N4	-179.22 (15)
C17—C18—N4—Ni1	16.7 (4)	C14—S4—Ni1—S2	-41.67 (19)
C19—C18—N4—Ni1	-160.4 (3)	C7—S2—Ni1—N3	-178.75 (14)
C18—N4—O1—C21	159.1 (3)	C7—S2—Ni1—N1	2.95 (14)
Ni1—N4—O1—C21	-37.2 (4)	C7—S2—Ni1—N2	-77.83 (14)
O2—C19—O3—C20	0.5 (6)	C7—S2—Ni1—N4	105.16 (14)
C18—C19—O3—C20	-175.8 (4)	C7—S2—Ni1—S4	-33.55 (19)
C5—C6—S1—C7	177.4 (4)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N5—H5 <i>A</i> …N2	0.85 (2)	2.25 (3)	3.036 (5)	154 (4)

N5—H5 B ···O2 ⁱ	0.86 (2)	2.24 (3)	3.025 (5)	150 (4)
N5—H5 <i>B</i> ···O1 ⁱ	0.86 (2)	2.38 (3)	3.036 (4)	133 (3)
С16—Н16…ОЗ	0.93	2.40	2.898 (4)	114
C21—H21 <i>B</i> ···N1	0.96	2.41	3.282 (5)	151
C4—H4··· $Cg2^{ii}$	0.93	2.93	3.588 (6)	129
C9—H9····Cg1 ⁱ	0.93	2.99	3.636 (4)	128
C21—H21 A ···Cg2 ⁱⁱⁱ	0.96	2.76	3.556 (4)	141

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) -*x*, -*y*, -*z*+2; (iii) *x*, -*y*+1/2, *z*+1/2.