

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[3-(dihydroxyboryl)anilinium] sulfate

Araceli Vega, Rolando Luna, Hugo Tlahuext and Herbert Höpfl*

Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Mexico Correspondence e-mail: hhopfl@uaem.mx

Received 23 March 2010; accepted 30 March 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.078; wR factor = 0.145; data-to-parameter ratio = 14.4.

In the title compound, $2C_6H_9BNO_2^+ \cdot SO_4^{2-}$, the dihydroxyboryl group of one of the two independent boronic acid molecules participates in (B)O-H···O_B and N-H···O_B hydrogen bonds, while the second is involved mainly in the formation of the charge-assisted heterodimeric synthon $-B(OH)_2 \cdot \cdot \cdot O_2SO_2^-$. These aggregates are further connected through N-H···O_{sulfate} interactions, forming a complex three-dimensional hydrogen-bonded network.

Related literature

For related salts, see: Braga *et al.* (2003); Kara *et al.* (2006); Rogowska *et al.* (2006); Melendez *et al.* (1996); Plaut *et al.* (2000); SeethaLekshmi *et al.* (2006). For the use of boronic acids in crystal engineering, see: Aakeröy *et al.* (2005); Filthaus *et al.* (2008); Fournier *et al.* (2003); Pedireddi *et al.* (2004); Rodríguez-Cuamatzi *et al.* (2004*a,b,* 2005, 2009); Shimpi *et al.* (2007); Zhang *et al.* (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $2C_{6}H_{9}BNO_{2}^{+} \cdot SO_{4}^{2^{-}}$ $M_{r} = 371.96$ Monoclinic, $P2_{1}/c$ a = 5.3589 (9) Å b = 15.695 (3) Å c = 20.489 (3) Å $\beta = 101.423 (3)^{\circ}$ $V = 1689.1 (5) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.24 \text{ mm}^{-1}$ T = 173 K $0.41 \times 0.18 \times 0.09 \text{ mm}$ 18634 measured reflections

 $R_{\rm int} = 0.096$

3675 independent reflections

2642 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.83, T_{max} = 1.00$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.078$	H atoms treated by a mixture of
$wR(F^2) = 0.145$	independent and constrained
S = 1.12	refinement
3675 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
256 parameters	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$
10 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O31-H31'···O53 ⁱ	0.84 (3)	1.81 (3)	2.653 (4)	175 (3)
$O32-H32'\cdots O54^{i}$	0.84 (3)	1.96 (3)	2.744 (4)	155 (3)
$N1 - H1A \cdots O54^{ii}$	0.87 (4)	2.31 (4)	3.161 (5)	169 (4)
$N1 - H1C \cdot \cdot \cdot O52^{iii}$	0.86 (2)	1.86 (2)	2.718 (4)	176 (5)
$O1-H1' \cdots O31^{iv}$	0.84 (4)	1.99 (4)	2.803 (4)	163 (4)
N31−H31A···O52	0.86 (3)	1.92 (3)	2.787 (4)	179 (3)
N31−H31C···O2	0.86 (2)	2.07 (2)	2.874 (4)	156 (3)
$O2-H2'\cdots O32^v$	0.84(1)	1.99 (2)	2.820 (3)	169 (4)
$N1 - H1B \cdot \cdot \cdot O51^{vi}$	0.86 (4)	2.13 (4)	2.923 (5)	152 (4)
$N1-H1B\cdots O54^{vi}$	0.86 (4)	2.37 (4)	3.112 (5)	144 (4)
$N31 - H31B \cdots O53^{vii}$	0.86 (3)	1.90 (3)	2.744 (4)	168 (4)
Symmetry codes: (i)	× 1 2	1 . 1. (;;)	x 1 1	z ¹ , (iii)

Symmetry codes: (i) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) x - 1, y, z; (vi) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (vii) x + 1, y, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus NT* (Bruker, 2001); data reduction: *SAINT-Plus NT*; program(s) used to solve structure: *SHELXTL-NT* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL-NT*; molecular graphics: *SHELXTL-NT*; software used to prepare material for publication: *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CIAM-59213).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2649).

References

Aakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102-107.

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.
- Braga, D., Polito, M., Bi, M., D-Addario, D., Tagliavini, E. & Sturba, L. (2003). Organometallics, 22, 2142–2150.
- Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT-Plus NT. Bruker AXS Inc., Madison, Wisconsin, USA. Filthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201–1207.
- Fournier, J.-H., Maris, T., Wuest, J. D., Guo, W. & Galoppini, E. (2003). J. Am. Chem. Soc. 125, 1002–1006.
- Kara, H., Adams, C. J., Orpen, A. G. & Podesta, T. J. (2006). New. J. Chem. 30, 1461–1469.
- Melendez, R. E., Sharma, C. V. K., Zaworotko, M. J., Bauer, C. & Rogers, R. D. (1996). Angew. Chem. Int. Ed. Engl. 35, 2213–2215.

Pedireddi, V. R. & SeethaLekshmi, N. (2004). *Tetrahedron Lett.* 45, 1903–1906.
Plaut, D. J., Lund, K. M. & Ward, M. D. (2000). *Chem. Commun.* pp. 769–770.
Rodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). *Cryst. Growth Des.* 5, 167–175.

- Rodríguez-Cuamatzi, P., Luna-García, R., Torres-Huerta, A., Bernal-Uruchurtu, M. I., Barba, V. & Höpfl, H. (2009). Cryst. Growth Des. 9, 1575–1583.
- Rodríguez-Cuamatzi, P., Vargas-Díaz, G. & Höpfl, H. (2004a). Angew. Chem. Int. Ed. 43, 3041–3044.
- Rodríguez-Cuamatzi, P., Vargas-Díaz, G., Maris, T., Wuest, J. D. & Höpfl, H. (2004b). Acta Cryst. E60, o1316–o1318.
- Rogowska, P., Cyranski, M. K., Sporzynski, A. & Ciesielski, A. (2006). *Tetrahedron Lett.* 47, 1389–1393.
- SeethaLekshmi, N. & Pedireddi, V. R. (2006). Inorg. Chem. 45, 2400-2402.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shimpi, M. R., SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958–1963.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). publCIF. In preparation.
- Zhang, Y., Li, M., Chandrasekaran, S., Gao, X., Fang, X., Lee, H.-W., Hardcastle, K., Yang, J. & Wang, B. (2007). *Tetrahedron*, **63**, 3287–3292.

supporting information

Acta Cryst. (2010). E66, o1035-o1036 [https://doi.org/10.1107/S1600536810012092]

Bis[3-(dihydroxyboryl)anilinium] sulfate

Araceli Vega, Rolando Luna, Hugo Tlahuext and Herbert Höpfl

S1. Comment

Boronic acids, RB(OH)₂, are capable of forming strong hydrogen bonds with different functional groups such as carboxylic acid and pyridine derivatives (Aakeröy *et al.*, 2005; Pedireddi *et al.*, 2004; Rodríguez-Cuamatzi *et al.*, 2009) and have been employed not only for the formation of neutral homo- and heterodimeric synthons, e.g. RB(OH)₂···(HO)₂BR and RB(OH)₂···HOOCR (Filthaus *et al.*, 2008; Fournier *et al.*, 2003; Rodríguez-Cuamatzi *et al.*, 2004*a,b*; Shimpi *et al.*, 2007; Zhang *et al.*, 2007), but also for the generation of charge-assisted synthons such as RB(OH)₂···OOCR and RB(OH)₂··· OSCR (Kara *et al.*, 2006; Rodríguez-Cuamatzi *et al.*, 2005; Rogowska *et al.*, 2006; SeethaLekshmi *et al.*, 2006).

A search of the CSD (Allen, 2002; version 5.30) revealed that aside from the above-mentioned adducts with organic and inorganic carboxylate derivatives, there are only two further entries for charged motifs of the composition $RB(OH)_2$...⁻ O₂E, in which the anions are sulfate and nitrate, respectively (Braga *et al.*, 2003).

The title compound, (I), represents a further example for the $-B(OH)_2$... $O_2SO_2^-$ heterodimeric synthon.

The asymmetric unit of **I** contains two independent protonated 3-aminophenylboronic acid (3-apba) molecules and one sulfate anion as counterion (Fig. 1). Due to the presence of a large number of hydrogen-bonding functions (BOH, NH_3^+ and SO_4^{2-}) a complex 3D hydrogen bonded network is formed, in which the sulfate counterions play the role of the central building block within the crystal structure. Each sulfate is hydrogen bonded to four neighboring [3-apbaH]⁺ entities through a total of five (*B*)OH···O_{sulfate} and *N*—*H*···O_{sulfate} interactions, and serves as four-connected node (Fig. 2).

Motif **II** is formed between the $-B(OH)_2$ group of one of the two [3-apbaH]⁺ molecules and the sulfate counterion, and corresponds to the charged heterodimeric motif $-B(OH)_2 \cdots O_2 SO_2^-$ [graph set R_2^2 (8)] (Bernstein *et al.* 1995). In motif **III** [R_4^4 (12)] two sulfate groups are hydrogen bridged by two NH₃⁺ functions. Structurally related hydrogen-bonded rings have been reported previously for secondary ammonium carboxylates (Melendez *et al.*, 1996; Plaut *et al.*, 2000). In motif **IV** [R_4^4 (12)] three BOH, one sulfate and one NH₃⁺ group are connected through (*B*)OH···O_B, *N*— *H*···O_{sulfate} and N—H···O_B hydrogen bonds , while in motif **V** [R_3^3 (11)] two BOH, one sulfate and one NH₃⁺ moiety are connected through (*B*)OH···O_{sulfate}, (B)OH···O_B and *N*—*H*···O_{sulfate} hydrogen bonds. Motifs **II-V** give rise to 2D undulated layers (Fig. 2, Table 1), which are connected through three additional *N*—*H*···O_{sulfate} interactions to give an overall 3D hydrogen-bonded network.

S2. Experimental

The title compound is a commercially available product that has been crystallized from methanol. M.p. > 300 °C.

S3. Refinement

H atoms were positioned geometrically and constrained using the riding-model approximation [C-H_{aryl}= 0.93 Å, $U_{iso}(H_{aryl})= 1.2 U_{eq}(C)$]. Hydrogen atoms bonded to O (H1', H2', H31' and H32') and N (H1A, H1B, H1C, H31A, H31B and H31C) were located in difference Fourier maps. The coordinates of the O—H and N—H hydrogen atoms were

refined with distance restraints: O—H = 0.840±0.001 Å, N—H = 0.860 ±0.001 Å and [U_{iso} (H)= 1.5 U_{eq} (O, N)].

Figure 1

Perspective view of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2

Fragment of the 2D hydrogen-bonded layer in the crystal structure of the title compound, showing motifs **II-V**. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry operators: (i) -x, 1/2 + y, 1/2 - z; (ii) 1 - x, 1/2 + y, 1/2 - z.

3-(Dihydroxyboryl)anilinium hemisulfate

Crystal data

 $2C_6H_9BNO_2^+ SO_4^{2-}$ $M_r = 371.96$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.3589 (9) Å b = 15.695 (3) Å c = 20.489 (3) Å $\beta = 101.423$ (3)° V = 1689.1 (5) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3 pixels mm⁻¹ phi and ω scans F(000) = 776 $D_x = 1.463 \text{ Mg m}^{-3}$ Melting point > 573 K Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 1721 reflections $\theta = 2.6-20.0^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 173 KRectangular prism, colourless $0.41 \times 0.18 \times 0.09 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.83$, $T_{max} = 1.00$ 18634 measured reflections 3675 independent reflections 2642 reflections with $I > 2\sigma(I)$ $R_{int} = 0.096$

$\theta_{\rm max} = 27.0^\circ, \theta_{\rm min} = 1.7^\circ$	$k = -19 \rightarrow 20$
$h = -6 \rightarrow 6$	$l = -26 \rightarrow 26$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.078$	Hydrogen site location: inferred from
$wR(F^2) = 0.145$	neighbouring sites
S = 1.12	H atoms treated by a mixture of independent
3675 reflections	and constrained refinement
256 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0357P)^2 + 2.0612P]$
10 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{ m max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
	$\Delta ho_{ m min} = -0.37 \ m e \ m \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
B1	0.5330 (8)	0.8900 (3)	0.3774 (2)	0.0287 (10)
N1	0.3567 (8)	0.6073 (2)	0.47243 (17)	0.0409 (9)
H1A	0.475 (6)	0.594 (3)	0.451 (2)	0.061*
H1B	0.230 (6)	0.578 (3)	0.451 (2)	0.061*
H1C	0.381 (9)	0.588 (3)	0.5125 (8)	0.061*
01	0.5531 (6)	0.97477 (16)	0.38584 (13)	0.0415 (8)
H1′	0.602 (9)	1.000 (3)	0.3546 (16)	0.062*
O2	0.6184 (5)	0.85326 (15)	0.32467 (12)	0.0271 (6)
H2′	0.586 (7)	0.8010 (6)	0.320 (2)	0.041*
C1	0.4023 (7)	0.8355 (2)	0.42509 (17)	0.0277 (9)
C2	0.4458 (7)	0.7479 (2)	0.43246 (17)	0.0259 (8)
H2	0.5704	0.7219	0.4119	0.031*
C3	0.3110 (7)	0.6988 (2)	0.46910 (18)	0.0274 (9)
C4	0.1327 (7)	0.7344 (3)	0.50092 (19)	0.0350 (10)
H4	0.0392	0.7000	0.5258	0.042*
C5	0.0930 (8)	0.8213 (3)	0.4958 (2)	0.0433 (11)
Н5	-0.0273	0.8470	0.5181	0.052*
C6	0.2248 (8)	0.8711 (3)	0.45906 (19)	0.0379 (10)
H6	0.1951	0.9308	0.4566	0.045*
B31	1.3528 (8)	0.6344 (3)	0.2462 (2)	0.0234 (9)
N31	0.7762 (6)	0.88966 (19)	0.20148 (15)	0.0218 (6)
H31A	0.664 (5)	0.910 (2)	0.1691 (12)	0.033*

H31B	0.911 (4)	0.920 (2)	0.2040 (19)	0.033*
H31C	0.714 (6)	0.894 (2)	0.2370 (10)	0.033*
O31	1.3885 (5)	0.55072 (15)	0.23406 (12)	0.0259 (6)
H31′	1.522 (4)	0.530(2)	0.2572 (17)	0.039*
O32	1.5200 (5)	0.68048 (15)	0.29159 (12)	0.0272 (6)
H32′	1.633 (5)	0.649 (2)	0.3138 (17)	0.041*
C31	1.1043 (7)	0.6786 (2)	0.20739 (16)	0.0221 (8)
C32	1.0514 (6)	0.7641 (2)	0.21890 (17)	0.0220 (8)
H32	1.1704	0.7966	0.2495	0.026*
C33	0.8294 (6)	0.8014 (2)	0.18643 (16)	0.0201 (7)
C34	0.6537 (7)	0.7561 (2)	0.14105 (17)	0.0254 (8)
H34	0.5010	0.7825	0.1188	0.030*
C35	0.7032 (7)	0.6721 (2)	0.12854 (18)	0.0285 (9)
H35	0.5845	0.6405	0.0971	0.034*
C36	0.9239 (7)	0.6335 (2)	0.16143 (17)	0.0251 (8)
H36	0.9541	0.5753	0.1527	0.030*
S51	0.18611 (16)	0.99469 (6)	0.11838 (4)	0.0218 (2)
O51	-0.0477 (5)	0.95998 (18)	0.08028 (13)	0.0375 (7)
O52	0.4070 (5)	0.9546 (2)	0.09827 (13)	0.0452 (8)
O53	0.2071 (5)	0.97849 (15)	0.19058 (11)	0.0274 (6)
O54	0.1982 (6)	1.08633 (17)	0.10711 (14)	0.0470 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
B1	0.032 (2)	0.033 (3)	0.020 (2)	0.007 (2)	0.0024 (18)	0.0038 (18)
N1	0.066 (3)	0.033 (2)	0.0265 (19)	-0.0244 (19)	0.0168 (19)	-0.0051 (16)
01	0.077 (2)	0.0217 (15)	0.0305 (16)	0.0007 (14)	0.0210 (15)	0.0008 (12)
O2	0.0406 (16)	0.0190 (13)	0.0232 (13)	-0.0056 (12)	0.0098 (12)	0.0010 (11)
C1	0.031 (2)	0.035 (2)	0.0169 (18)	0.0012 (17)	0.0029 (16)	0.0030 (15)
C2	0.028 (2)	0.032 (2)	0.0184 (18)	-0.0022 (16)	0.0060 (15)	-0.0012 (15)
C3	0.028 (2)	0.033 (2)	0.0207 (19)	-0.0066 (17)	0.0039 (16)	-0.0012 (16)
C4	0.023 (2)	0.057 (3)	0.026 (2)	-0.0051 (19)	0.0057 (17)	0.0067 (19)
C5	0.033 (2)	0.065 (3)	0.034 (2)	0.019 (2)	0.0135 (19)	0.007 (2)
C6	0.041 (2)	0.046 (3)	0.026 (2)	0.014 (2)	0.0045 (18)	0.0082 (19)
B31	0.031 (2)	0.022 (2)	0.020 (2)	0.0009 (18)	0.0101 (18)	0.0015 (17)
N31	0.0212 (16)	0.0228 (16)	0.0224 (16)	0.0006 (13)	0.0065 (13)	0.0024 (13)
O31	0.0284 (15)	0.0223 (14)	0.0254 (14)	0.0043 (11)	0.0013 (11)	-0.0028 (11)
O32	0.0331 (15)	0.0181 (13)	0.0270 (14)	0.0037 (11)	-0.0022 (12)	-0.0040 (11)
C31	0.0243 (19)	0.0234 (19)	0.0192 (17)	-0.0002 (15)	0.0059 (15)	0.0007 (15)
C32	0.0206 (19)	0.026 (2)	0.0186 (18)	-0.0023 (15)	0.0019 (14)	-0.0002 (14)
C33	0.0231 (19)	0.0196 (18)	0.0195 (17)	-0.0019 (14)	0.0091 (15)	0.0025 (14)
C34	0.025 (2)	0.028 (2)	0.0224 (19)	-0.0011 (16)	0.0021 (15)	0.0038 (15)
C35	0.031 (2)	0.027 (2)	0.026 (2)	-0.0054 (17)	0.0014 (17)	0.0007 (16)
C36	0.034 (2)	0.0183 (19)	0.0233 (19)	-0.0013 (16)	0.0067 (16)	-0.0033 (14)
S51	0.0197 (4)	0.0264 (5)	0.0190 (4)	0.0009 (4)	0.0035 (3)	0.0033 (4)
O51	0.0253 (15)	0.0582 (19)	0.0267 (15)	-0.0102 (13)	-0.0002 (12)	0.0024 (13)
O52	0.0317 (16)	0.079 (2)	0.0254 (15)	0.0252 (15)	0.0063 (12)	-0.0004 (14)

supporting information

053	0.0279 (14)	0.0339 (15)	0.0205 (13)	-0.0081 (11)	0.0049 (11)	0.0021 (11)
O54	0.071 (2)	0.0271 (16)	0.0368 (17)	-0.0020 (15)	-0.0049 (15)	0.0082 (13)

Geometric parameters (Å, °)

1.344 (5)	B31—C31	1.571 (5)	
1.380 (5)	N31—C33	1.460 (4)	
1.565 (6)	N31—H31A	0.86 (3)	
1.456 (5)	N31—H31B	0.86 (3)	
0.87 (4)	N31—H31C	0.86 (2)	
0.86 (4)	O31—H31′	0.84 (3)	
0.86 (2)	O32—H32′	0.84 (3)	
0.84 (4)	C31—C32	1.400 (5)	
0.840 (12)	C31—C36	1.401 (5)	
1.397 (5)	C32—C33	1.374 (5)	
1.401 (5)	С32—Н32	0.9500	
1.376 (5)	C33—C34	1.381 (5)	
0.9500	C34—C35	1.380 (5)	
1.378 (5)	C34—H34	0.9500	
1.381 (6)	C35—C36	1.380 (5)	
0.9500	С35—Н35	0.9500	
1.374 (6)	C36—H36	0.9500	
0.9500	S51—O51	1.445 (3)	
0.9500	S51—O54	1.460 (3)	
1.358 (5)	S51—O52	1.470 (3)	
1.364 (5)	S51—O53	1.483 (2)	
119.0 (4)	C33—N31—H31A	108 (3)	
119.7 (4)	C33—N31—H31B	110 (3)	
121.3 (4)	H31A—N31—H31B	107 (3)	
110 (3)	C33—N31—H31C	112 (3)	
113 (3)	H31A—N31—H31C	107 (4)	
102 (4)	H31B—N31—H31C	111 (4)	
113 (3)	B31—O31—H31′	114 (3)	
114 (5)	B31—O32—H32′	111 (3)	
104 (4)	C32—C31—C36	117.5 (3)	
114 (3)	C32—C31—B31	121.2 (3)	
114 (3)	C36—C31—B31	121.3 (3)	
117.0 (4)	C33—C32—C31	120.8 (3)	
121.3 (3)	С33—С32—Н32	119.6	
121.6 (4)	C31—C32—H32	119.6	
121.0 (4)	C32—C33—C34	121.1 (3)	
119.5	C32—C33—N31	119.3 (3)	
119.5	C34—C33—N31	119.6 (3)	
121.3 (4)	C35—C34—C33	119.1 (3)	
118.5 (3)	C35—C34—H34	120.4	
120.2 (3)	C33—C34—H34	120.4	
118.4 (4)	C36—C35—C34	120.4 (3)	
	$\begin{array}{c} 1.344 (5) \\ 1.380 (5) \\ 1.565 (6) \\ 1.456 (5) \\ 0.87 (4) \\ 0.86 (4) \\ 0.86 (2) \\ 0.84 (4) \\ 0.840 (12) \\ 1.397 (5) \\ 1.401 (5) \\ 1.376 (5) \\ 0.9500 \\ 1.378 (5) \\ 1.381 (6) \\ 0.9500 \\ 1.374 (6) \\ 0.9500 \\ 1.358 (5) \\ 1.364 (5) \\ \end{array}$	1.344 (5) B31-C31 1.380 (5) N31-C33 1.565 (6) N31-H31A 1.456 (5) N31-H31B 0.87 (4) N31-H31C 0.86 (4) O31-H31' 0.86 (2) O32-H32' 0.84 (4) C31-C32 0.84 (4) C31-C32 0.84 (4) C31-C36 1.397 (5) C32-C33 1.401 (5) C32-H32 1.376 (5) C33-C34 0.9500 C34-C35 1.378 (5) C34-H34 1.381 (6) C35-C36 0.9500 C35-H35 1.374 (6) C36-H36 0.9500 S51-O51 0.9500 S51-O52 1.364 (5) S51-O52 1.364 (5) S51-O53 119.0 (4) C33-N31-H31B 110 (3) C33-N31-H31B 110 (3) C33-N31-H31B 113 (3) H31A-N31-H31C 113 (3) H31A-N31-H31C 113 (3) H31A-N31-H31C 113 (3) H31A-N31-H31C 113 (3) H31-O31-H31 <tr< td=""><td>1.344 (5) $B31-C31$ 1.571 (5) 1.380 (5) $N31-C33$ 1.460 (4) 1.555 (6) $N31-H31A$ 0.86 (3) 0.87 (4) $N31-H31B$ 0.86 (2) 0.87 (4) $N31-H31C$ 0.86 (2) 0.86 (2) $0.32-H32'$ 0.84 (3) 0.86 (2) $0.32-H32'$ 0.84 (3) 0.84 (4) $C31-C36$ 1.400 (5) 0.84 (4) $C31-C36$ 1.401 (5) 1.397 (5) $C32-C33$ 1.374 (5) 1.401 (5) $C32-H32$ 0.9500 0.9500 $C34-C35$ 1.380 (5) 0.95500 $C34-H34$ 0.9500 1.378 (5) $C34-H34$ 0.9500 0.9500 $C35-H35$ 0.9500 0.9500 $C35-H35$ 0.9500 0.9500 $S51-O51$ 1.445 (3) 0.9500 $S51-O52$ 1.470 (3) 1.364 (5) $S51-O53$ 1.483 (2) 119.0 (4) $C33-N31-H31A$ 108 (3) 119.7 (4) $C33-N31-H31C$ 112 (3) <tr< td=""></tr<></td></tr<>	1.344 (5) $B31-C31$ 1.571 (5) 1.380 (5) $N31-C33$ 1.460 (4) 1.555 (6) $N31-H31A$ 0.86 (3) 0.87 (4) $N31-H31B$ 0.86 (2) 0.87 (4) $N31-H31C$ 0.86 (2) 0.86 (2) $0.32-H32'$ 0.84 (3) 0.86 (2) $0.32-H32'$ 0.84 (3) 0.84 (4) $C31-C36$ 1.400 (5) 0.84 (4) $C31-C36$ 1.401 (5) 1.397 (5) $C32-C33$ 1.374 (5) 1.401 (5) $C32-H32$ 0.9500 0.9500 $C34-C35$ 1.380 (5) 0.95500 $C34-H34$ 0.9500 1.378 (5) $C34-H34$ 0.9500 0.9500 $C35-H35$ 0.9500 0.9500 $C35-H35$ 0.9500 0.9500 $S51-O51$ 1.445 (3) 0.9500 $S51-O52$ 1.470 (3) 1.364 (5) $S51-O53$ 1.483 (2) 119.0 (4) $C33-N31-H31A$ 108 (3) 119.7 (4) $C33-N31-H31C$ 112 (3) <tr< td=""></tr<>

supporting information

C3—C4—H4	120.8	С36—С35—Н35	119.8	
C5—C4—H4	120.8	С34—С35—Н35	119.8	
C6—C5—C4	121.0 (4)	C35—C36—C31	121.1 (3)	
С6—С5—Н5	119.5	С35—С36—Н36	119.4	
С4—С5—Н5	119.5	С31—С36—Н36	119.4	
C5—C6—C1	121.3 (4)	O51—S51—O54	110.29 (17)	
С5—С6—Н6	119.4	O51—S51—O52	110.33 (17)	
С1—С6—Н6	119.4	O54—S51—O52	108.31 (19)	
O31—B31—O32	122.7 (3)	O51—S51—O53	111.12 (15)	
O31—B31—C31	118.1 (3)	O54—S51—O53	109.24 (16)	
O32—B31—C31	119.2 (3)	O52—S51—O53	107.46 (15)	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
O31—H31′····O53 ⁱ	0.84 (3)	1.81 (3)	2.653 (4)	175 (3)
O32—H32′···O54 ⁱ	0.84 (3)	1.96 (3)	2.744 (4)	155 (3)
N1—H1A····O54 ⁱⁱ	0.87 (4)	2.31 (4)	3.161 (5)	169 (4)
N1—H1C···O52 ⁱⁱⁱ	0.86 (2)	1.86 (2)	2.718 (4)	176 (5)
O1—H1′···O31 ^{iv}	0.84 (4)	1.99 (4)	2.803 (4)	163 (4)
N31—H31A····O52	0.86(3)	1.92 (3)	2.787 (4)	179 (3)
N31—H31 <i>C</i> ···O2	0.86 (2)	2.07 (2)	2.874 (4)	156 (3)
O2—H2′···O32 ^v	0.84 (1)	1.99 (2)	2.820 (3)	169 (4)
N1—H1 <i>B</i> ···O51 ^{vi}	0.86 (4)	2.13 (4)	2.923 (5)	152 (4)
N1—H1B····O54 ^{vi}	0.86 (4)	2.37 (4)	3.112 (5)	144 (4)
N31—H31 <i>B</i> ····O53 ^{vii}	0.86 (3)	1.90 (3)	2.744 (4)	168 (4)

Symmetry codes: (i) -*x*+2, *y*-1/2, -*z*+1/2; (ii) -*x*+1, *y*-1/2, -*z*+1/2; (iii) *x*, -*y*+3/2, *z*+1/2; (iv) -*x*+2, *y*+1/2, -*z*+1/2; (v) *x*-1, *y*, *z*; (vi) -*x*, *y*-1/2, -*z*+1/2; (vii) *x*+1, *y*, *z*.