Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rietveld refinement of whitlockiterelated $\mathrm{K}_{0.8} \mathrm{Ca}_{9.8} \mathrm{Fe}_{0.2}\left(\mathrm{PO}_{4}\right)_{7}$

Igor V. Zatovsky,* Ivan V. Ogorodnyk, Nataliya Yu. Strutynska, Nikolay S. Slobodyanik and Nataliya O. Sharkina
Department of Inorganic Chemistry, Taras Shevchenko National University, 64 Volodymyrska str., 01601 Kyiv, Ukraine
Correspondence e-mail: zvigo@yandex.ru

Received 7 April 2010; accepted 19 April 2010

Key indicators: powder X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.024 \AA$; disorder in main residue; R factor $=8.711 ; w R$ factor $=11.243$; data-to-parameter ratio $=5.4$.

The title compound, $\mathrm{K}_{0.8} \mathrm{Ca}_{9.8} \mathrm{Fe}_{0.2}\left(\mathrm{PO}_{4}\right)_{7}$ (potassium decacalcium iron heptaphosphate), belongs to the whitlockite family. The structure is built up from several types of metaloxygen polyhedra: two $\left[\mathrm{CaO}_{8}\right]$, one $\left[\mathrm{CaO}_{7}\right]$ and one $[(\mathrm{Ca} /$ $\mathrm{Fe}) \mathrm{O}_{6}$] polyhedron with a mixed $\mathrm{Ca} / \mathrm{Fe}$ occupancy in a $0.8: 0.2$ ratio, as well as three tetrahedral $\left[\mathrm{PO}_{4}\right]$ units. Of the 18 sites in the asymmetric unit, the site with the mixed $\mathrm{Ca} / \mathrm{Fe}$ occupation, the K site, one P and one O site are on special positions $6 a$ with 3 symmetry, whereas all other sites are on general positions $18 b$. The linkage of metal-oxygen polyhedra and $\left[\mathrm{PO}_{4}\right]$ tetrahedra via edges and corners results in formation of a three-dimensional framework with composition $\left[\mathrm{Ca}_{9.8} \mathrm{Fe}_{0.2}\left(\mathrm{PO}_{4}\right)_{7}\right]^{0.8-}$. The remaining K atoms (site-occupation factor $=0.8$) are located in large closed cavities and are nine-coordinated by oxygen.

Related literature

For the structure of the mineral whitlockite with idealized composition $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (β-polymorph), see: Calvo \& Gopal (1975); Yashima et al. (2003). For $\mathrm{KCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}$, see: Sandström \& Boström (2006). For powder diffraction investigations and Rietveld refinements of other phosphate-based whitlockites, see: Morozov et al. (2000) for $M^{\mathrm{I}} \mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{7}\left(M^{\mathrm{I}}\right.$ $=\mathrm{Li}, \mathrm{Na}, \mathrm{K})$; Lazoryak et al. (1996) for $\mathrm{Ca}_{9} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{7}$; Morozov et al. (2002) for $\mathrm{Ca}_{9} \mathrm{In}\left(\mathrm{PO}_{4}\right)_{7}$; Strunenkova et al. (1997) for $\mathrm{Na}_{1.5} \mathrm{Ca}_{9} \mathrm{Fe}_{0.5}\left(\mathrm{PO}_{4}\right)_{7}$. For the profile function used in the Rietveld refinement, see: Thompson et al. (1987).

Experimental

Crystal data

$\mathrm{K}_{0.8} \mathrm{Ca}_{9.8} \mathrm{Fe}_{0.2}\left(\mathrm{PO}_{4}\right)_{7}$
$M_{r}=1000.02$

$$
\begin{aligned}
& a=10.44282(1) \AA \\
& c=37.29443 \text { (3) } \AA \\
& V=3522.17(1) \AA^{3}
\end{aligned}
$$

$Z=6$	$T=293 \mathrm{~K}$
Cu K α radiation, $\lambda=1.540598 \AA$	Flat sheet, $25 \times 25 \mathrm{~mm}$
Data collection	
Shimadzu LabX XRD-6000	Scan method: step \quad diffractometer
Specimen mounting: glass container	min increment in $2 \theta=8.92^{\circ}, 2 \theta_{\max }=99.92^{\circ}$, ince.

Data collection mode: reflection

Refinement

$R_{\mathrm{p}}=8.711$
$R_{\text {wp }}=11.243$
$R_{\text {exp }}=4.919$
$R_{\text {Bragg }}=3.849$
$R(F)=2.48$
4551 data points with 839 reflections 131 parameters
4 restraints

Table 1
Selected bond lengths (\AA).

Ca1-O11 ${ }^{\text {i }}$	2.519 (10)	Ca3-O31 ${ }^{\text {vii }}$	2.47 (4)
$\mathrm{Ca} 1-\mathrm{O} 21^{\text {ii }}$	2.702 (13)	Ca3-O33 ${ }^{\text {vii }}$	2.78 (3)
$\mathrm{Ca1-O22}$	2.51 (3)	Ca3-O34	2.60 (3)
$\mathrm{Ca} 1-\mathrm{O} 23{ }^{\text {ii }}$	2.40 (2)	Ca4-O24	2.30 (3)
Ca1-O32	2.579 (17)	Ca4-O31	2.23 (4)
$\mathrm{Ca} 1-\mathrm{O} 32{ }^{\text {iii }}$	2.57 (2)	Fe4-O24	2.30 (3)
$\mathrm{Ca} 1-\mathrm{O} 33^{\text {iii }}$	2.59 (3)	Fe4-O31	2.23 (4)
Ca1-O34	2.48 (3)	K1-O12	2.90 (3)
$\mathrm{Ca} 2-\mathrm{O} 12{ }^{\text {ii }}$	2.474 (16)	K1-O21	2.508 (19)
$\mathrm{Ca} 2-\mathrm{O} 23^{\text {iv }}$	2.63 (3)	K1-O22	3.25 (3)
$\mathrm{Ca} 2-\mathrm{O} 24^{\text {iv }}$	2.444 (19)	P1-O11	1.51 (4)
$\mathrm{Ca} 2-\mathrm{O} 24^{\text {v }}$	2.48 (3)	P1-O12	1.62 (2)
$\mathrm{Ca} 2-\mathrm{O} 32^{\text {v }}$	2.41 (2)	$\mathrm{P} 2-\mathrm{O} 21$	1.49 (2)
$\mathrm{Ca} 2-\mathrm{O} 33^{\text {iii }}$	2.21 (3)	$\mathrm{P} 2-\mathrm{O} 22$	1.56 (2)
Ca2-O34	2.36 (3)	P2-O23	1.53 (2)
Ca3-O12	2.295 (15)	P2-O24	1.486 (17)
Ca3-O21	2.48 (2)	P3-O31	1.62 (3)
$\mathrm{Ca} 3-\mathrm{O} 22^{\text {vi }}$	2.49 (3)	P3-O32	1.53 (3)
$\mathrm{Ca} 3-\mathrm{O} 23^{\text {iv }}$	2.30 (3)	P3-O33	1.57 (3)
Ca3-O31	2.38 (3)	P3-O34	1.63 (2)

Symmetry codes: (i) $-x+y+\frac{2}{3}, y+\frac{1}{3}, z-\frac{1}{6}$; (ii) $-x+y,-x, z$; (iii) $-y+1, x-y, z ;$ (iv)
$x+\frac{1}{3}, x-y+\frac{2}{3}, z+\frac{1}{6} ;$ (v) $-x+y+\frac{1}{3}, y-\frac{1}{3}, z+\frac{1}{6} ;$ (vi) $-y+\frac{1}{3},-x+\frac{2}{3}, z+\frac{1}{6} ;$ (vii) $-x+y,-x+1, z$.

Data collection: PCXRD (Shimadzu, 2006); cell refinement: DICVOL 2004 (Boultif \& Louër, 2004); data reduction: FULLPROF (Rodriguez-Carvajal, 2006); program(s) used to solve structure: FULLPROF; program(s) used to refine structure: FULLPROF; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2324).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Boultif, A. \& Louër, D. (2004). J. Appl. Cryst. 37, 724-731.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Calvo, C. \& Gopal, R. (1975). Am. Mineral. 60, 120-133.
Lazoryak, B. I., Morozov, V. A., Belik, A. A., Khasanov, S. S. \& Shekhtman, V. Sh. (1996). J. Solid State Chem. 122, 15-21.

Morozov, V. A., Belik, A. A., Kotov, R. N., Presnyakov, I. A., Khasanov, S. S. \& Lazoryak, B. I. (2000). Crystallogr. Rep. 45, 13-20.
Morozov, V. A., Belik, A. A., Stefanovich, S. Yu., Grebenev, V. V., Lebedev, O. I., Tendeloo, G. V. \& Lazoryak, B. I. (2002). J. Solid State Chem. 165, 278 288.

inorganic compounds

Rodriguez-Carvajal, J. (2006). FULLPROF. Laboratoire Le'on Brillouin (CEA-CNRS), France.
Sandström, M. H. \& Boström, D. (2006). Acta Cryst. E62, i253-i255.
Shimadzu (2006). PCXRD. Shimadzu Corporation, Kyoto, Japan.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Strunenkova, T. V., Morozov, V. A., Khasanov, S. S., Pokholok, K. V., Zhdanova, A. N. \& Lazoryak, B. I. (1997). Crystallogr. Rep. 42, 55-60.
Thompson, P., Cox, D. E. \& Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.
Yashima, M., Sakai, A., Kamiyama, T. \& Hoshikawa, A. (2003). J. Solid State Chem. 175, 272-277.

supporting information

Acta Cryst. (2010). E66, i41-i42 [https://doi.org/10.1107/S1600536810014327]

Rietveld refinement of whitlockite-related $\mathrm{K}_{0.8} \mathrm{Ca}_{9.8} \mathrm{Fe}_{0.2}\left(\mathrm{PO}_{4}\right)_{7}$

Igor V. Zatovsky, Ivan V. Ogorodnyk, Nataliya Yu. Strutynska, Nikolay S. Slobodyanik and Nataliya O. Sharkina

S1. Comment

In the compound $\mathrm{K}_{0.8} \mathrm{Ca}_{9.8} \mathrm{Fe}_{0.2}\left(\mathrm{PO}_{4}\right)_{7}$, (I), atoms $\mathrm{Ca} 4 / \mathrm{Fe} 4, \mathrm{~K} 1, \mathrm{P} 1$ and O 11 are in special positions $6 a$ that lie on a 3-fold rotation axis, whereas all other atoms are located in general positions $18 b$ (Fig. 1).
Compound (I) might be represented as a result of an aliovalent substitution of calcium atoms in $\beta-\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (Calvo et al., 1975; Yashima et al., 2003) by a pair of K and Fe atoms.
$\left[\mathrm{CaO}_{x}\right]$ polyhedra (two types of $\left[\mathrm{CaO}_{8}\right]$, one of $\left[\mathrm{CaO}_{7}\right]$ and one $\left[(\mathrm{Ca} / \mathrm{Fe}) \mathrm{O}_{6}\right]$ with mixed $\mathrm{Fe} / \mathrm{Ca}$ occupancy) and three different $\left[\mathrm{PO}_{4}\right]$ tetrahedra are linked via edges and corners to built a three-dimensional framework with composition $\left[\mathrm{Ca}_{9.8} \mathrm{Fe}_{0.2}\left(\mathrm{PO}_{4}\right)_{7}\right]^{0.8-}$ (Fig. 2). The K^{+}cations are located in large closed cavities inside the framework (K 1 occupancy is equal to 0.8).
For (I), $\mathrm{Ca}-\mathrm{O}$ distances of $\left[\mathrm{CaO}_{8}\right]$ - and $\left[\mathrm{CaO}_{7}\right]$-polyhedra (2.295 (15)-2.78 (3) \AA) are close to these in previously reported isotypic compounds $s-\mathrm{Ca}_{9} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{7}\left(2.29(3)-2.73(3) \AA\right.$), $o-\mathrm{Ca} 9 \mathrm{Fe}^{2}\left(\mathrm{PO}_{4}\right)_{7}(2.29$ (3)-2.70 (4) \AA) (Lazoryak et al., 1996) and $\mathrm{KCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}(2.329$ (3)-2.76 (2) \AA) (Sandström \& Boström, 2006). The distances $\mathrm{Ca} / \mathrm{Fe}-\mathrm{O}$ (2.23 (4)-2.29 (3) \AA) within the $\left[(\mathrm{Ca} / \mathrm{Fe}) \mathrm{O}_{6}\right]$ polyhedron are close to these of the $\left[\mathrm{CaO}_{6}\right]$ polyhedron in $\mathrm{KCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}(2.239(4)-2.267$ (4) $\AA)$, while they significantly differ from $d(\mathrm{Fe}-\mathrm{O})=1.95(3)-2.17(3) \AA$ in $\mathrm{Ca}{ }_{9} \mathrm{Fe}^{\left(\mathrm{PO}_{4}\right)_{7}}$.
Potassium atoms are nine-coordinated (three triples of $\mathrm{K} — \mathrm{O}$ distances in the range of 2.508 (19)-3.24 (3) \AA) (Fig. 3), while in $\mathrm{KCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}$ the $\mathrm{K}-\mathrm{O}$ contacts vary in the range of 2.641 (3)-3.25 (4) \AA.
In conclusion, compound (I) can be considered as a solid solution within the $\mathrm{KCa}_{10}\left(\mathrm{PO}_{4}\right)_{7} / \mathrm{Ca} 9 \mathrm{Fe}^{(}\left(\mathrm{PO}_{4}\right)_{7}$ double system.

S2. Experimental

The title compound was prepared by solid state reaction from a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CaCO}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ in the molar ratio $\mathrm{K} / \mathrm{Ca} / \mathrm{Fe} / \mathrm{P}=0.8: 9.8: 0.2: 7.0$. The reagents were finely ground in an agate mortar and then placed in a porcelain crucible. The thermal treatment was carried out in three steps. The first included preheating to 873 K to decompose the ammonium salt and carbonates. After that, the mixture was heated at 1273 K for 12 h , cooled to room temperature, reground, and held at 1373 K for 6 h . The resulting product was a pale pink powder.

S3. Refinement

The powder pattern was indexed in rhombohedral cell (hexagonal setting) by Dicvol 2004 (Boultif \& Louër, 2004). The structure of $\mathrm{KCa}_{10}\left(\mathrm{PO}_{4}\right)_{7}$ (Sandström \& Boström, 2006) was selected as a starting model for Rietveld refinement. Profile matching refinement was performed firstly. Then scaling factor and background were added to the refined parameters. The background was approximated using linear interpolation between a set of background points with refineable heights. A modified pseudo-Voigt function (Thompson et al., 1987) was used for the profile refinement. As it was determined previously, only one position of calcium is suitable for heterovalent substitution by a three-valent $3 d$-metal. It is the
octahedrally coordinated Ca 4 site. Thus the iron site was placed into the Ca 4 position. The occupancy of iron was fixed at 0.2 while the remaining calcium occupancy was set to 0.8 . The potassium occupancy was set to 0.8 due to electroneutrality of the compound. The atomic coordinates and $\mathrm{B}_{\text {iso }}$ of Ca and Fe were constrained to be equal. ADPs of all P atoms were constrained to be equal as well as the ADPs of all O atoms. The value of $\mathrm{B}_{\text {iso }}$ for Ca 4 was restrained in the range of $0.17-0.3$. The value of $\mathrm{B}_{\text {iso }}$ for O 11 was also restrained in the range of $0.2-0.3$. Two distance restraints for P 2 - O21 and P2-O23 bonds were applied. Experimental, calculated and difference patterns after the final refinement cycle are shown in Fig. 4.

Figure 1
A view of the unit cell content of compound (I).

Figure 2
Connectivity of the metal-oxygen polyhedra and PO_{4} groups in (I).

Figure 3
Coordination environment of the atoms in $6 a$ position.

Figure 4
Rietveld refinement of $\mathrm{K}_{0.8} \mathrm{Ca}_{9.8} \mathrm{Fe}_{0.2}\left(\mathrm{PO}_{4}\right)_{7}$. Experimental (dots), calculated (red curve) and difference (blue curve) data for 2θ range $9-72^{\circ}$.
potassium decacalcium iron heptaphosphate

Crystal data

$\mathrm{K}_{0.8} \mathrm{Ca}_{9.8} \mathrm{Fe}_{0.2}\left(\mathrm{PO}_{4}\right)_{7}$
$M_{r}=1100.02$
Trigonal, $R 3 c$
Hall symbol: R 3-2"c
$D_{\mathrm{x}}=3.112 \mathrm{Mg} \mathrm{m}^{-3}$
$a=10.44282$ (1) \AA
$T=293 \mathrm{~K}$
$c=37.29443$ (3) \AA
$V=3522.17$ (1) \AA^{3}
$Z=6$
Particle morphology: isometric
light pink
flat_sheet, $25 \times 25 \mathrm{~mm}$
Specimen preparation: Prepared at 293 K and
101.3 kPa

Data collection

Shimadzu LabX XRD-6000
diffractometer
Radiation source: X-ray tube, X-ray
Graphite monochromator
Specimen mounting: glass container
Data collection mode: reflection
Scan method: step
$2 \theta_{\text {min }}=8.915^{\circ}, 2 \theta_{\text {max }}=99.915^{\circ}, 2 \theta_{\text {step }}=0.020^{\circ}$

Refinement

$R_{\mathrm{p}}=8.711$
$R_{\mathrm{wp}}=11.243$
$R_{\text {exp }}=4.919$
$R_{\text {Bragg }}=3.849$
$R(F)=2.48$
4551 data points
Excluded region(s): undef
Profile function: Thompson-Cox-Hastings pseudo-Voigt * Axial divergence asymmetry
131 parameters

4 restraints

4 constraints
Standard least squares refinement
$(\Delta / \sigma)_{\max }=0.001$
Background function: Linear Interpolation between a set background points with refinable heights
Preferred orientation correction: Modified March's Function

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
Ca1	$0.3986(5)$	$0.1868(7)$	$0.0212(4)$	$0.0022(18)^{*}$	
Ca2	$0.3922(6)$	$0.1887(10)$	$0.1265(4)$	$0.0022(16)^{*}$	
Ca3	$0.1776(11)$	$0.3817(6)$	$0.0949(5)$	$0.003(2)^{*}$	
Ca4	0.33333	0.66667	$0.0288(5)$	$0.002(2)^{*}$	0.80000
Fe4	0.33333	0.66667	$0.0288(5)$	$0.002(2)^{*}$	0.20000
K1	0.00000	0.00000	$0.0447(5)$	$0.004(4)^{*}$	0.80000
P1	0.00000	0.00000	$0.1293(5)$	$0.0031(11)^{*}$	
P2	$0.1351(9)$	$0.3124(6)$	$-0.0032(4)$	$0.0031(11)^{*}$	
P3	$0.4897(11)$	$0.4749(11)$	$0.0609(5)$	$0.0031(11)^{*}$	
O11	0.00000	0.00000	$0.1699(8)$	$0.0025(11)^{*}$	
O12	$0.0071(19)$	$0.1449(14)$	$0.1115(7)$	$0.0025(11)^{*}$	
O21	$0.0912(15)$	$0.2697(15)$	$0.0349(4)$	$0.0025(11)^{*}$	
O22	$0.222(2)$	$0.233(2)$	$-0.0145(6)$	$0.0025(11)^{*}$	
O23	$-0.0066(16)$	$0.265(2)$	$-0.0248(5)$	$0.0025(11)^{*}$	
O24	$0.229(3)$	$0.4728(17)$	$-0.0110(6)$	$0.0025(11)^{*}$	
O31	$0.408(3)$	$0.567(3)$	$0.0709(7)$	$0.0025(11)^{*}$	
O32	$0.5039(17)$	$0.4689(16)$	$0.0203(5)$	$0.0025(11)^{*}$	
O33	$0.6427(19)$	$0.5475(19)$	$0.0808(6)$	$0.0025(11)^{*}$	
O34	$0.3720(19)$	$0.3100(19)$	$0.0752(7)$	$0.0025(11)^{*}$	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$?$	$?$	$?$	$?$	$?$	$?$	$?$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Ca1}-\mathrm{O} 11^{\mathrm{i}}$	2.519 (10)	$\mathrm{Ca} 4-\mathrm{O} 31{ }^{\text {viii }}$	2.23 (4)
$\mathrm{Ca}-\mathrm{O} 21^{\text {ii }}$	2.702 (13)	Fe4-O24 ${ }^{\text {viii }}$	2.30 (3)
$\mathrm{Ca} 1-\mathrm{O} 22$	2.51 (3)	Fe4-O24	2.30 (3)
$\mathrm{Ca} 1-\mathrm{O} 23{ }^{\text {ii }}$	2.40 (2)	Fe4-O24 ${ }^{\text {vii }}$	2.30 (3)
$\mathrm{Ca}-\mathrm{O} 32$	2.579 (17)	Fe4-O31	2.23 (4)
$\mathrm{Ca} 1-\mathrm{O} 32{ }^{\text {iii }}$	2.57 (2)	Fe4-O31 ${ }^{\text {vii }}$	2.23 (4)
$\mathrm{Ca} 1-\mathrm{O} 33^{\text {iii }}$	2.59 (3)	Fe4-O31 ${ }^{\text {viii }}$	2.23 (4)
Ca1-O34	2.48 (3)	K1-O12	2.90 (3)
$\mathrm{Ca} 2-\mathrm{O} 12{ }^{\text {ii }}$	2.474 (16)	$\mathrm{K} 1-\mathrm{O} 12^{\text {ii }}$	2.90 (3)
$\mathrm{Ca} 2-\mathrm{O} 23{ }^{\text {iv }}$	2.63 (3)	$\mathrm{K} 1-\mathrm{O} 12^{\mathrm{ix}}$	2.90 (3)
$\mathrm{Ca} 2-\mathrm{O} 24{ }^{\text {iv }}$	2.444 (19)	K1-O21	2.508 (19)
$\mathrm{Ca} 2-\mathrm{O} 24^{\text {v }}$	2.48 (3)	$\mathrm{K} 1-\mathrm{O} 21^{\text {ii }}$	2.508 (19)
$\mathrm{Ca} 2-\mathrm{O} 32^{\text {v }}$	2.41 (2)	$\mathrm{K} 1-\mathrm{O} 21^{\mathrm{ix}}$	2.508 (19)
$\mathrm{Ca} 2-\mathrm{O} 33^{\text {iii }}$	2.21 (3)	$\mathrm{K} 1-\mathrm{O} 22$	3.25 (3)
Ca2-O34	2.36 (3)	$\mathrm{K} 1-\mathrm{O} 22^{\text {ii }}$	3.25 (3)
$\mathrm{Ca3}-\mathrm{O} 12$	2.295 (15)	$\mathrm{K} 1-\mathrm{O} 22^{\mathrm{ix}}$	3.25 (3)
$\mathrm{Ca} 3-\mathrm{O} 21$	2.48 (2)	P1-O11	1.51 (4)
$\mathrm{Ca} 3-\mathrm{O} 22^{\text {vi }}$	2.49 (3)	P1-O12	1.62 (2)

Ca3-O23 ${ }^{\text {iv }}$	2.30 (3)	P1-O12 ${ }^{\text {ix }}$	1.62 (2)
Ca3-031	2.38 (3)	$\mathrm{P} 1-\mathrm{O} 12^{\text {ii }}$	1.62 (2)
Ca3-O31 ${ }^{\text {vi }}$	2.47 (4)	$\mathrm{P} 2-\mathrm{O} 21$	1.49 (2)
Ca3-O33 ${ }^{\text {vii }}$	2.78 (3)	P2-O22	1.56 (2)
Ca3-O34	2.60 (3)	$\mathrm{P} 2-\mathrm{O} 23$	1.53 (2)
$\mathrm{Ca4-O24}{ }^{\text {viii }}$	2.30 (3)	P2-O24	1.486 (17)
$\mathrm{Ca} 4-\mathrm{O} 24$	2.30 (3)	P3-O31	1.62 (3)
$\mathrm{Ca4-O24}{ }^{\text {vii }}$	2.30 (3)	P3-O32	1.53 (3)
Ca4-O31	2.23 (4)	P3-O33	1.57 (3)
Ca4-O31 ${ }^{\text {vii }}$	2.23 (4)	P3-O34	1.63 (2)
$\mathrm{O} 24-\mathrm{Fe} 4-\mathrm{O} 24{ }^{\text {vii }}$	82.8 (11)	$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 23$	114.2 (13)
$\mathrm{O} 24-\mathrm{Fe} 4-\mathrm{O} 31{ }^{\text {vii }}$	101.7 (10)	$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 24$	108.3 (15)
O24 ${ }^{\text {viii- }-\mathrm{Fe} 4-\mathrm{O} 31}$	101.6 (10)	$\mathrm{O} 23-\mathrm{P} 2-\mathrm{O} 24$	104.3 (15)
O31-Fe4-O31 ${ }^{\text {viii }}$	75.9 (12)	O31-P3-O32	110.2 (15)
O24 ${ }^{\text {vii-Fe4-O31 }}$	175.2 (13)	O31-P3-O33	108.4 (15)
$\mathrm{O} 31-\mathrm{Fe} 4-\mathrm{O} 31{ }^{\text {vii }}$	75.9 (14)	O31-P3-O34	102.1 (15)
$\mathrm{O} 24{ }^{\text {viii- }} \mathrm{Fe} 4-\mathrm{O} 31^{\text {viii }}$	99.6 (11)	O32-P3-O33	113.1 (14)
$\mathrm{O} 24{ }^{\text {viii-Fe4-O2 }}$ - $4^{\text {vii }}$	82.8 (11)	O32-P3-O34	108.6 (13)
O24 ${ }^{\text {viii-Fe4-O31 }}$ - ${ }^{\text {vii }}$	175.2 (12)	O33-P3-O34	113.8 (14)
$\mathrm{O} 24{ }^{\text {vii- }}$ - $\mathrm{Fe} 4-\mathrm{O} 1^{\text {viii }}$	101.7 (11)	$\mathrm{O} 12{ }^{\text {ix }}-\mathrm{P} 1-\mathrm{O} 12^{\text {ii }}$	104.3 (12)
O31 ${ }^{\text {viii-Fe4-O31 }}$ - ${ }^{\text {vii }}$	75.9 (13)	$\mathrm{O} 11-\mathrm{P} 1-\mathrm{O} 12^{\mathrm{ii}}$	114.2 (11)
$\mathrm{O} 24{ }^{\text {vii- }}$-Fe4-O31 ${ }^{\text {vii }}$	99.6 (13)	O11-P1-O12	114.2 (11)
O24-Fe4-O31	99.6 (9)	O11-P1-O12 ${ }^{\text {ix }}$	114.2 (11)
$\mathrm{O} 24-\mathrm{Fe} 4-\mathrm{O} 24{ }^{\text {viii }}$	82.8 (11)	$\mathrm{O} 12-\mathrm{P} 1-\mathrm{O} 12^{\text {ix }}$	104.4 (12)
$\mathrm{O} 24-\mathrm{Fe} 4-\mathrm{O} 31^{\text {viii }}$	175.2 (12)	$\mathrm{O} 12-\mathrm{P} 1-\mathrm{O} 12^{\text {ii }}$	104.4 (13)
O21-P2-O22	105.8 (12)	Fe4-O24-P2	128.4 (15)
$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 23$	107.5 (11)	Fe4-O31-P3	121.8 (16)
$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 24$	117.0 (13)		

[^0]
[^0]: Symmetry codes: (i) $-x+y+2 / 3, y+1 / 3, z-1 / 6$; (ii) $-x+y,-x, z$; (iii) $-y+1, x-y, z$; (iv) $x+1 / 3, x-y+2 / 3, z+1 / 6$; (v) $-x+y+1 / 3, y-1 / 3, z+1 / 6$; (vi) $-y+1 / 3$, $-x+2 / 3, z+1 / 6$; (vii) $-x+y,-x+1, z$; (viii) $-y+1, x-y+1, z$; (ix) $-y, x-y, z$.

