

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 1-tert-butyl-2-(4-hydroxy-3methoxyphenyl)-1H-benzimidazole-5carboxylate

Natarajan Arumugam,^a Aisyah Saad Abdul Rahim,^a‡ Hasnah Osman,^b Mohd Mustaqim Rosli^c and Hoong-Kun Fun^c*§

^aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.mv

Received 25 March 2010; accepted 30 March 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.134; data-to-parameter ratio = 21.7.

In the title compound, $C_{21}H_{24}N_2O_4$, the benzimidazole ring system is almost planar, with a maximum deviation of 0.047 (1) Å and makes a dihedral angle of $88.44 (5)^{\circ}$ with the attached benzene ring. In the crystal, molecules form infinite chains along the b axis by way of intermolecular O- $H \cdots N$ and $C - H \cdots O$ interactions. Weak $C - H \cdots \pi$ also contribute to the stabilization of the crystal structure.

Related literature

For the biological properties of benzimidazole-based heterocyclic compounds, see: Townsend et al. (1970); Blythin et al. (1986); Lemura et al. (1986); Zhang et al. (2008); Bonfanti et al. (2008); Ozden et al. (2008). For related structures, see Arumugam, Abd Hamid et al. (2010); Arumugam, Abdul Rahim, Abd Hamid et al. (2010); Arumugam, Abdul Rahim, Osman et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

[‡] Additional correspondence author, e-mail: aisyah@usm.my. § Thomson Reuters ResearcherID: A-3561-2009.

0.15 mm

21041 measured reflections

 $R_{\rm int} = 0.039$

refinement $\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

5484 independent reflections

4104 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Experimental

Crystal data

$C_{21}H_{24}N_2O_4$	V = 1885.5 (2) Å ³
$M_r = 368.42$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.2610 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 13.6096 (9) Å	$T = 100 {\rm K}$
c = 16.3200 (9) Å	$0.38 \times 0.23 \times 0.15$
$\beta = 113.560 \ (3)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.967, \ T_{\max} = 0.986$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.134$ S = 1.075484 reflections 253 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C8-C13 benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 01 - H101 \cdots N1^{i} \\ C2 - H2A \cdots 02^{ii} \\ C13 - H13A \cdots 03^{iii} \\ C18 - H18B \cdots 04^{iii} \\ C18 - H18C \cdots 01^{iv} \\ C18 - H18A \cdots Cg1^{v} \\ C18 - H18A \cdots Cg1^{v} \\ C20 - H20B \cdots Cg1 \end{array}$	0.85 (2) 0.93 0.93 0.96 0.96 0.96 0.96 0.96	1.97 (2) 2.58 2.56 2.60 2.54 2.89 2.81	2.7475 (17) 3.3648 (17) 3.4223 (17) 3.514 (2) 3.4753 (17) 3.5798 (16) 3.4764 (17)	151.7 (19) 142 154 160 163 129 127

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x, -y + 1, -z + 1; (iv) -x, -y, -z + 1; (v) $x, -y - \frac{1}{2}, z - \frac{3}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

NA, ASAR and HO gratefully acknowledge Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under the USM Research University Grant (1001/ PFARMASI/815026). NA thanks Universiti Sains Malaysia for the award of a postdoctoral fellowship. HKF and MMR thank Universiti Sains Malaysia for the Research University Golden Goose grant (No. 1001/PFIZIK/811012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2380).

References

Arumugam, N., Abd Hamid, S., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, 0776-0777.

Arumugam, N., Abdul Rahim, A. S., Abd Hamid, S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, 0796-0797.

- Arumugam, N., Abdul Rahim, A. S., Osman, H., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, 0845.
- Blythin, D. J., Kaminski, J. J., Domalski, M. S., Spitler, J., Solomon, D. M., Conn, D. J., Wong, S. C., Verbiar, L. L., Bober, L. A., Chiu, P. J. S., Watnick, A. S., Siegel, M. I., Hilbert, J. M. & McPhail, A. T. (1986). *J. Med. Chem.* 29, 1099–1113.
- Bonfanti, J. F., Meyer, C., Doublet, F., Fortin, J., Muller, P., Queguiner, L., Gevers, T., Janssens, P., Szel, H., Willebrords, R., Timmerman, P., Wuyts, K., Van Remoortere, P., Janssens, F., Wigerinck, P. & Andries, K. (2008). J. Med. Chem. 51, 875–896.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Lemura, R., Kawashima, T., Fukuda, T., Ito, K. & Tsukamoto, G. (1986). J. Med. Chem. 29, 1178–1183.
- Ozden, S., Atabey, D., Yildiz, S. & Goker, H. (2008). Eur. J. Med. Chem. 43, 1390–1402.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Townsend, L. B. & Revankar, G. R. (1970). Chem. Rev. 70, 389-438.
- Zhang, G., Ren, P., Gray, N. S., Sim, T., Liu, Y., Wang, X., Che, J., Tian, S., Sandberg, M. L., Spalding, T. A., Romeo, R., Iskandar, M., Chow, D., Deidel, H. M., Karanewsky, D. S. & He, Y. (2008). *Bioorg. Med. Chem. Lett.* 18, 5618–5621.

supporting information

Acta Cryst. (2010). E66, o1051–o1052 [https://doi.org/10.1107/S1600536810011918]

Ethyl 1-*tert*-butyl-2-(4-hydroxy-3-methoxyphenyl)-1*H*-benzimidazole-5-carboxylate

Natarajan Arumugam, Aisyah Saad Abdul Rahim, Hasnah Osman, Mohd Mustaqim Rosli and Hoong-Kun Fun

S1. Comment

Benzimidazole-based heterocycles are known to exhibit antihistamine (Lemura *et al.*, 1986), immunosuppressive (Zhang *et al.*, 2008), anti-inflammatory (Blythin *et al.*, 1986), antiviral (Bonfanti *et al.*, 2008) and antibacterial (Ozden *et al.*, 2008) activities. In particular, substituted benzimidazole derivatives act as potential anticancer agents (Townsend *et al.*, 1970). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented here.

All molecular geometric parameters in the title compound are within normal ranges and are comparable with those in related crystal structures (Arumugam, Abd Hamid *et al.* (2010); Arumugam, Abdul Rahim, Abd Hamid *et al.* (2010)). Arumugam, Abdul Rahim, Osman *et al.* (2010)). The benzimidazole ring system (N1/N2/C1-C7) is planar with a maximum deviation of 0.047 (1) Å for atom C1. The dihedral angle between the benzimidazole ring system (N1/N2/C1-C7) and the attached benzene ring (C8-C13) is 88.44 (5)°.

In the crystal structure, molecules are connected by intermolecular O1—H1O1…N1ⁱ, C2—H2A…O2ⁱⁱ, C13—H13A…O3ⁱⁱⁱ, C18—H18B…O4ⁱⁱⁱ and C18—H18C…O1^{iv} interactions (Table 1). These interactions link the molecules to form infinite one-dimensional chains along the b-axis (Fig. 2). The crystal structure is further stabilized by C—H… π interactions (Table 1), involving the C8-C13 (centroid Cg1) rings.

S2. Experimental

The title compound was synthesised according to the previous procedure described by us (Arumugam, Abd Hamid *et al.* (2010); Arumugam, Abdul Rahim, Abd Hamid *et al.* (2010); Arumugam, Abdul Rahim, Osman *et al.* (2010)). The product was recrystallised from EtOAc to afford the title compound as colourless crystals.

S3. Refinement

The H atom attached to O1 was located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically [CH = 0.93, 0.96 or 0.97 Å] and were refined using a riding model, with $U_{iso}(H) = x U_{eq}(C)$, where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating group model was used for the methyl groups.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2

The crystal structure of the title compound, showing infinite chains along the b-axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions have been omitted for clarity.

Ethyl 1-tert-butyl-2-(4-hydroxy-3-methoxyphenyl)- 1H-benzimidazole-5-carboxylate

Crystal data	
$C_{21}H_{24}N_2O_4$	F(000) = 784
$M_r = 368.42$	$D_{\rm x} = 1.298 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4617 reflections
a = 9.2610 (6) Å	$\theta = 2.4 - 30.0^{\circ}$
b = 13.6096 (9) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 16.3200 (9) Å	T = 100 K
$\beta = 113.560 \ (3)^{\circ}$	Block, colourless
V = 1885.5 (2) Å ³	$0.38 \times 0.23 \times 0.15 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.967, T_{\max} = 0.986$	21041 measured reflections 5484 independent reflections 4104 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 30.0^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -13 \rightarrow 13$ $k = -16 \rightarrow 19$ $l = -22 \rightarrow 22$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.134$ S = 1.07 5484 reflections 253 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0645P)^2 + 0.3983P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.36$ e Å ⁻³ $\Delta\rho_{min} = -0.38$ e Å ⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.07059 (12)	-0.06665 (7)	0.77515 (6)	0.0237 (2)	
O2	-0.19758 (11)	0.02786 (7)	0.67345 (6)	0.0254 (2)	
03	0.35717 (13)	0.74808 (8)	0.53807 (7)	0.0364 (3)	
O4	0.36828 (12)	0.71957 (7)	0.67609 (7)	0.0287 (2)	
N1	0.14388 (13)	0.37334 (8)	0.65777 (7)	0.0217 (2)	
N2	0.14885 (12)	0.29733 (8)	0.53582 (7)	0.0188 (2)	
C1	0.18878 (14)	0.44031 (9)	0.60878 (8)	0.0197 (2)	
C2	0.23604 (15)	0.53759 (9)	0.63023 (9)	0.0216 (3)	
H2A	0.2337	0.5669	0.6812	0.026*	
C3	0.28664 (15)	0.58934 (10)	0.57327 (9)	0.0226 (3)	
C4	0.28918 (17)	0.54393 (11)	0.49670 (9)	0.0280 (3)	
H4A	0.3209	0.5803	0.4586	0.034*	
C5	0.24598 (17)	0.44675 (11)	0.47600 (9)	0.0266 (3)	
H5A	0.2513	0.4171	0.4259	0.032*	

C6	0.19403 (14)	0.39470 (9)	0.53306 (8)	0.0189 (2)
C7	0.12336 (15)	0.28957 (9)	0.61386 (8)	0.0191 (2)
C8	0.10037 (15)	0.19642 (9)	0.65461 (8)	0.0200 (2)
С9	0.23493 (16)	0.14552 (10)	0.70872 (9)	0.0230 (3)
H9A	0.3338	0.1700	0.7176	0.028*
C10	0.22263 (15)	0.05846 (10)	0.74952 (8)	0.0225 (3)
H10A	0.3135	0.0253	0.7859	0.027*
C11	0.07666 (15)	0.02047 (9)	0.73664 (8)	0.0200 (2)
C12	-0.05955 (14)	0.07243 (9)	0.68283 (8)	0.0194 (2)
C13	-0.04751 (15)	0.16086 (9)	0.64290 (8)	0.0208 (2)
H13A	-0.1378	0.1959	0.6086	0.025*
C14	0.34014 (15)	0.69310 (10)	0.59183 (10)	0.0259 (3)
C15	0.42106 (18)	0.82010 (11)	0.70149 (11)	0.0345 (3)
H15A	0.3440	0.8664	0.6631	0.041*
H15B	0.5206	0.8316	0.6966	0.041*
C16	0.43956 (19)	0.83178 (12)	0.79658 (12)	0.0391 (4)
H16A	0.4813	0.8958	0.8179	0.059*
H16B	0.5104	0.7825	0.8330	0.059*
H16C	0.3388	0.8245	0.7998	0.059*
C17	0.13687 (15)	0.22114 (10)	0.46624 (8)	0.0216 (3)
C18	0.03674 (17)	0.26257 (11)	0.37384 (9)	0.0288 (3)
H18A	0.0878	0.3193	0.3627	0.043*
H18B	-0.0649	0.2809	0.3715	0.043*
H18C	0.0244	0.2135	0.3292	0.043*
C19	0.30259 (19)	0.19690 (15)	0.47440 (12)	0.0442 (4)
H19A	0.3547	0.2562	0.4694	0.066*
H19B	0.2968	0.1524	0.4276	0.066*
H19C	0.3608	0.1669	0.5314	0.066*
C20	0.0556 (2)	0.12740 (11)	0.47674 (10)	0.0371 (4)
H20A	-0.0449	0.1436	0.4774	0.056*
H20B	0.1198	0.0956	0.5318	0.056*
H20C	0.0406	0.0840	0.4276	0.056*
C21	-0.34028 (17)	0.07449 (12)	0.61686 (11)	0.0351 (3)
H21A	-0.4283	0.0351	0.6138	0.053*
H21B	-0.3418	0.0818	0.5580	0.053*
H21C	-0.3470	0.1381	0.6406	0.053*
H1O1	-0.017 (2)	-0.0742 (15)	0.7803 (13)	0.043 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0303 (5)	0.0185 (5)	0.0257 (5)	0.0017 (4)	0.0147 (4)	0.0052 (4)
O2	0.0234 (4)	0.0252 (5)	0.0272 (5)	-0.0011 (4)	0.0097 (4)	0.0039 (4)
O3	0.0399 (6)	0.0290 (6)	0.0354 (6)	-0.0100 (4)	0.0098 (5)	0.0102 (4)
O4	0.0335 (5)	0.0167 (5)	0.0321 (5)	-0.0054 (4)	0.0090 (4)	-0.0001 (4)
N1	0.0333 (6)	0.0147 (5)	0.0223 (5)	-0.0016 (4)	0.0165 (4)	-0.0007 (4)
N2	0.0254 (5)	0.0159 (5)	0.0167 (5)	0.0003 (4)	0.0102 (4)	-0.0001 (4)
C1	0.0244 (6)	0.0160 (6)	0.0209 (6)	0.0017 (4)	0.0113 (5)	0.0014 (4)

Acta Cryst. (2010). E66, o1051–o1052

supporting information

C2	0.0278 (6)	0.0160 (6)	0.0233 (6)	0.0006 (5)	0.0127 (5)	0.0007 (5)
C3	0.0225 (6)	0.0192 (6)	0.0248 (6)	-0.0014 (5)	0.0082 (5)	0.0035 (5)
C4	0.0327 (7)	0.0291 (7)	0.0236 (6)	-0.0071 (6)	0.0129 (5)	0.0047 (5)
C5	0.0345 (7)	0.0286 (7)	0.0198 (6)	-0.0048 (6)	0.0141 (5)	0.0004 (5)
C6	0.0211 (5)	0.0180 (6)	0.0181 (5)	0.0006 (4)	0.0084 (4)	0.0019 (4)
C7	0.0257 (6)	0.0158 (6)	0.0180 (5)	0.0010 (5)	0.0109 (5)	-0.0001 (4)
C8	0.0308 (6)	0.0139 (5)	0.0175 (5)	-0.0014 (5)	0.0121 (5)	-0.0018 (4)
C9	0.0269 (6)	0.0194 (6)	0.0239 (6)	-0.0012 (5)	0.0115 (5)	0.0002 (5)
C10	0.0254 (6)	0.0199 (6)	0.0221 (6)	0.0022 (5)	0.0096 (5)	0.0019 (5)
C11	0.0292 (6)	0.0156 (6)	0.0170 (5)	0.0004 (5)	0.0112 (5)	-0.0009 (4)
C12	0.0246 (6)	0.0179 (6)	0.0171 (5)	-0.0007 (5)	0.0096 (4)	-0.0017 (4)
C13	0.0278 (6)	0.0174 (6)	0.0174 (5)	0.0010 (5)	0.0093 (5)	-0.0001 (4)
C14	0.0224 (6)	0.0209 (6)	0.0305 (7)	-0.0021 (5)	0.0066 (5)	0.0057 (5)
C15	0.0337 (7)	0.0170 (6)	0.0434 (9)	-0.0045 (5)	0.0055 (6)	0.0015 (6)
C16	0.0315 (7)	0.0257 (8)	0.0512 (10)	0.0000 (6)	0.0072 (7)	-0.0070 (7)
C17	0.0282 (6)	0.0203 (6)	0.0174 (5)	0.0023 (5)	0.0102 (5)	-0.0032 (5)
C18	0.0363 (7)	0.0271 (7)	0.0188 (6)	-0.0016 (6)	0.0066 (5)	-0.0020 (5)
C19	0.0322 (8)	0.0571 (11)	0.0409 (9)	0.0112 (7)	0.0119 (7)	-0.0200 (8)
C20	0.0704 (11)	0.0197 (7)	0.0252 (7)	-0.0065 (7)	0.0235 (7)	-0.0064 (5)
C21	0.0242 (6)	0.0335 (8)	0.0437 (9)	0.0012 (6)	0.0095 (6)	0.0084 (7)

Geometric parameters (Å, °)

01—C11	1.3536 (15)	C10—C11	1.3827 (18)
O1—H1O1	0.857 (19)	C10—H10A	0.9300
O2—C12	1.3672 (15)	C11—C12	1.4060 (17)
O2—C21	1.4235 (17)	C12—C13	1.3941 (17)
O3—C14	1.2104 (17)	C13—H13A	0.9300
O4—C14	1.3424 (18)	C15—C16	1.500 (2)
O4—C15	1.4563 (17)	C15—H15A	0.9700
N1—C7	1.3193 (16)	C15—H15B	0.9700
N1-C1	1.3815 (16)	C16—H16A	0.9600
N2—C7	1.3890 (16)	C16—H16B	0.9600
N2—C6	1.3958 (16)	C16—H16C	0.9600
N2—C17	1.5086 (16)	C17—C19	1.523 (2)
C1—C2	1.3945 (17)	C17—C20	1.525 (2)
C1—C6	1.4010 (17)	C17—C18	1.5278 (18)
C2—C3	1.3885 (18)	C18—H18A	0.9600
C2—H2A	0.9300	C18—H18B	0.9600
C3—C4	1.4027 (19)	C18—H18C	0.9600
C3—C14	1.4871 (19)	C19—H19A	0.9600
C4—C5	1.384 (2)	C19—H19B	0.9600
C4—H4A	0.9300	C19—H19C	0.9600
C5—C6	1.3995 (18)	C20—H20A	0.9600
C5—H5A	0.9300	C20—H20B	0.9600
C7—C8	1.4858 (17)	C20—H20C	0.9600
С8—С9	1.3903 (18)	C21—H21A	0.9600
C8—C13	1.3918 (18)	C21—H21B	0.9600

supporting information

C9—C10	1.3860 (18)	C21—H21C	0.9600
С9—Н9А	0.9300		
C11—O1—H1O1	111.5 (13)	O3—C14—O4	123.26 (13)
C12—O2—C21	117.31 (11)	O3—C14—C3	124.66 (14)
C14—O4—C15	116.70 (11)	O4—C14—C3	112.08 (11)
C7—N1—C1	105.49 (10)	O4—C15—C16	106.30 (12)
C7—N2—C6	105.36 (10)	O4—C15—H15A	110.5
C7—N2—C17	130.51 (11)	C16—C15—H15A	110.5
C6—N2—C17	124.12 (10)	O4—C15—H15B	110.5
N1—C1—C2	128.17 (12)	C16-C15-H15B	110.5
N1-C1-C6	110.05 (11)	H15A—C15—H15B	108.7
C2—C1—C6	121.60 (12)	C15—C16—H16A	109.5
C3—C2—C1	118.01 (12)	C15—C16—H16B	109.5
C3—C2—H2A	121.0	H16A—C16—H16B	109.5
C1—C2—H2A	121.0	C15—C16—H16C	109.5
C2—C3—C4	120.21 (12)	H16A—C16—H16C	109.5
C2—C3—C14	121.30 (12)	H16B—C16—H16C	109.5
C4—C3—C14	118.49 (12)	N2—C17—C19	108.35 (11)
C5—C4—C3	122.17 (13)	N2—C17—C20	112.42 (10)
C5—C4—H4A	118.9	C19—C17—C20	109.53 (13)
C3—C4—H4A	118.9	N2—C17—C18	108.80 (11)
C4—C5—C6	117.65 (13)	C19—C17—C18	111.05 (12)
C4—C5—H5A	121.2	C20-C17-C18	106.70 (11)
С6—С5—Н5А	121.2	C17—C18—H18A	109.5
N2—C6—C5	133.58 (12)	C17—C18—H18B	109.5
N2—C6—C1	105.99 (10)	H18A—C18—H18B	109.5
C5—C6—C1	120.33 (12)	C17—C18—H18C	109.5
N1—C7—N2	113.08 (11)	H18A—C18—H18C	109.5
N1—C7—C8	120.63 (11)	H18B—C18—H18C	109.5
N2—C7—C8	125.63 (11)	С17—С19—Н19А	109.5
C9—C8—C13	119.80 (12)	С17—С19—Н19В	109.5
C9—C8—C7	117.19 (11)	H19A—C19—H19B	109.5
C13—C8—C7	122.98 (11)	С17—С19—Н19С	109.5
C10—C9—C8	120.41 (12)	H19A—C19—H19C	109.5
С10—С9—Н9А	119.8	H19B—C19—H19C	109.5
С8—С9—Н9А	119.8	C17—C20—H20A	109.5
C11—C10—C9	120.65 (12)	C17—C20—H20B	109.5
С11—С10—Н10А	119.7	H20A—C20—H20B	109.5
C9—C10—H10A	119.7	C17—C20—H20C	109.5
O1—C11—C10	118.45 (11)	H20A—C20—H20C	109.5
01-C11-C12	122.49 (11)	H20B—C20—H20C	109.5
C10-C11-C12	119.04 (12)	O2—C21—H21A	109.5
O2—C12—C13	125.21 (11)	O2—C21—H21B	109.5
O2—C12—C11	114.33 (11)	H21A—C21—H21B	109.5
C13—C12—C11	120.45 (12)	O2—C21—H21C	109.5
C8—C13—C12	119.62 (12)	H21A—C21—H21C	109.5
С8—С13—Н13А	120.2	H21B—C21—H21C	109.5

С12—С13—Н13А	120.2		
C7—N1—C1—C2	-174.69 (13)	C13—C8—C9—C10	1.40 (19)
C7—N1—C1—C6	0.37 (14)	C7—C8—C9—C10	179.51 (11)
N1—C1—C2—C3	175.59 (12)	C8—C9—C10—C11	0.46 (19)
C6—C1—C2—C3	1.04 (19)	C9-C10-C11-O1	177.51 (11)
C1—C2—C3—C4	0.06 (19)	C9-C10-C11-C12	-1.22 (19)
C1—C2—C3—C14	-179.51 (11)	C21—O2—C12—C13	1.43 (19)
C2—C3—C4—C5	-1.6 (2)	C21—O2—C12—C11	-177.52 (12)
C14—C3—C4—C5	177.98 (13)	O1—C11—C12—O2	0.46 (17)
C3—C4—C5—C6	2.0 (2)	C10-C11-C12-O2	179.14 (11)
C7—N2—C6—C5	174.74 (14)	O1—C11—C12—C13	-178.54 (11)
C17—N2—C6—C5	-4.1 (2)	C10-C11-C12-C13	0.14 (18)
C7—N2—C6—C1	-1.55 (13)	C9—C8—C13—C12	-2.46 (18)
C17—N2—C6—C1	179.58 (11)	C7—C8—C13—C12	179.55 (11)
C4—C5—C6—N2	-176.68 (13)	O2—C12—C13—C8	-177.19 (11)
C4—C5—C6—C1	-0.82 (19)	C11—C12—C13—C8	1.70 (18)
N1-C1-C6-N2	0.77 (14)	C15—O4—C14—O3	0.3 (2)
C2-C1-C6-N2	176.21 (11)	C15—O4—C14—C3	-179.85 (11)
N1-C1-C6-C5	-176.11 (12)	C2—C3—C14—O3	-165.35 (13)
C2-C1-C6-C5	-0.67 (19)	C4—C3—C14—O3	15.1 (2)
C1—N1—C7—N2	-1.44 (14)	C2—C3—C14—O4	14.78 (18)
C1—N1—C7—C8	169.72 (11)	C4—C3—C14—O4	-164.80 (12)
C6—N2—C7—N1	1.92 (14)	C14—O4—C15—C16	178.47 (12)
C17—N2—C7—N1	-179.30 (11)	C7—N2—C17—C19	-108.89 (16)
C6—N2—C7—C8	-168.71 (12)	C6—N2—C17—C19	69.69 (16)
C17—N2—C7—C8	10.1 (2)	C7—N2—C17—C20	12.30 (18)
N1—C7—C8—C9	-86.62 (15)	C6—N2—C17—C20	-169.12 (12)
N2-C7-C8-C9	83.36 (16)	C7—N2—C17—C18	130.27 (13)
N1—C7—C8—C13	91.42 (16)	C6—N2—C17—C18	-51.15 (16)
N2-C7-C8-C13	-98.60 (16)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 benzene ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H101···N1 ⁱ	0.85 (2)	1.97 (2)	2.7475 (17)	151.7 (19)
C2— $H2A$ ···O2 ⁱⁱ	0.93	2.58	3.3648 (17)	142
C13—H13 <i>A</i> ···O3 ⁱⁱⁱ	0.93	2.56	3.4223 (17)	154
C18—H18 <i>B</i> ····O4 ⁱⁱⁱ	0.96	2.60	3.514 (2)	160
C18—H18C···O1 ^{iv}	0.96	2.54	3.4753 (17)	163
C18—H18 A ··· $Cg1^{v}$	0.96	2.89	3.5798 (16)	129
C20—H20 <i>B</i> ··· <i>Cg</i> 1	0.96	2.81	3.4764 (17)	127

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+3/2; (ii) -*x*, *y*+1/2, -*z*+3/2; (iii) -*x*, -*y*+1, -*z*+1; (iv) -*x*, -*y*, -*z*+1; (v) *x*, -*y*-1/2, *z*-3/2.