Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Benzoato- κO)bis(1,10-phenanthroline- $\kappa^2 N, N'$)copper(II) chloride benzoic acid disolvate

Wen-Xiang Huang, Bin-Bin Liu and Jian-Li Lin*

State Key Laboratory Base of Novel Functional Materials and Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China Correspondence e-mail: linjianli@nbu.edu.cn

Received 12 March 2010; accepted 26 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.038; wR factor = 0.101; data-to-parameter ratio = 12.1.

In the title complex, $[Cu(C_7H_5O_2)(C_{12}H_8N_2)_2]Cl \cdot 2C_6H_5$ -COOH, the Cu^{II} ion is coordinated by one carboxylate O atom from a benzoate anion and four N atoms from two phenantroline ligands in a distorted five-coordinate trigonalbipyramidal CuON₄ chromophore. The Cu²⁺ and the Cl⁻ ion are imposed by a twofold rotation axiss which also bisects the equally disordered benzoate anion. In the crystal, the molecules are assembled into chains along [010] by C-H···Cl, O-H···Cl and C-H···O hydrogen-bonding interactions. The resulting chains are further connected into twodimensional supramolecular layers parallel to [100] by interchain $\pi \cdots \pi$ stacking interactions [centroid–centroid distance = 3.823(5) Å] between the phenanthroline ligands and the benzoic acid molecules, and by $C-H \cdots O$ hydrogen-bonding interactions. Strong $\pi \cdots \pi$ stacking interactions between adjacent phenantroline ligands [3.548 (4) Å] assemble the layers into a three-dimensional supramolecular architecture.

Related literature

For copper–aromatic acid coordination polymers, see: Li *et al.* (2006); Devereux *et al.* (2007). For related structures, see: Mao *et al.* (2001). For the τ parameter, see: Addison *et al.* (1984).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_7H_5O_2)(C_{12}H_8N_2)_2 \end{bmatrix} Cl-2C_7H_6O_2 \\ M_r = 824.74 \\ Monoclinic, C2/c \\ a = 16.724 (3) Å \\ b = 19.288 (4) Å \\ c = 13.295 (3) Å \\ \end{bmatrix}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.710, T_{\rm max} = 0.750$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.101$ S = 1.083449 reflections 286 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5A\cdots Cl$	0.96	2.94	3.728 (4)	140
O3-H31···Cl	0.85 (4)	2.20 (4)	3.051 (3)	177 (4)
$O3-H31\cdots Cl^i$	0.85 (4)	2.20 (4)	3.051 (3)	177 (4)
$C24 - H24A \cdots O4^{ii}$	0.93	2.49	3.355 (5)	155
C8-H8A···O3 ⁱⁱⁱ	0.93	2.47	3.307 (4)	149
C10−H10A····O1 ^{iv}	0.93	2.53	3.275 (7)	138
$C12-H12A\cdots O1^{iv}$	0.93	2.30	3.106 (7)	146

 $\beta = 113.86 \ (3)^{\circ}$

Z = 4

V = 3922.1 (14) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.31 \times 0.28 \text{ mm}$

15193 measured reflections

3449 independent reflections

2623 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.68 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.029$

refinement $\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\min} = -0.45 \text{ e} \text{ Å}^{-3}$

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) x, -y + 2, $z + \frac{1}{2}$; (iii) x, -y + 1, $z - \frac{1}{2}$; (iv) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

This project was supported by the National Natural Science Foundation of China (grant No. 20072022), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105) and the Education Department of Zhejiang Province. Sincere thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2032).

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Devereux, M., Shea, D. O., Kellett, A., Cann, M. M., Walsh, M., Egan, D., Deegan, C., Kedziora, K., Rosair, G. & Buna, H. M. (2007). *J. Inorg. Biochem.* **101**, 881–892.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

- Li, W., Li, C. H., Yang, Y. Q., Kuang, D. Z., Chen, Z. M., Xu, W. J. & Chen, M. S. (2006). *Chin. J. Inorg. Chem.* 22, 101–105.
 Mao, Z. W., Heinemann, F. W., Liehr, G. & Eldik, R. V. (2001). *J. Chem. Soc.*
- Dalton Trans. pp. 3652-3662.
- Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2004). *CrystalStructure*. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, m488–m489 [https://doi.org/10.1107/S1600536810011487]

(Benzoato- κO)bis(1,10-phenanthroline- $\kappa^2 N, N'$)copper(II) chloride benzoic acid disolvate

Wen-Xiang Huang, Bin-Bin Liu and Jian-Li Lin

S1. Comment

Over the past decades, vast efforts have been dedicated to rational design and synthesis of copper-aromatic-acid coordination polymers, due to their potential applications in medicine, electronics, magnetism, catalysis, gas storage, etc... It is well known that aromatic carboxylic acids, such as *p*-phthalic acid (Li *et al.*, 2006) and salicylic acid (Devereux *et al.*, 2007), were used to construct coordination polymers with copper salts and exhibited interesting electrochemical properties. In the present contribution, we report a new copper coordination complex, $[Cu(phen)_2(C_6H_5COO)].2(C_6H_5COOH).Cl$, resulting from self-assembly of Cu^{II} ions, phenanthroline ligands and benzoic acid molecules.

The crystal structure of the title complex consists of $[Cu(phen)_2(C_6H_3COO)]^+$ cations, free benzoic acid molecules and uncoordinated Cl⁻ anions in a ratio 1:2:1. The Cu^{II} ion is coordinated by one carboxylate O atom from a benzoate anion and four N atoms from two phenantroline ligands to complete a distorted five-coordinate trigonal bipyramidal CuON₄ chromophore. The equatorial positions of the Cu^{II} ion are occupied by one O atom and two N atoms from different phen molecules, and the axial ones by the other two N atoms. The Addison's τ value of 0.53 ($\tau = 0$ for an ideal square pyramid and $\tau = 1$ for an ideal trigonal bipyramid) speaks for a trigonal bipyramid character with a '3+2' coordination type (Addison et al., 1984), which is similar to that of Cu atom in the literature (Mao et al., 2001). The dihedral angle between the benzene ring plane and the carboxylate plane of the coordinated benzoic ion is 14.4 (1) $^{\circ}$, which is larger than the dihedral angle in the free benzoic acid molecule (6.5 (6)°). In addition, the Cu^{II} ions and the benzoate ligands are crystallographically imposed by 2-fold rotation axes. The molecules are assembled into one-dimensional chains along [010] direction through hydrogen bonds interactions (C5–H5A···Cl, O3–H3A···Cl, C24–H24A···O4, C8–H8A···O3). The resulting chains are further connected into two-dimensional supramolecular layers parallel to [100] by interchain $\pi \cdots \pi$ stacking interactions (3.823 (5) Å) between the phenantroline ligands and the molecular benzoic acid, and by hydrogen bonding interactions (C10–H10A···O1, C12–H12A···O1). Furthermore, on the basis of strong π ··· π stacking interactions between interlayer adjacent phenantroline ligands (3.548 (4) Å), the layers are assembled into a three-dimensional supramolecular architecture.

S2. Experimental

Dropwise addition of 2.0 mL (1.0 *M*) NaOH to a stirred aqueous solution of 0.1708 g (1.001 mmol) CuCl₂.H₂O in 10.0 mL H₂O afforded a blue precipitate, which was separated by centrifugation and washed with distilled water for 5 times. The gathered precipitate was then transferred into a solution of benzoic acid (0.2448 g, 2.0049 mmol) and 1,10-phenanthroline (0.1986 g, 1.002 mmol) in a mixed solvent composed of 10.0 mL H₂O and 10.0 mL ethanol to yield a blue suspension. The mixture was then stirred for further 30 min. After filtration, the filtrate was kept at room temperature and afforded a small amount of blue crystalline blocks after 20 days.

S3. Refinement

H atoms bonded to C atoms were placed in geometrically calculated positions and were refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$. The H atom attached to O3 was found in a difference Fourier map and was refined using a riding model, with the O—H bond distance fixed as initially found and with $U_{iso}(H)$ value set at 1.2 $U_{eq}(O)$.

Figure 1

ORTEP view of the title compound. The displacement ellipsoids are drawn at the 20% probability level.

Figure 2

The three-dimensional structure of the title complex through $\pi \cdots \pi$ stacking and hydrogen bond interactions.

(Benzoato- κO)bis(1,10-phenanthroline- $\kappa^2 N$,N')copper(II) chloride benzoic acid disolvate

Crystal data

$[Cu(C_7H_5O_2)(C_{12}H_8N_2)_2]Cl \cdot 2C_7H_6O_2$
$M_r = 824.74$
Monoclinic, C2/c
Hall symbol: -C 2yc
a = 16.724 (3) Å
b = 19.288 (4) Å
c = 13.295 (3) Å
$\beta = 113.86 \ (3)^{\circ}$
$V = 3922.1 (14) Å^3$
Z = 4

Data collection

Rigaku R-AXIS RAPID	15193 measured reflections
diffractometer	3449 independent reflections
Radiation source: fine-focus sealed tube	2623 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.029$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 3.2^{\circ}$
ω scans	$h = -19 \rightarrow 17$
Absorption correction: multi-scan	$k = -22 \rightarrow 22$
(ABSCOR; Higashi, 1995)	$l = -15 \rightarrow 15$
$T_{\min} = 0.710, \ T_{\max} = 0.750$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fo
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.101$	neighbouring sites
S = 1.08	H atoms treated by a mixture of independen
3449 reflections	and constrained refinement

286 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

F(000) = 1700 $D_x = 1.397 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 15193 reflections $\theta = 3.2-25.0^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ T = 293 KBlock, blue $0.35 \times 0.31 \times 0.28 \text{ mm}$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0393P)^2 + 3.5087P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.33$ e Å⁻³ $\Delta\rho_{min} = -0.45$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	Fractional atomic coordinates and	l isotropic of	r equivalent	isotropic	displacement	parameters	$(Å^2)$)
--	-----------------------------------	----------------	--------------	-----------	--------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu	0.5000	0.26282 (3)	0.2500	0.05651 (17)	
N1	0.40747 (13)	0.19982 (11)	0.12871 (18)	0.0554 (5)	
N2	0.40438 (13)	0.26263 (12)	0.30525 (18)	0.0565 (5)	

01	0.4521 (4)	0.3849 (3)	0.1410 (5)	0.090 (2)	0.50
O2	0.5351 (3)	0.3568 (3)	0.3129 (5)	0.0600 (12)	0.50
C1	0.5000	0.4012 (3)	0.2500	0.0678 (11)	
C2	0.5084 (4)	0.47718 (18)	0.2698 (3)	0.0556 (17)	0.50
C3	0.4829 (4)	0.5284 (3)	0.1894 (2)	0.0788 (19)	0.50
H3A	0.4598	0.5159	0.1131	0.095*	0.50
C4	0.4907 (5)	0.5979 (2)	0.2196 (3)	0.075 (3)	0.50
H4A	0.4731	0.6333	0.1641	0.090*	0.50
C5	0.5240 (5)	0.61615 (16)	0.3302(4)	0.090	0.50
H5A	0 5295	0.6641	0.3511	0.100*	0.50
C6	0.5295 0.5495 (3)	0.5649(2)	0.4106(3)	0.0794(18)	0.50
Нба	0.5726	0.5775	0.4869	0.095*	0.50
C7	0.5720 0.5417 (3)	0.3773 0.49540(19)	0.3803(3)	0.093	0.50
	0.5503	0.49540 (19)	0.3303 (3)	0.0039(13)	0.50
11/A C8	0.3393	0.4000	0.4338	0.0604 (8)	0.50
	0.4093(2)	0.1679	0.0414(2) 0.0212	0.0094 (8)	
CO	0.4014	0.1078 0.12200(16)	0.0313	0.083°	
	0.3373(2)	0.13300 (10)	-0.0333(3)	0.0791 (9)	
H9A C10	0.3417	0.1100 0.12242(17)	-0.0950	0.095*	
	0.2608 (2)	0.13242 (17)	-0.0231 (3)	0.0794 (9)	
HIUA	0.2123	0.1097	-0.0/42	0.095*	
CII	0.25483 (17)	0.16598 (14)	0.0667 (2)	0.0620 (7)	
C12	0.17667 (18)	0.16982 (17)	0.0868 (3)	0.0790 (9)	
HI2A	0.1260	0.1485	0.0379	0.095*	
C13	0.17515 (18)	0.20324 (17)	0.1738 (3)	0.0773 (9)	
H13A	0.1231	0.2055	0.1835	0.093*	
C14	0.25144 (16)	0.23560 (14)	0.2524 (2)	0.0596 (7)	
C15	0.25428 (19)	0.27038 (17)	0.3459 (3)	0.0726 (8)	
H15A	0.2041	0.2741	0.3596	0.087*	
C16	0.3303 (2)	0.29866 (18)	0.4164 (3)	0.0773 (9)	
H16A	0.3330	0.3211	0.4796	0.093*	
C17	0.40467 (19)	0.29405 (17)	0.3938 (3)	0.0728 (8)	
H17A	0.4565	0.3138	0.4430	0.087*	
C18	0.32904 (15)	0.23281 (13)	0.2352 (2)	0.0502 (6)	
C19	0.33051 (15)	0.19836 (13)	0.1411 (2)	0.0509 (6)	
C20	0.6442 (2)	0.89663 (16)	0.5209 (3)	0.0723 (8)	
C21	0.6652 (2)	0.94046 (15)	0.6202 (3)	0.0673 (8)	
C22	0.7514 (2)	0.9571 (2)	0.6830(3)	0.0868 (10)	
H22A	0.7949	0.9405	0.6626	0.104*	
C23	0.7738 (3)	0.9976 (2)	0.7744 (3)	0.1056 (12)	
H23A	0.8322	1.0083	0.8157	0.127*	
C24	0.7114 (3)	1.0223 (2)	0.8054 (4)	0.1033 (12)	
H24A	0.7268	1.0498	0.8680	0.124*	
C25	0.6259 (3)	1.0067 (2)	0.7445 (4)	0.1094 (14)	
H25A	0.5833	1.0236	0.7662	0.131*	
C26	0.6014(2)	0.96621 (18)	0.6513(3)	0.0901 (11)	
H26A	0.5427	0.9564	0.6100	0.108*	
Cl	0.5000	0 80270 (7)	0.2500	0.0916 (4)	
04	0.5000	0.870270(7)	0.2300	0.0210(4)	
04	0.07724(13)	0.07024(14)	U.77/2(2)	0.1004 (0)	

supporting information

O3	0.55968 (17)	0.88975 (14)	0.4593 (2)	0.0977 (8)
H31	0.544 (3)	0.867 (2)	0.400 (3)	0.117*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U ²³
Cu	0.0442 (3)	0.0686 (3)	0.0647 (3)	0.000	0.0303 (2)	0.000
N1	0.0514 (12)	0.0577 (13)	0.0631 (13)	0.0028 (10)	0.0293 (11)	-0.0023 (11)
N2	0.0457 (11)	0.0689 (14)	0.0605 (13)	-0.0025 (10)	0.0274 (11)	-0.0060 (11)
01	0.074 (3)	0.099 (5)	0.066 (4)	0.006 (3)	-0.003 (3)	-0.021 (3)
O2	0.048 (3)	0.066 (3)	0.065 (3)	-0.003 (2)	0.021 (3)	-0.001 (2)
C1	0.043 (2)	0.069 (3)	0.090 (4)	0.000	0.025 (2)	0.000
C2	0.036 (3)	0.071 (3)	0.057 (5)	0.001 (4)	0.015 (4)	0.008 (3)
C3	0.051 (4)	0.108 (6)	0.068 (4)	0.009 (4)	0.014 (3)	0.018 (4)
C4	0.066 (5)	0.059 (4)	0.099 (10)	0.010 (5)	0.031 (7)	0.030 (4)
C5	0.066 (5)	0.062 (4)	0.118 (8)	0.009 (4)	0.033 (6)	-0.016 (5)
C6	0.086 (4)	0.067 (4)	0.077 (4)	0.000 (3)	0.025 (4)	-0.008 (4)
C7	0.065 (4)	0.060 (4)	0.062 (4)	0.000 (3)	0.020 (3)	-0.004 (3)
C8	0.0703 (18)	0.071 (2)	0.077 (2)	0.0054 (16)	0.0401 (17)	-0.0067 (16)
C9	0.088 (2)	0.071 (2)	0.075 (2)	-0.0002 (18)	0.0290 (18)	-0.0246 (17)
C10	0.0640 (19)	0.075 (2)	0.085 (2)	-0.0066 (16)	0.0146 (17)	-0.0168 (18)
C11	0.0550 (16)	0.0535 (16)	0.0726 (19)	-0.0011 (13)	0.0207 (14)	-0.0038 (14)
C12	0.0483 (16)	0.078 (2)	0.105 (3)	-0.0131 (15)	0.0248 (17)	-0.009 (2)
C13	0.0491 (16)	0.081 (2)	0.108 (3)	-0.0054 (15)	0.0388 (18)	0.000 (2)
C14	0.0462 (14)	0.0615 (17)	0.0778 (18)	0.0016 (13)	0.0322 (14)	0.0083 (15)
C15	0.0616 (18)	0.086 (2)	0.090 (2)	0.0066 (16)	0.0514 (18)	0.0042 (18)
C16	0.071 (2)	0.097 (2)	0.080 (2)	0.0014 (18)	0.0474 (18)	-0.0120 (18)
C17	0.0627 (17)	0.093 (2)	0.0726 (19)	-0.0080 (16)	0.0373 (16)	-0.0174 (17)
C18	0.0423 (13)	0.0502 (14)	0.0619 (15)	0.0033 (11)	0.0248 (12)	0.0061 (13)
C19	0.0450 (13)	0.0464 (15)	0.0629 (16)	0.0042 (11)	0.0237 (13)	0.0044 (12)
C20	0.080 (2)	0.0680 (19)	0.093 (2)	0.0097 (16)	0.061 (2)	0.0170 (17)
C21	0.083 (2)	0.0550 (17)	0.088 (2)	0.0119 (15)	0.0592 (19)	0.0123 (15)
C22	0.073 (2)	0.106 (3)	0.093 (3)	0.0252 (19)	0.044 (2)	0.014 (2)
C23	0.089 (3)	0.132 (4)	0.093 (3)	0.011 (2)	0.034 (2)	-0.005 (3)
C24	0.115 (3)	0.106 (3)	0.105 (3)	-0.002 (3)	0.061 (3)	-0.014 (2)
C25	0.115 (3)	0.105 (3)	0.146 (4)	-0.003 (3)	0.093 (3)	-0.031 (3)
C26	0.084 (2)	0.085 (2)	0.129 (3)	-0.0038 (18)	0.072 (2)	-0.016 (2)
Cl	0.0794 (8)	0.0839 (8)	0.1148 (10)	0.000	0.0425 (7)	0.000
04	0.0964 (16)	0.121 (2)	0.1100 (18)	0.0257 (15)	0.0688 (15)	-0.0062 (15)
O3	0.0869 (17)	0.113 (2)	0.118 (2)	-0.0093 (14)	0.0673 (17)	-0.0255 (16)

Geometric parameters (Å, °)

Cu—O2	1.984 (5)	C11—C19	1.399 (4)	
Cu—O2 ⁱ	1.984 (5)	C11—C12	1.438 (4)	
Cu—N2 ⁱ	2.012 (2)	C12—C13	1.334 (4)	
Cu—N2	2.012 (2)	C12—H12A	0.9300	
Cu—N1	2.110 (2)	C13—C14	1.425 (4)	

Cu—N1 ⁱ	2.110 (2)	C13—H13A	0.9300
N1—C8	1.330 (3)	C14—C15	1.396 (4)
N1—C19	1.362 (3)	C14—C18	1.407 (3)
N2—C17	1.322 (3)	C15—C16	1.352 (4)
N2—C18	1.355 (3)	C15—H15A	0.9300
01—C1	1.378 (6)	C16—C17	1.395 (4)
O2—C1	1.174 (6)	C16—H16A	0.9300
C1—C2	1.486 (6)	C17—H17A	0.9300
C2—C3	1.3900	C18—C19	1.425 (3)
C2—C7	1.3900	C20—O4	1.200 (3)
C3—C4	1.3900	С20—О3	1.323 (4)
С3—НЗА	0.9600	C20—C21	1.485 (4)
C4—C5	1.3900	C21—C22	1.380 (5)
C4—H4A	0.9600	C21—C26	1.384 (4)
C5—C6	1.3900	C22—C23	1.363 (5)
C5—H5A	0.9601	C22—H22A	0.9300
C6—C7	1.3900	C23—C24	1.355 (5)
С6—Н6А	0.9599	C23—H23A	0.9300
C7—H7A	0.9601	C24—C25	1.361 (5)
C8—C9	1,395 (4)	C24—H24A	0.9300
C8—H8A	0.9300	C25—C26	1.379 (5)
C9—C10	1.356 (4)	C25—H25A	0.9300
C9—H9A	0.9300	C26—H26A	0.9300
C10—C11	1 395 (4)		0.000(3)
C10—H10A	0.9300	03—H31	0.85(4)
	0.9500		0.05 (1)
Ω_{2} Ω_{1} Ω_{2}^{i}	47.8 (3)	C11—C10—H10A	120.1
$O2$ — Cu — $N2^{i}$	90.69 (16)	C10—C11—C19	117.1 (3)
$O2^{i}$ —Cu—N 2^{i}	89.49 (16)	C10-C11-C12	124.5 (3)
Ω_2 — C_1 — N_2	89.49 (16)	C19-C11-C12	118.4(3)
$O2^{i}$ Cu $N2$	90.69 (16)	C13 - C12 - C11	1216(3)
$N2^{i}$ Cu $N2$	179.80 (13)	C13—C12—H12A	119.2
Ω_{2} Ω_{1} Ω_{2} Ω_{1} Ω_{2} Ω_{1} Ω_{2} Ω_{1} Ω_{2} Ω_{2} Ω_{1} Ω_{2} Ω_{2} Ω_{1} Ω_{2} Ω_{2} Ω_{2} Ω_{1} Ω_{2} Ω_{2	148 10 (18)	C11—C12—H12A	119.2
$O2^{i}$ Cu N1	101 76 (18)	C12 - C13 - C14	121.5(3)
$N2^{i}$ Cu N1	99 53 (8)	C12—C13—H13A	119 3
$N_2 = C_1 = N_1$	80.35 (8)	C_{14} C_{13} H_{13A}	119.3
Ω^2 — Cu — $N1^i$	101.76(18)	C_{15} C_{14} C_{18}	117.5 117.5(3)
$O2^{i}$ Cu $N1^{i}$	148 10 (18)	C_{15} C_{14} C_{13}	124 1 (3)
$N2^{i}$ Cu $N1^{i}$	80 35 (8)	C_{18} C_{14} C_{13}	124.1(3) 1184(3)
$N2$ Cu $N1^{i}$	99 53 (8)	C_{16} C_{15} C_{14} C_{15} C_{14}	110.4(3) 119.7(2)
$N1 - Cu - N1^{i}$	109.69(12)	C_{16} C_{15} H_{15A}	120.2
$C_8 $ N1 C_{10}	109.09(12) 117.0(2)	C14 $C15$ $H15A$	120.2
$C_8 = N_1 = C_1$	117.0(2) 121.86(18)	$C_{14} = C_{15} = M_{15} = M_{15}$	120.2
$C_0 = N_1 = C_0$	110.87 (16)	$C15-C16-H16^{1}$	120.2
C17 = N1 = C18	118.3 (2)	$C17 C16 H16^{\circ}$	120.2
$C_1 / - N_2 - C_{10}$	110.3(2) 127.38(10)	$N_2 C_{17} C_{16}$	120.2
$C_1 / - N_2 - C_4$	127.30(17) 112.88(16)	$N_2 = C_{17} = C_{10}$	122.0 (3)
$C_{10} = N_2 = C_{11}$	112.00 (10)	$112 - C1 / - \Pi1 / A$	110./ 110.7
U1	112.0 (4)	$U_1 U - U_1 / - \Pi_1 / A$	110./

O2—C1—O1	119.6 (6)	N2-C18-C14	122.3 (2)
O2—C1—C2	127.5 (4)	N2-C18-C19	117.4 (2)
01—C1—C2	112.6 (4)	C14—C18—C19	120.3 (2)
C3—C2—C7	120.0	N1-C19-C11	123.5 (2)
C3—C2—C1	126.0 (3)	N1-C19-C18	116.7 (2)
C7—C2—C1	113.9 (3)	C11—C19—C18	119.8 (2)
C4—C3—C2	120.0	O4—C20—O3	122.4 (3)
C4—C3—H3A	120.0	O4—C20—C21	122.9 (3)
С2—С3—НЗА	120.0	O3—C20—C21	114.6 (3)
C3—C4—C5	120.0	C22—C21—C26	118.6 (3)
C3—C4—H4A	120.0	C22—C21—C20	119.0 (3)
C5—C4—H4A	120.0	C26—C21—C20	122.5 (3)
C4—C5—C6	120.0	C23—C22—C21	121.1 (3)
C4—C5—H5A	120.0	C23—C22—H22A	119.5
С6—С5—Н5А	120.0	C21—C22—H22A	119.5
C7—C6—C5	120.0	C24—C23—C22	120.3 (4)
С7—С6—Н6А	120.0	C24—C23—H23A	119.8
С5—С6—Н6А	120.0	C22—C23—H23A	119.8
C6—C7—C2	120.0	C23—C24—C25	119.6 (4)
С6—С7—Н7А	120.0	C23—C24—H24A	120.2
С2—С7—Н7А	120.0	C25—C24—H24A	120.2
N1—C8—C9	122.9 (3)	C24—C25—C26	121.3 (3)
N1—C8—H8A	118.5	C24—C25—H25A	119.4
С9—С8—Н8А	118.5	C26—C25—H25A	119.4
С10—С9—С8	119.6 (3)	C25—C26—C21	119.2 (4)
С10—С9—Н9А	120.2	C25—C26—H26A	120.4
С8—С9—Н9А	120.2	C21—C26—H26A	120.4
C9—C10—C11	119.9 (3)	С20—О3—Н31	119 (3)
С9—С10—Н10А	120.1		

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C5—H5A···Cl	0.96	2.94	3.728 (4)	140
O3—H31…Cl	0.85 (4)	2.20 (4)	3.051 (3)	177 (4)
O3—H31···Cl ⁱ	0.85 (4)	2.20 (4)	3.051 (3)	177 (4)
C24—H24 <i>A</i> ···O4 ⁱⁱ	0.93	2.49	3.355 (5)	155
C8—H8A····O3 ⁱⁱⁱ	0.93	2.47	3.307 (4)	149
C10—H10A…O1 ^{iv}	0.93	2.53	3.275 (7)	138
C12—H12A…O1 ^{iv}	0.93	2.30	3.106 (7)	146

Symmetry codes: (i) -*x*+1, *y*, -*z*+1/2; (ii) *x*, -*y*+2, *z*+1/2; (iii) *x*, -*y*+1, *z*-1/2; (iv) -*x*+1/2, -*y*+1/2, -*z*.