

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$\{1,3-Bis[(diphenylphosphanyl-\kappa P)oxy]$ prop-2-yl- κC^2 }iodido(trimethylphosphane)cobalt(II)

Guogiang Xu and Xiaoyan Li*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China Correspondence e-mail: xli63@sdu.edu.cn

Received 19 March 2010; accepted 14 April 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.061; data-to-parameter ratio = 17.5.

The title compound, $[Co(C_{27}H_{25}O_2P_2)I(C_3H_9P)]$, was synthesized by the addition of 1-iodobutane to a solution of the parent cobalt complex {1,3-bis[(diphenylphosphanyl)oxy]prop-2-yl}bis(trimethylphosphane)cobalt(II). Two fivemembered cobaltocycles with considerable ring bending (sum of internal angles = 516.4 and 517.7°) are formed through two P atoms of the PPh₂ groups and a metallated Csp^3 atom. The Co^{II} atom is centered in a trigonal-bipyramidal configuration.

Related literature

For general background to transition metal complexes with PCP pincer ligands and their preparation, see: Boom & Milstein (2003); Pandarus et al. (2008); Xu et al. (2009); Zheng et al. (2009). For $Co-Csp^3$ bond lengths, see: Klein et al. (2003).

 $V = 5906 (2) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.20 \times 0.15 \times 0.10 \; \mathrm{mm}$

35496 measured reflections

6237 independent reflections

5551 reflections with $I > 2\sigma(I)$

 $\mu = 1.82 \text{ mm}^-$

T = 293 K

 $R_{\rm int}=0.071$

Z = 8

Experimental

Crystal data

 $[Co(C_{27}H_{25}O_2P_2)I(C_3H_9P)]$ $M_r = 705.31$ Orthorhombic, Pbca a = 15.161 (3) Å b = 18.194 (4) Å c = 21.410 (4) Å

Data collection

```
Bruker SMART CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 2004)
  T_{\min} = 0.713, T_{\max} = 0.876
```

Refinement

R

$R[F^2 > 2\sigma(F^2)] = 0.024$	H atoms treated by a mixture of
$wR(F^2) = 0.061$	independent and constrained
S = 1.04	refinement
6237 reflections	$\Delta \rho_{\rm max} = 0.57 \text{ e } \text{\AA}^{-3}$
357 parameters	$\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge support by NSF China (No. 20872080/20772072).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZO2034).

References

Boom, M. & Milstein, D. (2003). Chem. Rev. 103, 1759-1792.

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Klein, H.-F., Beck, R., Flörke, U. & Haupt, H.-J. (2003). Eur. J. Inorg. Chem. pp. 853-862.
- Pandarus, V., Castonguay, A. & Zargarian, D. (2008). Dalton Trans. pp. 4756-4761.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xu, G., Sun, H. & Li, X. (2009). Organometallics, 28, 6090-6095.
- Zheng, T., Sun, H., Chen, Y., Li, X., Dürr, S., Radius, U. & Harms, K. (2009). Organometallics, 28, 5771-5776.

supporting information

Acta Cryst. (2010). E66, m545 [https://doi.org/10.1107/S1600536810013747]

{1,3-Bis[(diphenylphosphanyl-*kP*)oxy]prop-2-yl-*kC*²}iodido(trimethyl-phosphane)cobalt(II)

Guoqiang Xu and Xiaoyan Li

S1. Comment

Transition metal complexes with PCP pincer ligands have attracted a substantial amount of interest (Boom *et al.* 2003). We previously reported that the central sp³ C—H bond of $(Ph_2POCH_2)_2CH_2$ could be activated by $Co(PMe_3)_4Me$ to afford metallated PCP pincer compounds at room temperature (Xu *et al.*, 2009) and the subsequent reaction with CH₃I gave rise to iodomethylcobalt(III) complex. Here we explored the reaction of $Co(C_{27}H_{25}O_2P_2)(C_3H_9P)_2$ with n-C₄H₉I, which afforded the title compound via one-electron oxidative addition. The rest part of products might be C,*C*-coupling product (Zheng *et al.*, 2009), despite it has not been isolated.

The molecular structure is shown in Fig. 1. The Co^{II} atom is five coordinated in a trigonal bipyramidal configuration. The Co—C bond distance of 2.068 (18) Å is within the range of Co—C (sp³) bonds (2.03-2.15 Å) (Klein *et al.*, 2003).

S2. Experimental

Standard vacuum techniques were used in manipulations of volatile and air sensitive material. The title compound was synthesized by combining a solution of $\{1,3-bis[(diphenylphosphanyl)oxy]prop-2-yl\}bis(trimethylphosphane)cobalt(II)$ (733 mg, 1.12 mmol) in 30 ml of diethyl ether with a sample of n-C₄H₉I (203 mg, 1.12 mmol) in 30 ml of diethyl ether at 273 K. After kept stirring for 16 h at room temperature, the color changed from red to brown. Volatiles were concentrated and filtrated. Red crystals, which were suitable for X-ray diffraction, could be obtained from diethyl ether at 255 K.

S3. Refinement

The H atoms bound to C16-C18 were located in a difference Fourier map and refined isotropically. The remaining H atoms were included in calculated positions, with C—H = 0.93 Å (aromatic) and 0.96 Å (alkyl), and with $U_{iso}(H) = 1.2$ (1.5 for alkyl groups) times $U_{eq}(C)$.

Figure 1

The molecular structure of the title molecule showing the atom-labelling scheme. Thermal ellipsoids are drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

(|)

Crystal data

$$[Co(C_{27}H_{25}O_{2}P_{2})I(C_{3}H_{9}P)]$$
 $F(000) = 2840$
 $M_r = 705.31$
 $D_x = 1.587 \text{ Mg m}^{-3}$

 Orthorhombic, Pbca
 Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$

 Hall symbol: -P 2ac 2ab
 Cell parameters from 13063 reflections

 $a = 15.161 (3) \text{ Å}$
 $\theta = 2.0-26.9^{\circ}$
 $b = 18.194 (4) \text{ Å}$
 $\mu = 1.82 \text{ mm}^{-1}$
 $c = 21.410 (4) \text{ Å}$
 $T = 293 \text{ K}$
 $V = 5906 (2) \text{ Å}^3$
 Block, red

 $Z = 8$
 $0.20 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{min} = 0.713, T_{max} = 0.876$ <i>Refinement</i>	35496 measured reflections 6237 independent reflections 5551 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 26.7^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -19 \rightarrow 18$ $k = -23 \rightarrow 23$ $l = -27 \rightarrow 20$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.061$ S = 1.04 6237 reflections 357 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0293P)^2 + 1.1856P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.004$ $\Delta\rho_{max} = 0.57$ e Å ⁻³ $\Delta\rho_{min} = -0.54$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.657194 (9)	0.086157 (8)	0.506996 (6)	0.02926 (5)	
Co2	0.644969 (16)	0.062554 (12)	0.387635 (11)	0.01625 (6)	
P1	0.75443 (3)	0.14172 (2)	0.37052 (2)	0.02092 (10)	
P2	0.54174 (3)	0.10487 (2)	0.32815 (2)	0.01924 (10)	
P3	0.70421 (3)	-0.03885 (2)	0.35418 (2)	0.01858 (10)	
01	0.48603 (9)	0.03615 (7)	0.30021 (7)	0.0249 (3)	
O2	0.65551 (9)	-0.10523 (7)	0.39172 (7)	0.0247 (3)	
C1	0.79921 (15)	0.15169 (11)	0.29188 (10)	0.0300 (4)	
H1A	0.8427	0.1900	0.2916	0.045*	
H1B	0.7525	0.1640	0.2635	0.045*	
H1C	0.8260	0.1063	0.2792	0.045*	
C2	0.85631 (13)	0.12727 (12)	0.41438 (11)	0.0302 (4)	
H2A	0.8833	0.0821	0.4012	0.045*	
H2B	0.8431	0.1247	0.4582	0.045*	
H2C	0.8960	0.1674	0.4068	0.045*	

C3	0.72818 (15)	0.23686 (10)	0.39039 (10)	0.0291 (4)
H3A	0.7813	0.2655	0.3906	0.044*
H3B	0.7014	0.2385	0.4310	0.044*
H3C	0.6880	0.2565	0.3600	0.044*
C4	0.55196 (12)	0.16068 (10)	0.25779(9)	0.0235 (4)
C5	0 56173 (14)	0.12717(12)	0.20005(10)	0.0297(4)
H5	0.5582	0.0763	0.1968	0.036*
C6	0.57680(15)	0.16956 (14)	0.14697 (11)	0.0380 (5)
Н6	0.5825	0.1469	0.1083	0.0566 (5)
C7	0.58336 (16)	0.24521(14)	0.15141 (13)	0.0437 (6)
С7 Н7	0.5942	0.2733	0.1160	0.0437(0)
C8	0.5742 0.57375 (18)	0.2733 0.27844 (13)	0.20852(13)	0.032
С0 Н8	0.5788	0.3202	0.20032 (13)	0.0424(0) 0.051*
C_0	0.57662 (16)	0.3232 0.23727 (11)	0.2117 0.26161 (11)	0.031
U9 U0	0.53002 (10)	0.25727 (11)	0.20101 (11)	0.0330 (3)
C10	0.3482 0.45003 (13)	0.2000 0.15345 (10)	0.2336 0.37462(0)	0.040°
C10 C11	0.43903(13) 0.48287(15)	0.13343(10) 0.20811(11)	0.37402(9)	0.0240(4)
	0.46267 (13)	0.20011 (11)	0.41007 (11)	0.0327 (3)
	0.3410 0.42052 (18)	0.2224	0.4190	0.039°
U12	0.42032 (18)	0.24145(12)	0.43408(12)	0.0417(0)
H12 C12	0.4372	0.2780	0.4815	0.050^{*}
U13	0.33319 (18)	0.21962 (14)	0.45081 (15)	0.0458 (7)
HI3	0.2910	0.2420	0.4760	0.055*
C14	0.30906 (17)	0.16476 (15)	0.41022 (14)	0.0449 (6)
HI4	0.2505	0.149/	0.4084	0.054*
C15	0.37125 (15)	0.13148 (12)	0.37182 (11)	0.0332 (5)
H15	0.3542	0.0946	0.3443	0.040*
C16	0.49139 (13)	-0.02708 (10)	0.34158 (10)	0.0236 (4)
C17	0.54239 (12)	-0.01073 (9)	0.40104 (9)	0.0207 (4)
C18	0.57921 (13)	-0.08121 (10)	0.42799 (10)	0.0243 (4)
C19	0.81877 (13)	-0.05789 (9)	0.37445 (10)	0.0229 (4)
C20	0.88739 (14)	-0.05669 (10)	0.33109 (10)	0.0261 (4)
H20	0.8749	-0.0501	0.2889	0.031*
C21	0.97401 (14)	-0.06518 (12)	0.35030 (12)	0.0337 (5)
H21	1.0193	-0.0644	0.3211	0.040*
C22	0.99311 (16)	-0.07482 (13)	0.41270 (13)	0.0400 (5)
H22	1.0513	-0.0806	0.4254	0.048*
C23	0.92562 (17)	-0.07593 (14)	0.45670 (12)	0.0428 (6)
H23	0.9387	-0.0820	0.4988	0.051*
C24	0.83859 (15)	-0.06791 (12)	0.43761 (12)	0.0333 (5)
H24	0.7934	-0.0692	0.4670	0.040*
C25	0.69869 (13)	-0.07007 (10)	0.27348 (9)	0.0216 (4)
C26	0.71675 (14)	-0.02226 (10)	0.22455 (10)	0.0272 (4)
H26	0.7265	0.0273	0.2328	0.033*
C27	0.72045 (14)	-0.04749 (12)	0.16343 (10)	0.0313 (4)
H27	0.7343	-0.0153	0.1312	0.038*
C28	0.70351 (14)	-0.12086 (12)	0.15053 (10)	0.0299 (4)
H28	0.7070	-0.1382	0.1097	0.036*
C29	0.68137 (16)	-0.16818 (11)	0.19879 (11)	0.0336 (5)

supporting information

H29	0.6677	-0.2169	0.1901	0.040*	
C30	0.67953 (16)	-0.14335 (10)	0.25967 (11)	0.0302 (4)	
H30	0.6654	-0.1757	0.2918	0.036*	
H18	0.5970 (16)	-0.0751 (11)	0.4712 (12)	0.021 (5)*	
H31	0.5038 (15)	0.0134 (12)	0.4328 (11)	0.023 (5)*	
H16	0.5197 (16)	-0.0676 (12)	0.3174 (11)	0.025 (6)*	
H17	0.4303 (17)	-0.0420 (13)	0.3517 (12)	0.029 (6)*	
H19	0.5380 (17)	-0.1227 (13)	0.4249 (12)	0.032 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.03046 (8)	0.03908 (9)	0.01822 (7)	-0.00978 (5)	0.00190 (5)	-0.00184 (5)
Co2	0.01717 (12)	0.01357 (11)	0.01801 (12)	-0.00099 (8)	0.00126 (9)	-0.00041 (8)
P1	0.0226 (2)	0.0175 (2)	0.0227 (2)	-0.00525 (17)	0.00225 (19)	-0.00124 (17)
P2	0.0203 (2)	0.01627 (19)	0.0211 (2)	0.00030 (16)	-0.00108 (18)	-0.00069 (16)
P3	0.0197 (2)	0.01471 (19)	0.0214 (2)	0.00055 (16)	0.00333 (18)	0.00018 (16)
01	0.0270 (7)	0.0225 (6)	0.0252 (7)	-0.0043 (5)	-0.0052 (6)	-0.0015 (5)
O2	0.0255 (7)	0.0170 (6)	0.0317 (8)	0.0013 (5)	0.0089 (6)	0.0035 (5)
C1	0.0343 (12)	0.0263 (9)	0.0293 (11)	-0.0095 (8)	0.0085 (9)	-0.0016 (8)
C2	0.0243 (10)	0.0310 (10)	0.0353 (12)	-0.0068 (8)	0.0002 (9)	-0.0028 (9)
C3	0.0342 (11)	0.0187 (8)	0.0343 (11)	-0.0064 (8)	0.0039 (9)	-0.0033 (8)
C4	0.0192 (9)	0.0259 (9)	0.0254 (10)	0.0026 (7)	-0.0018 (8)	0.0041 (7)
C5	0.0265 (10)	0.0345 (10)	0.0281 (11)	-0.0025 (8)	-0.0002 (8)	-0.0009 (8)
C6	0.0299 (12)	0.0571 (14)	0.0270 (11)	-0.0026 (10)	0.0011 (9)	0.0020 (10)
C7	0.0361 (13)	0.0555 (14)	0.0394 (13)	0.0018 (11)	0.0003 (10)	0.0241 (11)
C8	0.0496 (15)	0.0306 (10)	0.0470 (15)	0.0057 (10)	0.0002 (12)	0.0160 (10)
C9	0.0395 (12)	0.0258 (9)	0.0336 (12)	0.0066 (8)	0.0006 (9)	0.0047 (8)
C10	0.0228 (9)	0.0240 (8)	0.0252 (10)	0.0056 (7)	0.0012 (8)	0.0043 (7)
C11	0.0331 (12)	0.0293 (10)	0.0357 (12)	0.0050 (8)	0.0050 (9)	-0.0045 (8)
C12	0.0542 (16)	0.0340 (11)	0.0369 (13)	0.0121 (10)	0.0130 (11)	-0.0027 (9)
C13	0.0475 (15)	0.0459 (13)	0.0439 (15)	0.0244 (11)	0.0223 (12)	0.0124 (11)
C14	0.0257 (12)	0.0579 (15)	0.0512 (16)	0.0097 (10)	0.0101 (11)	0.0150 (13)
C15	0.0258 (11)	0.0377 (11)	0.0362 (12)	0.0044 (9)	0.0003 (9)	0.0065 (9)
C16	0.0218 (9)	0.0185 (8)	0.0304 (10)	-0.0045 (7)	0.0002 (8)	-0.0020 (7)
C17	0.0202 (9)	0.0171 (7)	0.0249 (9)	-0.0031 (7)	0.0048 (7)	-0.0006 (7)
C18	0.0243 (10)	0.0193 (8)	0.0293 (11)	-0.0020 (7)	0.0073 (8)	0.0035 (7)
C19	0.0239 (9)	0.0159 (8)	0.0290 (10)	0.0026 (7)	0.0016 (8)	0.0015 (7)
C20	0.0253 (10)	0.0263 (9)	0.0268 (10)	0.0023 (7)	0.0020 (8)	0.0006 (8)
C21	0.0251 (11)	0.0352 (11)	0.0409 (13)	0.0045 (8)	0.0074 (9)	0.0023 (9)
C22	0.0263 (11)	0.0475 (13)	0.0462 (15)	0.0067 (9)	-0.0053 (10)	0.0096 (11)
C23	0.0346 (13)	0.0601 (15)	0.0339 (13)	0.0081 (11)	-0.0046 (10)	0.0128 (11)
C24	0.0295 (12)	0.0401 (11)	0.0302 (11)	0.0053 (9)	0.0034 (9)	0.0080 (9)
C25	0.0193 (9)	0.0213 (8)	0.0243 (10)	0.0019 (7)	0.0022 (7)	-0.0034 (7)
C26	0.0305 (11)	0.0245 (9)	0.0266 (10)	-0.0063 (8)	0.0024 (8)	-0.0025 (7)
C27	0.0300 (11)	0.0371 (11)	0.0268 (11)	-0.0089 (9)	0.0038 (9)	-0.0008 (8)
C28	0.0270 (10)	0.0357 (10)	0.0269 (11)	0.0002 (8)	0.0013 (8)	-0.0096 (8)
C29	0.0428 (13)	0.0224 (9)	0.0355 (12)	0.0005 (8)	-0.0020 (10)	-0.0074 (8)

supporting information

<u>C30</u>	0.0424 (12)	0.0182 (9)	0.0300 (11)	0.0015 (8)	0.0000 (9)	-0.0002 (8)
Geom	etric parameters ((Å, °)				
I1—C	o2	2.598	30 (6)	C11—C12		1.379 (3)
Co2—	-C17	2.068	35 (18)	C11—H11		0.9300
Co2—	-P2	2.159	97 (6)	C12—C13		1.384 (4)
Co2—	-P3	2.173	34 (6)	C12—H12		0.9300
Co2—	-P1	2.22	78 (6)	C13—C14		1.373 (4)
P1—C	C1	1.824	4 (2)	C13—H13		0.9300
P1-C	23	1.820	53 (19)	C14—C15		1.390 (3)
P1—C	22	1.827	7 (2)	C14—H14		0.9300
Р2—С)1	1.623	31 (13)	C15—H15		0.9300
P2—C	24	1.823	3 (2)	C16—C17		1.519 (3)
P2—C	210	1.829	$\overline{P}(2)$	C16—H16		1.00 (2)
Р3—С)2	1.62	78 (14)	C16—H17		0.99 (2)
P3—C	25	1.82	(2)	C17—C18		1.513 (3)
P3-C	219	1.823	3(2)	C17—H31		1.00 (2)
01-0	C16	1.454	4 (2)	C18—H18		0.97(3)
02-0	C18	1.460	(2)	C18—H19		0.98 (2)
C1—F		0.960)0	C19—C20		1.394 (3)
C1—F	-11B	0.960)0	C19 - C24		1.397 (3)
C1—F	41C	0.960)0	C_{20} C_{21}		1 385 (3)
C2—F	12A	0.960)0	C20—H20		0.9300
C2—F		0.960)0	$C_{21} - C_{22}$		1 378 (4)
C2_F	12D 12C	0.960)0	C21—H21		0.9300
C3—F	13 A	0.960)0	$C_{22} - C_{23}$		1 391 (4)
C3—F	13R	0.960)0	С22—Н22		0.9300
C3—F	13D 13C	0.960)0	$C_{22} = C_{24}$		1 389 (3)
C4 - C	75	1 386	5(3)	C23—H23		0.9300
C4-C	79 7	1.300	S(3)	C24—H24		0.9300
C5-C	76	1.390	2(3)	C_{25} C_{26}		1 389 (3)
C5—F	45	0.93	$\frac{1}{2}$	$C_{25} = C_{20}$		1.305 (3)
C6(77	1 383	(4)	$C_{25} = C_{30}$		1.390(3) 1 388(3)
C6—F	46	0.93)()	C26—H26		0.9300
C7 - (78	1 372	(4)	$C_{20} = 1120$ $C_{27} = C_{28}$		1.387(3)
C7—F	47	0.93)0	C27—H27		0.9300
C_{8}	17 7 9	1 380	50^{-5}	C_{28} C_{29}		1 386 (3)
C8—F	48	0.93()0	C28—H28		0.9300
C9_F	10	0.93)0	$C_{20} = C_{30}$		1 380 (3)
C10_	-C11	1 380	(3)	C29_H29		0.9300
C10_	-C15	1.30	(3)	C30_H30		0.9300
C10—	C13	1.39	(<i>J</i>)	0.50-1150		0.2300
C17—	-Co2—P2	76.5	l (6)	C12—C11—C10		120.8 (2)
C17—	-Co2—P3	79.0	l (5)	C12—C11—H11		119.6
Р2—С	Co2—P3	114.0	06 (2)	C10-C11-H11		119.6
C17—	-Co2—P1	178.4	47 (6)	C11—C12—C13		120.0 (2)
Р2—С	Co2—P1	102.2	26 (2)	C11—C12—H12		120.0

P3—Co2—P1	100.77 (2)	C13—C12—H12	120.0
C17—Co2—I1	91.36 (6)	C14—C13—C12	119.7 (2)
P2—Co2—I1	124.951 (18)	C14—C13—H13	120.2
P3—Co2—I1	115.788 (17)	C12—C13—H13	120.2
P1—Co2—I1	90.104 (16)	C13—C14—C15	120.7 (2)
C1—P1—C3	101.64 (10)	C13—C14—H14	119.7
C1—P1—C2	100.03 (11)	C15—C14—H14	119.7
C3—P1—C2	101.59 (10)	C14—C15—C10	119.9 (2)
C1—P1—Co2	119.56 (7)	C14—C15—H15	120.0
C3—P1—Co2	114.34 (7)	C10—C15—H15	120.0
C2—P1—Co2	116.88 (7)	O1—C16—C17	112.58 (14)
O1—P2—C4	99.72 (8)	O1—C16—H16	107.0 (14)
O1—P2—C10	102.47 (9)	C17—C16—H16	111.2 (14)
C4—P2—C10	103.81 (9)	O1—C16—H17	107.3 (14)
O1—P2—Co2	108.65 (5)	C17—C16—H17	110.3 (15)
C4—P2—Co2	128.62 (7)	H16—C16—H17	108.3 (19)
C10—P2—Co2	110.39 (7)	C18—C17—C16	109.96 (15)
O2—P3—C25	102.49 (8)	C18—C17—Co2	108.77 (13)
O2—P3—C19	99.99 (8)	C16—C17—Co2	113.12 (13)
C25—P3—C19	102.15 (9)	С18—С17—Н31	109.3 (13)
O2—P3—Co2	106.24 (5)	С16—С17—Н31	111.0 (13)
С25—Р3—Со2	123.96 (6)	Со2—С17—Н31	104.6 (12)
С19—Р3—Со2	118.45 (6)	O2—C18—C17	110.07 (15)
C16—O1—P2	110.85 (12)	O2—C18—H18	108.7 (14)
C18—O2—P3	113.57 (11)	C17—C18—H18	111.6 (13)
P1—C1—H1A	109.5	O2—C18—H19	103.7 (15)
P1—C1—H1B	109.5	С17—С18—Н19	113.0 (14)
H1A—C1—H1B	109.5	H18—C18—H19	109 (2)
P1—C1—H1C	109.5	C20—C19—C24	119.07 (19)
H1A—C1—H1C	109.5	C20—C19—P3	123.31 (16)
H1B—C1—H1C	109.5	C24—C19—P3	117.39 (16)
P1—C2—H2A	109.5	C21—C20—C19	120.5 (2)
P1—C2—H2B	109.5	С21—С20—Н20	119.7
H2A—C2—H2B	109.5	С19—С20—Н20	119.7
P1—C2—H2C	109.5	C22—C21—C20	120.1 (2)
H2A—C2—H2C	109.5	C22—C21—H21	120.0
H2B—C2—H2C	109.5	C20—C21—H21	120.0
Р1—С3—НЗА	109.5	C21—C22—C23	120.2 (2)
Р1—С3—Н3В	109.5	С21—С22—Н22	119.9
НЗА—СЗ—НЗВ	109.5	С23—С22—Н22	119.9
Р1—С3—Н3С	109.5	C24—C23—C22	119.9 (2)
НЗА—СЗ—НЗС	109.5	С24—С23—Н23	120.1
H3B—C3—H3C	109.5	С22—С23—Н23	120.1
C5—C4—C9	119.02 (19)	C23—C24—C19	120.2 (2)
C5—C4—P2	120.07 (15)	C23—C24—H24	119.9
C9—C4—P2	120.74 (17)	C19—C24—H24	119.9
C4—C5—C6	120.1 (2)	C26—C25—C30	118.65 (19)
C4—C5—H5	119.9	C26—C25—P3	120.75 (14)

С6—С5—Н5	119.9	C30—C25—P3	120.55 (16)
C7—C6—C5	120.4 (2)	C27—C26—C25	120.79 (18)
С7—С6—Н6	119.8	С27—С26—Н26	119.6
С5—С6—Н6	119.8	C25—C26—H26	119.6
C8—C7—C6	119.5 (2)	C28—C27—C26	119.9 (2)
C8—C7—H7	120.3	C28—C27—H27	120.1
C6-C7-H7	120.3	$C_{26} = C_{27} = H_{27}$	120.1
C_{7} C_{8} C_{9}	120.5	$C_{20} = C_{27} = H_{27}$	120.1
$C_{1} = C_{0} = C_{2}$	120.8 (2)	$C_{29} = C_{20} = C_{27}$	119.0 (2)
$C = C = H \delta$	119.0	C29—C28—H28	120.2
C9—C8—H8	119.6	C2/C28H28	120.2
C8—C9—C4	120.0 (2)	C30—C29—C28	120.38 (19)
С8—С9—Н9	120.0	С30—С29—Н29	119.8
С4—С9—Н9	120.0	C28—C29—H29	119.8
C11—C10—C15	118.9 (2)	C29—C30—C25	120.6 (2)
C11—C10—P2	121.34 (16)	С29—С30—Н30	119.7
C15—C10—P2	119.59 (16)	С25—С30—Н30	119.7
P2—Co2—P1—C1	-60.80(9)	C4—P2—C10—C11	-89.34(18)
P3—Co2—P1—C1	56.98 (9)	Co2—P2—C10—C11	51.66 (18)
$I1 - C_0 2 - P1 - C1$	173 28 (9)	O1 - P2 - C10 - C15	-7.46(18)
$P^2 - C_0^2 - P^1 - C_3$	59.95 (8)	C4 - P2 - C10 - C15	95 97 (17)
$P_{2} = C_{02} = P_{1} = C_{3}$	177 72 (8)	C_{02} P2 C10 C15	-123 03 (16)
13 - 02 - 11 - 03	-65.07(8)	$C_{02} = 12 = C_{10} = C_{13}$	-1.5(3)
$11 - C_0 2 - 11 - C_3$	03.97(8)	C13 - C10 - C11 - C12	1.3(3)
$P_2 = C_0 2 = P_1 = C_2$	1/8.41 (8)		-1/0.23(18)
P3-Co2-P1-C2	-63.81 (9)	C10—C11—C12—C13	1.1 (4)
11—Co2—P1—C2	52.49 (8)	C11—C12—C13—C14	0.0 (4)
C17—Co2—P2—O1	-34.20 (8)	C12—C13—C14—C15	-0.8(4)
P3—Co2—P2—O1	37.03 (6)	C13—C14—C15—C10	0.4 (4)
P1—Co2—P2—O1	144.87 (6)	C11—C10—C15—C14	0.7 (3)
I1—Co2—P2—O1	-116.27 (6)	P2-C10-C15-C14	175.55 (18)
C17—Co2—P2—C4	-154.04 (10)	P2-O1-C16-C17	3.5 (2)
P3—Co2—P2—C4	-82.82 (9)	O1-C16-C17-C18	-155.92 (16)
P1—Co2—P2—C4	25.02 (9)	O1—C16—C17—Co2	-34.09 (19)
I1—Co2—P2—C4	123.89 (8)	P2—Co2—C17—C18	160.80 (14)
C17—Co2—P2—C10	77.43 (9)	P3—Co2—C17—C18	42.53 (12)
$P_3 = C_0^2 = P_2^2 = C_{10}^2$	148 66 (7)	$11 - C_0^2 - C_1^2 - C_1^8$	-7349(13)
$P1 - Co^2 - P^2 - C10$	-10350(7)	$P_{2} = C_{0}^{2} = C_{1}^{2} = C_{1}^{2}$	38 31 (12)
$11 - C_0 2 - P_2 - C_{10}$	-4.64(7)	$P_3 = C_0 2 = C_1 7 = C_1 6$	-79.97(13)
$C_{17} = C_{02} = 12 = C_{10}$	-27.71(8)	15 - 602 - 617 - 610	164.01(12)
$P_{1}^{2} = C_{2}^{2} = P_{1}^{2} = O_{2}^{2}$	27.71(6)	11 - 02 - 017 - 010	104.01(12)
$P_2 = C_0 2 = P_3 = 0_2$	-97.41 (6)	$P_{3} = 0_{2} = 0_{13} = 0_{13}$	23.9 (2)
P1—Co2—P3—O2	153.84 (6)	C16-C17-C18-O2	75.7 (2)
11—Co2—P3—O2	58.45 (6)	Co2—C17—C18—O2	-48.69 (18)
C17—Co2—P3—C25	90.18 (10)	O2—P3—C19—C20	135.14 (16)
P2—Co2—P3—C25	20.48 (8)	C25—P3—C19—C20	29.91 (18)
P1—Co2—P3—C25	-88.28 (8)	Co2—P3—C19—C20	-110.13 (16)
I1—Co2—P3—C25	176.33 (7)	O2—P3—C19—C24	-50.42 (17)
C17—Co2—P3—C19	-139.02 (9)	C25—P3—C19—C24	-155.65 (16)
P2—Co2—P3—C19	151.28 (7)	Co2—P3—C19—C24	64.31 (17)

P1—Co2—P3—C19	42.53 (8)	C24—C19—C20—C21	-0.1 (3)
I1—Co2—P3—C19	-52.86 (8)	P3-C19-C20-C21	174.23 (15)
C4—P2—O1—C16	162.61 (13)	C19—C20—C21—C22	-0.1 (3)
C10—P2—O1—C16	-90.78 (14)	C20—C21—C22—C23	-0.1 (4)
Co2—P2—O1—C16	26.04 (13)	C21—C22—C23—C24	0.5 (4)
C25—P3—O2—C18	-122.07 (14)	C22—C23—C24—C19	-0.7 (4)
C19—P3—O2—C18	132.99 (14)	C20-C19-C24-C23	0.5 (3)
Co2—P3—O2—C18	9.27 (15)	P3—C19—C24—C23	-174.15 (18)
O1—P2—C4—C5	-35.28 (18)	O2—P3—C25—C26	166.52 (16)
C10—P2—C4—C5	-140.81 (17)	C19—P3—C25—C26	-90.21 (17)
Co2—P2—C4—C5	88.23 (17)	Co2—P3—C25—C26	46.88 (19)
O1—P2—C4—C9	149.46 (17)	O2—P3—C25—C30	-15.99 (19)
C10—P2—C4—C9	43.93 (19)	C19—P3—C25—C30	87.28 (18)
Co2—P2—C4—C9	-87.03 (18)	Co2—P3—C25—C30	-135.62 (15)
C9—C4—C5—C6	0.6 (3)	C30-C25-C26-C27	-3.5 (3)
P2—C4—C5—C6	-174.71 (17)	P3—C25—C26—C27	174.08 (17)
C4—C5—C6—C7	0.9 (3)	C25—C26—C27—C28	1.8 (3)
C5—C6—C7—C8	-0.8 (4)	C26—C27—C28—C29	1.2 (3)
C6—C7—C8—C9	-0.7 (4)	C27—C28—C29—C30	-2.6 (3)
C7—C8—C9—C4	2.2 (4)	C28—C29—C30—C25	0.9 (4)
C5—C4—C9—C8	-2.2 (3)	C26—C25—C30—C29	2.1 (3)
P2—C4—C9—C8	173.15 (18)	P3—C25—C30—C29	-175.47 (18)
O1—P2—C10—C11	167.23 (17)		