## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 2-[4-Chloro-3-(4-ethoxybenzyl)phenyl]-1,3-dithiane

Brian Samas, ${ }^{\text {a* }}$ Cathy Préville, ${ }^{\text {b }}$ Benjamin A Thuma ${ }^{\text {b }}$ and Vincent Mascitti ${ }^{\text {b }}$

${ }^{\text {a }}$ Pharmaceutical Sciences, Pfizer Global Research \& Development, Groton Laboratories, Eastern Point Rd, Groton, CT 06340, USA, and ${ }^{\text {b }}$ CVMED Medicinal Chemistry, Pfizer Global Research \& Development, Groton Laboratories, Eastern Point Rd, Groton, CT 06340, USA
Correspondence e-mail: brian.samas@pfizer.com
Received 26 March 2010; accepted 11 May 2010

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; $R$ factor $=0.035 ; w R$ factor $=0.095$; data-to-parameter ratio $=15.6$.

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClOS}_{2}$, the dithiane ring adopts a chair conformation. The dihedral angle between the benzene rings is $87.88(4)^{\circ}$. In the crystal, inversion dimmers linked by pairs of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions occur.

## Related literature

For a related structure, see: Fun et al. (2009). For diarylmethane motifs, see: Xu et al. (2009).


## Experimental

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClOS}_{2}$
$M_{r}=364.93$
Monoclinic, $P 2_{1} / c$
$a=15.8214$ (3) A

$$
\begin{aligned}
& b=12.2444(2) \AA \\
& c=9.4191(2) \AA \\
& \beta=100.715(1)^{\circ} \\
& V=1792.89(6) \AA^{3}
\end{aligned}
$$

## $Z=4$

$\mathrm{Cu} K \alpha$ radiation
$\mu=4.06 \mathrm{~mm}^{-1}$

Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.513, T_{\text {max }}=0.888$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035 \quad 209$ parameters
$w R\left(F^{2}\right)=0.095 \quad \mathrm{H}$-atom parameters constrained
$S=1.06$
3257 reflections
$T=100 \mathrm{~K}$
$0.19 \times 0.13 \times 0.03 \mathrm{~mm}$
$\Delta \rho_{\max }=0.41 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 19-\mathrm{H} 19 A \cdots \mathrm{O} 1^{\mathrm{i}}$ | 0.97 | 2.40 | $3.367(2)$ | 173 |
| Symmetry code: (i) $-x,-y+1,-z+1$. |  |  |  |  |

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINTPlus (Bruker, 2006); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2206).

## References

Bruker (2006). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Fun, H.-K., Jebas, S. R., Maity, A. C., Das, N. K. \& Goswami, S. (2009). Acta Cryst. E65, o891.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xu, B., Lv, B., Feng, Y., Xu, G., Du, J., Welihinda, A., Sheng, Z., Seed, B. \& Chen, Y. (2009). Bioorg. Med. Chem. Lett. 19, 5632-5635.

## supporting information

Acta Cryst. (2010). E66, o1386 [https://doi.org/10.1107/S1600536810017393]

## 2-[4-Chloro-3-(4-ethoxybenzyl)phenyl]-1,3-dithiane

Brian Samas, Cathy Préville, Benjamin A Thuma and Vincent Mascitti

## S1. Comment

Diarylmethane motifs are found in some C-aryl glucoside anti-diabetic agents prototypes. Gaining understanding of these motifs is of interest to the pharmaceutical industry (Xu et al., 2009). The asymmetric unit contains one molecule of the title compound. There are no classic hydrogen bonds in the structure. A weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction pairs the molecules in a head-to-tail fashion. Crystal packing is controlled by van der Waals forces and $\pi-\pi$ stacking interactions between both rings.

The separate $\pi-\pi$ interactions, rings C3-C8 and C10-C15, are almost normal to each other at $87.88(4)^{\circ}$ and stabilize the structure. The rings are configured in a parallel-displaced configuration, the distance from closest contacts (C5-C15) is 3.599 (2) $\AA$ and measured from centroid-to-centroid these rings are separated by 4.8391 (1) $\AA$.

The dithiane ring is in the expected chair conformation with a slight twisting in reference to the benzene ring, to avoid steric repulsion. The saturated ring exhibits a slight outward distortion from the $\mathrm{C}-\mathrm{S}$, due to the longer $\mathrm{C}-\mathrm{S}$ bond. From the dithiane ring the benzene ring is in the expected equatorial position. These features are all common to dithiane crystal structures (Fun et al., 2009). Viewed down the c axis, the dithiane rings inter-leave (Figure 2).

## S2. Experimental

A synthesis of compound $\mathbf{1}$ is described on Fig. 3. Friedel Craft acylation of ethoxy benzene with 2-chloro-5-methyl benzoyl chloride in dichloromethane in presence of aluminum trichloride produced intermediate $\mathbf{2}$ in $30 \%$ yield. Radical bromination of 2 under classical conditions (AIBN, NBS, $\mathrm{CCl}_{4}$ ) gave 3 ( $52 \%$ yield) which was subsequently treated with triethylsilane and boron trifluoride diethyl etherate to provide $\mathbf{4}$ in $81 \%$ yield. Nucleophilic displacement with sodium acetate followed by deacetylation $(\mathrm{NaOMe} / \mathrm{MeOH})$ led to intermediate 5 in $73 \%$ yield over 2 steps. Parikh-Doering oxidation produced the desired aldehyde intermediate 6 in $85 \%$ yield. Alternatively, Kornblum oxidation of 4 using 2,4,6collidine in presence of dimethylsulfoxide gave $\mathbf{6}$ in $51 \%$ yield. Treatment of $\mathbf{6}$ with 1,3-propanedithiol in the presence of boron trifluoride diethyl etherate cleanly produced dithiane 1 in $74 \%$ yield. 1 was dissolved in ethyl acetate and allowed to evaporate over twelve hours to form X-ray diffraction quality crystals. Further details of the synthesis are included in the Experimental Special Details section.

## S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aryl, $0.97 \AA$ for methylene, and $0.96 \AA$ for methyl H atoms. $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aryl and methylene H atoms, and $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms.


Figure 1
View of the constituents of (I), showing the atom-labeling scheme and displacement ellipsoids drawn at the $50 \%$ probability level. H atoms are represented by circles of arbitrary size.


Figure 2
A partial packing diagram viewed along the c direction.



$30 \%$, 2 steps


4


Figure 3
Reaction scheme.

## 2-[4-Chloro-3-(4-ethoxybenzyl)phenyl]-1,3-dithiane

## Crystal data

$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClOS}_{2}$
$F(000)=768$
$M_{r}=364.93$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2 ybc
$a=15.8214$ (3) $\AA$
$b=12.2444(2) \AA$
$c=9.4191$ (2) $\AA$
$\beta=100.715(1)^{\circ}$
$V=1792.89(6) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=1.352 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 9696 reflections
$\theta=2.8-68.7^{\circ}$
$\mu=4.06 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.19 \times 0.13 \times 0.03 \mathrm{~mm}$

## Data collection

Bruker APEXII CCD diffractometer
Radiation source: rotating anode
Montel Multilayer optics monochromator $\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.513, T_{\text {max }}=0.888$
13885 measured reflections
3257 independent reflections
3040 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=69.3^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-19 \rightarrow 19$
$k=-13 \rightarrow 14$
$l=-7 \rightarrow 11$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.095$
$S=1.06$
3257 reflections
209 parameters
0 restraints
0 constraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0597 P)^{2}+0.711 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e} \AA^{-3}$

## supporting information

Special details

Experimental. (2-Chloro-5-methyl-phenyl)-(4-ethoxy-phenyl)-methanone (2):
To a solution of 2-chloro-5-methyl-benzoic acid ( $1.0 \mathrm{~g}, 5.86 \mathrm{mmol}$ ) in dichloromethane ( 12 ml ) was added at room temperature $\left(\sim 23^{\circ} \mathrm{C}\right)$ oxalyl chloride $(0.54 \mathrm{ml}, 6.2 \mathrm{mmol})$ followed by the dropwise addition of $N, N$-dimethylformamide $(0.1 \mathrm{ml})$. The resulting solution was allowed to stir overnight at room temperature before being concentrated under reduced pressure to produce crude 2-chloro-5-methylbenzoyl chloride which was used in the next step without further purification. The crude 2-chloro-5-methylbenzoyl chloride ( $1.15 \mathrm{~g}, 5.86 \mathrm{mmol}$ ) and ethoxybenzene ( $0.75 \mathrm{~g}, 6.14 \mathrm{mmol}$ ) were dissolved in 10 ml of dichloromethane and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. Aluminum trichloride ( 0.85 g , 6.38 mmol ) was added and the reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 4 hours before being allowed to warm to room temperature overnight ( $\sim 16$ hours). The reaction was quenched by pouring the solution over ice. The mixture was diluted with water and extracted three times with dichloromethane. The combined organic layers were successively washed with aqueous 1 N hydrochloric acid solution, aqueous 1 N sodium hydroxide solution, brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material was chromatographed using an ISCO automated chromatography unit ( 40 g silica gel column) and eluting with a gradient of $0-40 \%$ ethyl acetate in heptane yielding 650 mg ( $30 \%$ yield) of an oil that solidified upon standing. MS (LCMS) $274.9\left(\mathrm{M}+\mathrm{H}^{+}\right.$; positive mode). HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 275.0833$ found $275.0832 .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , CHLOROFORM-d) $\delta \mathrm{ppm} 1.43(\mathrm{t}$, $\mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}$, $\mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , CHLOROFORM-d) $\delta \mathrm{ppm}$ 194.3, 163.7, 139.0, 136.9, 132,7 (2 C), 132.5, 131.7, 129.8, 129.5, 128.4, 114.4 (2 C), 64.0, 21.0, 14.8.
(5-Bromomethyl-2-chloro-phenyl)-(4-ethoxy-phenyl)-methanone (3):
To a solution of (2-chloro-5-methyl-phenyl)-(4-ethoxy-phenyl)-methanone (2;650 mg, 2.37 mmol ) and N bromosuccinimide ( $465 \mathrm{mg}, 2.61 \mathrm{mmol}$ ) in carbon tetrachloride ( 8 ml ) was added 2, 2'-azobisisobutyronitrile (AIBN, 8 $\mathrm{mg}, 0.047 \mathrm{mmol}$ ) and the reaction mixture was heated to reflux for 26 hours under nitrogen. The reaction was cooled to room temperature, quenched with water $(50 \mathrm{ml})$ and the mixture diluted with dichloromethane $(25 \mathrm{ml})$. The layers were separated and the aqueous layer was extracted two additional times with dichloromethane ( 25 ml ). The combined organic layers were washed with brine, dried over magnesium sulfate, filtered through a pad of celite, and concentrated under reduced pressure. The crude material was chromatographed with an ISCO automated chromatography unit ( 40 g silica gel column) eluting with a gradient of $0-20 \%$ ethyl acetate in heptane to produce 434 mg ( $52 \%$ yield) of the desired product as a white solid. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrClO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 352.9938$ found 352.9939 . ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CHLOROFORM-d) $\delta \mathrm{ppm} 1.43(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.10(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~s}$, $1 \mathrm{H}), 7.37-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 MHz , CHLOROFORM-d) $\delta \mathrm{ppm}$ 193.3, 163.3, 139.6, 136.9132 .7 (2 C), 131.5, 131.3, 130.6, 129.5, 129.1, 114.6 (2 C), 64.1, 31.8, 14.8.

4-Bromomethyl-1-chloro-2-(4-ethoxy-benzyl)-benzene (4):
To a solution of (5-bromomethyl-2-chloro-phenyl)-(4-ethoxy-phenyl)-methanone ( $\mathbf{3} ; 400 \mathrm{mg}, 1.13 \mathrm{mmol}$ ) dissolved in dichloromethane $(2 \mathrm{ml})$ and acetonitrile $(4 \mathrm{ml})$ cooled to $0^{\circ} \mathrm{C}$ was added triethylsilane $(0.7 \mathrm{~mL}, 4 \mathrm{mmol})$. Boron trifluoride diethyl ether complex $(0.34 \mathrm{ml}, 2.71 \mathrm{mmol})$ was added dropwise to the stirring solution and the reaction mixture was allowed to warm to room temperature overnight. The reaction was quenched by addition of aqueous 1 N sodium hydroxide ( 30 ml ) and the resulting biphasic mixture was extracted three times with ethyl acetate ( 30 ml ). The combined organic layers were successively washed with aqueous 1 N sodium hydroxide solution ( 50 ml ), brine ( 50 ml ), dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material was chromatographed using an ISCO automated chromatography unit ( 12 g silica gel column) eluting with a gradient of $0-50 \%$ ethyl acetate in heptane to produce $310 \mathrm{mg}\left(81 \%\right.$ yield) of the desired product as a clear oil. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrClO}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 339.0145 found $339.0137 .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , CHLOROFORM-d) $\delta \mathrm{ppm} 1.39(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$ ), $4.00(\mathrm{q}, \mathrm{J}=8.4 \mathrm{~Hz}, 2$ H), $4.01(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, \mathrm{J}=8.1$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 MHz , CHLOROFORM-d) $\delta \mathrm{ppm} 157.7,139.8,136.7,134.4,131.5$, 131.1, 130.2, 130.1 (2 C), 128.4, 114.7 (2 C), 63.6, 38.4, 32.8, 15.1.
[4-Chloro-3-(4-ethoxy-benzyl)-phenyl]-methanol (5):
A solution of 4-bromomethyl-1-chloro-2-(4-ethoxy-benzyl)-benzene ( $4 ; 300 \mathrm{mg}, 0.883 \mathrm{mmol}$ ) and sodium acetate (217 $\mathrm{mg}, 2.65 \mathrm{mmol}$ ) in $\mathrm{N}, \mathrm{N}$-dimethylformamide ( 2 ml ) was heated at $100^{\circ} \mathrm{C}$ for 18 hours. After cooling to room temperature, the reaction was quenched with water $(30 \mathrm{ml})$ and the resulting mixture was extracted with ethyl acetate $(30 \mathrm{ml})$. The aqueous layer was extracted with ethyl acetate ( 30 ml ) two additional times. The combined organic layers were washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material was chromatographed using an ISCO automated chromatography unit ( 12 g silica gel column) eluting with a gradient of $0-50 \%$ ethyl acetate in heptane yielding 237 mg ( $84 \%$ yield) of acetic acid 4-chloro-3-(4-ethoxy-benzyl)-benzyl ester as a clear oil. HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClNaO}_{3}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 341.0914$ found $341.0925 .{ }^{1} \mathrm{H}$ NMR ( 400 MHz ,
CHLOROFORM-d) $\delta$ ppm $1.39(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{q}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=8.6$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 7.08 (d, J=8.8 Hz, 2 H ), 7.10 (br. s., 1 H ), 7.13 (dd, J=8.2, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.34 (d, J=8.0 Hz, 1 H ). ${ }^{13} \mathrm{C}$ NMR ( 100 $\mathrm{MHz}, \mathrm{CHLOROFORM-d}) ~ \delta \mathrm{ppm} 170.9,157.7,139.6,134.9,134.2,131.3,130.9$ (2 C), 130.1, 129.8, 127.5, 114.7 (2 C), $67.7,63.6,38.5,21.2,15.1$.
Toxasolutiom of áceticl aeid 4-chloro-3-(4-ethoxy-benzyl)-benzyl ester ( $221 \mathrm{mg}, 0.693 \mathrm{mmol}$ ) dissolved in methanol \&\&p-6 ml ) was added $25 \%$ sodium methoxide in methanol ( 1 ml ) until $\mathrm{pH}=12$ was reached and the reaction mixture was allowed to stir at room temperature under nitrogen for 18 hours. The mixture was neutralized with the addition of Dowex Monosphere $650 \mathrm{C}(\mathrm{H})$ cation exchange resin (the resin was washed with methanol 3 times before using) until the pH of

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes)
are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor wR and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| S1 | -0.06149 (3) | 0.34104 (3) | 0.16942 (5) | 0.03161 (14) |
| S2 | 0.02647 (3) | 0.12144 (3) | 0.18334 (5) | 0.02839 (13) |
| Cl 1 | 0.36610 (3) | 0.48468 (4) | 0.26092 (5) | 0.03858 (15) |
| O1 | 0.34010 (7) | 0.61472 (10) | 0.88988 (13) | 0.0309 (3) |
| C10 | 0.24904 (10) | 0.33442 (13) | 0.31254 (17) | 0.0245 (3) |
| C17 | -0.08039 (10) | 0.07566 (13) | 0.10028 (18) | 0.0273 (3) |
| H17A | -0.0852 | 0.0772 | -0.0039 | 0.033* |
| H17B | -0.0875 | 0.0005 | 0.1284 | 0.033* |
| C4 | 0.25848 (10) | 0.49708 (14) | 0.72116 (18) | 0.0271 (4) |
| H4 | 0.2093 | 0.5232 | 0.7506 | 0.033* |
| C18 | -0.15249 (11) | 0.14349 (14) | 0.14036 (19) | 0.0303 (4) |
| H18A | -0.1464 | 0.1448 | 0.2447 | 0.036* |
| H18B | -0.2070 | 0.1090 | 0.1013 | 0.036* |
| C12 | 0.20648 (11) | 0.45554 (14) | 0.10697 (18) | 0.0286 (4) |
| H12 | 0.2196 | 0.5135 | 0.0510 | 0.034* |
| C3 | 0.33940 (10) | 0.53507 (13) | 0.78734 (17) | 0.0255 (3) |
| C7 | 0.40363 (10) | 0.41546 (14) | 0.63581 (19) | 0.0297 (4) |
| H7 | 0.4529 | 0.3877 | 0.6083 | 0.036* |
| C16 | 0.02258 (10) | 0.25970 (12) | 0.11252 (17) | 0.0233 (3) |
| H16 | 0.0101 | 0.2553 | 0.0068 | 0.028* |
| C11 | 0.26600 (10) | 0.41954 (14) | 0.22447 (18) | 0.0267 (3) |
| C14 | 0.10798 (10) | 0.31682 (13) | 0.15714 (17) | 0.0228 (3) |
| C15 | 0.16857 (10) | 0.28457 (13) | 0.27638 (17) | 0.0236 (3) |
| H15 | 0.1550 | 0.2279 | 0.3339 | 0.028* |
| C2 | 0.42134 (11) | 0.65916 (14) | 0.95732 (18) | 0.0307 (4) |
| H2A | 0.4520 | 0.6867 | 0.8847 | 0.037* |
| H2B | 0.4563 | 0.6032 | 1.0128 | 0.037* |
| C5 | 0.25158 (10) | 0.42072 (13) | 0.61192 (17) | 0.0256 (3) |
| H5 | 0.1973 | 0.3967 | 0.5677 | 0.031* |
| C6 | 0.32365 (10) | 0.37868 (13) | 0.56612 (18) | 0.0248 (3) |
| C9 | 0.31334 (10) | 0.29688 (13) | 0.44322 (19) | 0.0279 (4) |
| H9A | 0.3687 | 0.2854 | 0.4154 | 0.034* |
| H9B | 0.2946 | 0.2276 | 0.4764 | 0.034* |
| C13 | 0.12736 (11) | 0.40436 (13) | 0.07374 (17) | 0.0261 (3) |
| H13 | 0.0869 | 0.4284 | -0.0045 | 0.031* |


| C19 | $-0.15389(11)$ | $0.26023(14)$ | $0.0851(2)$ | $0.0354(4)$ |
| :--- | :--- | :--- | :--- | :--- |
| H19A | -0.2059 | 0.2956 | 0.1020 | $0.043^{*}$ |
| H19B | -0.1559 | 0.2587 | -0.0185 | $0.043^{*}$ |
| C8 | $0.41212(10)$ | $0.49263(14)$ | $0.74548(18)$ | $0.0286(4)$ |
| H8 | 0.4665 | 0.5158 | 0.7907 | $0.034^{*}$ |
| C1 | $0.40403(13)$ | $0.75029(16)$ | $1.0549(2)$ | $0.0393(4)$ |
| H1A | 0.3717 | 0.8067 | 0.9983 | $0.059^{*}$ |
| H1B | 0.4576 | 0.7797 | 1.1048 | $0.059^{*}$ |
| H1C | 0.3717 | 0.7227 | 1.1239 | $0.059^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 | $0.0281(2)$ | $0.0190(2)$ | $0.0491(3)$ | $0.00118(15)$ | $0.01076(19)$ | $-0.00376(17)$ |
| S2 | $0.0267(2)$ | $0.0175(2)$ | $0.0379(2)$ | $-0.00016(14)$ | $-0.00212(17)$ | $0.00027(15)$ |
| C11 | $0.0302(2)$ | $0.0440(3)$ | $0.0424(3)$ | $-0.01370(18)$ | $0.00921(19)$ | $0.00073(19)$ |
| O1 | $0.0252(6)$ | $0.0339(7)$ | $0.0321(6)$ | $0.0000(5)$ | $0.0014(5)$ | $-0.0065(5)$ |
| C10 | $0.0250(8)$ | $0.0209(8)$ | $0.0282(8)$ | $0.0021(6)$ | $0.0064(6)$ | $-0.0043(6)$ |
| C17 | $0.0271(8)$ | $0.0212(8)$ | $0.0319(8)$ | $-0.0036(6)$ | $0.0014(7)$ | $-0.0030(7)$ |
| C4 | $0.0200(8)$ | $0.0317(9)$ | $0.0297(8)$ | $0.0017(6)$ | $0.0049(6)$ | $0.0024(7)$ |
| C18 | $0.0287(8)$ | $0.0277(8)$ | $0.0353(9)$ | $-0.0054(7)$ | $0.0082(7)$ | $-0.0024(7)$ |
| C12 | $0.0379(9)$ | $0.0231(8)$ | $0.0266(8)$ | $-0.0037(7)$ | $0.0107(7)$ | $0.0002(7)$ |
| C3 | $0.0270(8)$ | $0.0241(8)$ | $0.0244(7)$ | $0.0006(6)$ | $0.0023(6)$ | $0.0028(6)$ |
| C7 | $0.0209(8)$ | $0.0313(9)$ | $0.0362(9)$ | $0.0046(7)$ | $0.0034(7)$ | $-0.0004(7)$ |
| C16 | $0.0263(8)$ | $0.0206(7)$ | $0.0231(7)$ | $0.0018(6)$ | $0.0045(6)$ | $0.0001(6)$ |
| C11 | $0.0248(8)$ | $0.0254(8)$ | $0.0314(8)$ | $-0.0045(6)$ | $0.0094(6)$ | $-0.0057(7)$ |
| C14 | $0.0259(8)$ | $0.0190(7)$ | $0.0242(7)$ | $0.0016(6)$ | $0.0067(6)$ | $-0.0039(6)$ |
| C15 | $0.0284(8)$ | $0.0175(7)$ | $0.0256(8)$ | $0.0008(6)$ | $0.0073(6)$ | $-0.0011(6)$ |
| C2 | $0.0287(8)$ | $0.0326(9)$ | $0.0287(8)$ | $-0.0036(7)$ | $0.0000(7)$ | $-0.0005(7)$ |
| C5 | $0.0206(7)$ | $0.0275(8)$ | $0.0274(8)$ | $-0.0032(6)$ | $0.0013(6)$ | $0.0044(7)$ |
| C6 | $0.0240(8)$ | $0.0211(8)$ | $0.0283(8)$ | $0.0011(6)$ | $0.0020(6)$ | $0.0045(6)$ |
| C9 | $0.0246(8)$ | $0.0227(8)$ | $0.0356(9)$ | $0.0017(6)$ | $0.0031(7)$ | $-0.0005(7)$ |
| C13 | $0.0326(8)$ | $0.0229(8)$ | $0.0225(7)$ | $0.0011(7)$ | $0.0045(6)$ | $0.0000(6)$ |
| C19 | $0.0244(8)$ | $0.0271(9)$ | $0.0548(11)$ | $0.0011(7)$ | $0.0072(8)$ | $-0.0013(8)$ |
| C8 | $0.0198(8)$ | $0.0305(9)$ | $0.0336(9)$ | $-0.0005(6)$ | $-0.0002(7)$ | $-0.0002(7)$ |
| C1 | $0.0415(10)$ | $0.0375(10)$ | $0.0376(10)$ | $-0.0058(8)$ | $0.0037(8)$ | $-0.0065(8)$ |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| $\mathrm{S} 1-\mathrm{C} 16$ | $1.8202(16)$ | $\mathrm{C} 7-\mathrm{C} 6$ | $1.388(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{S} 1-\mathrm{C} 19$ | $1.8209(18)$ | $\mathrm{C} 7-\mathrm{C} 8$ | $1.388(2)$ |
| $\mathrm{S} 2-\mathrm{C} 17$ | $1.8146(16)$ | $\mathrm{C} 7-\mathrm{H} 7$ | 0.9300 |
| $\mathrm{~S} 2-\mathrm{C} 16$ | $1.8165(16)$ | $\mathrm{C} 16-\mathrm{C} 14$ | $1.510(2)$ |
| $\mathrm{C} 11-\mathrm{C} 11$ | $1.7494(16)$ | $\mathrm{C} 16-\mathrm{H} 16$ | 0.9800 |
| $\mathrm{O} 1-\mathrm{C} 3$ | $1.371(2)$ | $\mathrm{C} 14-\mathrm{C} 15$ | $1.391(2)$ |
| $\mathrm{O} 1-\mathrm{C} 2$ | $1.431(2)$ | $\mathrm{C} 14-\mathrm{C} 13$ | $1.396(2)$ |
| $\mathrm{C} 10-\mathrm{C} 11$ | $1.389(2)$ | $\mathrm{C} 15-\mathrm{H} 15$ | 0.9300 |
| $\mathrm{C} 10-\mathrm{C} 15$ | $1.396(2)$ | $\mathrm{C} 2-\mathrm{C} 1$ | $1.503(3)$ |


| C10-C9 | 1.515 (2) | $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 0.9700 |
| :---: | :---: | :---: | :---: |
| C17-C18 | 1.515 (2) | $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 0.9700 |
| C17-H17A | 0.9700 | C5-C6 | 1.391 (2) |
| C17-H17B | 0.9700 | C5-H5 | 0.9300 |
| C4-C5 | 1.379 (2) | C6-C9 | 1.516 (2) |
| C4-C3 | 1.395 (2) | C9-H9A | 0.9700 |
| C4-H4 | 0.9300 | C9-H9B | 0.9700 |
| C18-C19 | 1.520 (2) | C13-H13 | 0.9300 |
| C18-H18A | 0.9700 | C19-H19A | 0.9700 |
| C18-H18B | 0.9700 | C19-H19B | 0.9700 |
| C12-C13 | 1.383 (2) | C8-H8 | 0.9300 |
| C12-C11 | 1.385 (2) | C1-H1A | 0.9600 |
| C12-H12 | 0.9300 | C1-H1B | 0.9600 |
| C3-C8 | 1.385 (2) | $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 0.9600 |
| C16-S1-C19 | 98.37 (8) | C13-C14-C16 | 118.54 (14) |
| C17-S2-C16 | 99.46 (7) | C14-C15-C10 | 122.22 (15) |
| C3-O1-C2 | 118.16 (13) | C14-C15-H15 | 118.9 |
| C11-C10-C15 | 116.81 (15) | C10-C15-H15 | 118.9 |
| C11-C10-C9 | 122.53 (14) | $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$ | 107.64 (14) |
| C15-C10-C9 | 120.65 (14) | $\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 110.2 |
| C18-C17-S2 | 114.06 (11) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 110.2 |
| C18-C17-H17A | 108.7 | $\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 110.2 |
| S2-C17-H17A | 108.7 | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 110.2 |
| C18-C17-H17B | 108.7 | $\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 108.5 |
| S2-C17-H17B | 108.7 | C4-C5-C6 | 121.76 (14) |
| H17A-C17-H17B | 107.6 | C4-C5-H5 | 119.1 |
| C5-C4-C3 | 119.87 (15) | C6-C5-H5 | 119.1 |
| C5-C4-H4 | 120.1 | C7-C6-C5 | 117.46 (15) |
| C3-C4-H4 | 120.1 | C7-C6-C9 | 122.32 (15) |
| C17-C18-C19 | 113.19 (14) | C5-C6-C9 | 120.21 (14) |
| C17-C18-H18A | 108.9 | C10-C9-C6 | 112.37 (13) |
| C19-C18-H18A | 108.9 | C10-C9-H9A | 109.1 |
| C17-C18-H18B | 108.9 | C6-C9-H9A | 109.1 |
| C19-C18-H18B | 108.9 | C10-C9-H9B | 109.1 |
| H18A-C18-H18B | 107.8 | C6-C9-H9B | 109.1 |
| C13-C12-C11 | 119.27 (15) | H9A-C9-H9B | 107.9 |
| C13-C12-H12 | 120.4 | C12-C13-C14 | 120.33 (15) |
| C11-C12-H12 | 120.4 | C12-C13-H13 | 119.8 |
| O1-C3-C8 | 124.69 (14) | C14-C13-H13 | 119.8 |
| O1-C3-C4 | 116.00 (14) | C18-C19-S1 | 113.71 (13) |
| C8-C3-C4 | 119.31 (15) | C18-C19-H19A | 108.8 |
| C6-C7-C8 | 121.77 (15) | S1-C19-H19A | 108.8 |
| C6-C7-H7 | 119.1 | C18-C19-H19B | 108.8 |
| C8-C7-H7 | 119.1 | S1-C19-H19B | 108.8 |
| C14-C16-S2 | 111.22 (10) | H19A-C19-H19B | 107.7 |
| C14-C16-S1 | 109.25 (10) | C3-C8-C7 | 119.78 (15) |
| S2-C16-S1 | 112.24 (8) | C3-C8-H8 | 120.1 |


| C14-C16-H16 | 108.0 |
| :---: | :---: |
| S2-C16-H16 | 108.0 |
| S1-C16-H16 | 108.0 |
| C12-C11-C10 | 122.54 (15) |
| C12-C11-Cl1 | 117.90 (13) |
| C10-C11-Cl1 | 119.56 (13) |
| C15-C14-C13 | 118.78 (15) |
| C15-C14-C16 | 122.67 (14) |
| C16-S2-C17-C18 | -59.13 (14) |
| S2-C17-C18-C19 | 65.33 (18) |
| C2-O1-C3-C8 | 1.2 (2) |
| $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$ | -177.84 (14) |
| C5-C4-C3-O1 | 176.93 (14) |
| C5-C4-C3-C8 | -2.2 (2) |
| C17-S2-C16-C14 | -176.03 (11) |
| C17-S2-C16-S1 | 61.23 (10) |
| C19-S1-C16-C14 | 174.28 (11) |
| C19-S1-C16-S2 | -61.87 (10) |
| C13-C12-C11-C10 | -1.0 (3) |
| C13-C12-C11-C11 | 178.80 (12) |
| C15-C10-C11-C12 | 0.8 (2) |
| C9-C10-C11-C12 | -178.46 (15) |
| C15-C10-C11-Cl1 | -178.94 (12) |
| C9-C10-C11-Cl1 | 1.8 (2) |
| S2-C16-C14-C15 | -22.01 (19) |
| S1-C16-C14-C15 | 102.44 (15) |
| S2-C16-C14-C13 | 156.87 (12) |
| S1-C16-C14-C13 | -78.68 (16) |
| C13-C14-C15-C10 | -2.1 (2) |


| $\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$ | 120.1 |
| :--- | :--- |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 109.5 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.5 |
| $\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.5 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 109.5 |
| $\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 109.5 |
| $\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 109.5 |

$\mathrm{C} 16-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10 \quad 176.73$ (14)
C11-C10-C15-C14 0.8 (2)
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14 \quad-179.94$ (14)
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1 \quad 175.34$ (14)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6 \quad 0.8$ (2)
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5 \quad-1.1$ (2)
C8-C7-C6-C9 178.18 (15)
C4-C5-C6-C7 0.8 (2)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 9 \quad-178.52(15)$
C11-C10-C9—C6 71.3 (2)
C15-C10-C9-C6 -107.93 (17)
C7-C6-C9-C10 -129.56 (17)
C5-C6-C9-C10 49.7 (2)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14 \quad-0.5(2)$
C15-C14-C13-C12 2.0 (2)
$\mathrm{C} 16-\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12 \quad-176.95(15)$
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19-\mathrm{S} 1 \quad-66.73$ (18)
C16-S1-C19-C18 61.15 (15)
O1-C3-C8-C7
C4-C3-C8-C7
$-177.15(15)$
1.8 (3)
-0.2 (3)

Hydrogen-bond geometry (A, o)

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 19 — \mathrm{H} 19 A \cdots \mathrm{O} 1^{\mathrm{i}}$ | 0.97 | 2.40 | $3.367(2)$ | 173 |

Symmetry code: (i) $-x,-y+1,-z+1$.

