Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Nitro-2-phenoxyaniline

H. R. Manjunath, ${ }^{\text {a }}$ M. T. Shreenivasa, ${ }^{\text {b }}$ M. Mahendra, ${ }^{\text {a }}$
T. M. Mohan Kumar, ${ }^{\text {c B. E. Kumara Swamy }}{ }^{\text {b }}$ and
M. A. Sridhar ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, ${ }^{\text {b }}$ Department of P. G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka, India, and ${ }^{\text {c }}$ Chemistry Department, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bangalore 560 035, India
Correspondence e-mail: mas@physics.uni-mysore.ac.in

Received 11 March 2010; accepted 31 March 2010

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.053 ; \omega R$ factor $=0.167$; data-to-parameter ratio $=12.3$.

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$, the oxygen atom bridging the two aromatic rings is in a synperiplanar ($+s p$) conformation. The dihedral angle between the aromatic rings is $71.40(12)^{\circ}$. In the crystal, molecules are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For the pharmacological properties of nitro-2-phenoxyaniline, see: Moore \& Harrington (1974); Prasad et al. (2005). For the herbicidal applications of biphenyl ether derivatives, see: Yu et al., (2008). For the applications of Schiff bases derived from aromatic amines, see: Singh et al. (1975); Cimerman et al. (2000). For their biological and pharmacological acitvity, see: Singh et al. (1975); Cimerman et al. (2000); Shah et al. (1992); Pandeya et al. (1999); More et al. (2001). For the preparation of 4-nitro-2-phenoxyaniline, see: Shreenivasa et al. (2009). For a related structure, see: Naveen et al. (2006).

Experimental

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=230.22$
Monoclinic, $P 2_{1} / c$
$a=10.4100$ (12) \AA
$b=15.6570$ (18) \AA
$c=6.9600$ (17) A
$\beta=103.406$ (4) ${ }^{\circ}$

Data collection

MacScience DIPLabo 32001 diffractometer
3336 measured reflections

> 1889 independent reflections 1498 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
154 parameters
$w R\left(F^{2}\right)=0.167$
H -atom parameters constrained
$S=1.09$
$\Delta \rho_{\text {max }}=0.13$ e \AA^{-3}
1889 reflections

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 10-\mathrm{H} 10 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.17	$3.023(3)$	170
Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.				

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors are grateful to the DST and Government of India project SP/I2/FOO/93 and the University of Mysore for financial assistance. MM would like to thank the University of Mysore for awarding a project under the head DV3/136/20072008/24.09.09.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2288).

References

Cimerman, Z., Miljanić, S. \& Galić, N. (2000). Croat. Chem. Acta, 73, 81-95. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.
Moore, G. G. L. \& Harrington, J. K. (1974). US Patent No. 3840597.
More, P. G., Bhalvankar, R. B. \& Patter, S. C. (2001). J. Indian Chem. Soc. 78, 474-475.
Naveen, S., Anil Kumar, K., Channe Gowda, D., Sridhar, M. A. \& Shashidhara Prasad, J. (2006). Acta Cryst. E62, o3790-o3791.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pandeya, S. N., Sriram, D., Nath, G. \& De Clercq, E. (1999). Eur. J. Pharm. Soc. 9, 25-31.
Prasad, A., Sharma, M. L., Kanwar, S., Rathee, R. \& Sharma, S. D. (2005). J. Sci. Ind. Res. 64, 756-760.
Shah, S., Vyas, R. \& Mehta, R. H. (1992). J. Indian Chem. Soc. 69, 590-596. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shreenivasa, M. T., Chetan, B. P. \& Bhat, A. R. (2009). J. Pharm. Sci. Technol. 1, 88-94.
Singh, P., Goel, R. L. \& Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958-959. Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yu, H.-B., Wu, H.-F., Cui, D.-L. \& Li, B. (2008). Ark. Kemi, 2, 94-104.

supporting information

Acta Cryst. (2010). E66, o1255 [https://doi.org/10.1107/S1600536810012237]

4-Nitro-2-phenoxyaniline

H. R. Manjunath, M. T. Shreenivasa, M. Mahendra, T. M. Mohan Kumar, B. E. Kumara Swamy and M. A. Sridhar

S1. Comment

The phenoxy anilines are versatile intermediates for synthesizing several pharmaceutical drugs i.e. Nimesulide, Ampxipine and Loxapine. The Nitro-2-phenoxyaniline is an intermediate for the synthesis of Nimesulide and it was probably the first COX-2 selective non-steroidal anti inflammatory drug (NSAID) identified with this key pharmacological properties (Moore \& Harrington, 1974; Prasad et al. 2005). It is a unique molecule with twin aromatic ring structure. The nitro-2-phenoxyaniline is a derivative of biphenyl ether. More generally, biphenyl ether derivatives have many biological, herbicidal (Yu et al., 2008) and organic chemistry applications. Schiff bases derived from aromatic amines have a wide variety of applications in many fields, viz., biological, inorganic and anlytical chemistry (Singh et al., 1975; Cimerman et al., 2000). They are known to exhibit potent antibacterial, anticonvulsant, anti-inflammatory (Shah et al. 1992), anticancer (Pandeya et al., 1999), anti-hypertensive and hypnotic (More et al., 2001) activities. With this background, the title compound (I), was synthesized and we report its crystal structure here.

A perspective view of (I) is shown in Fig. 1. The two aromatic rings are not coplanar. This is confirmed by the dihedral angle value of $71.38(12)^{\circ}$ between two six-membered rings. The oxygen atom connecting the two aromatic rings is in syn-periplanar (sp) conformation as indicated by the torsion angle value of $13.0(3)^{\circ}$. The nitro group lies in the plane of the aniline ring as indicated by the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 7-\mathrm{O} 8$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 7-\mathrm{O} 9$ torsion angles of $-176.1(2)^{\circ}$ and $-174.4(2)^{\circ}$, respectively. These values are different from the values reported earlier (Naveen S. et al. 2006). The structure exhibits both inter and intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction. The intermolecular $\mathrm{N} 10 — \mathrm{H} 10 \mathrm{~A} \cdots \mathrm{O} 9$ interaction has a length of $2.17 \AA$ and angle of 170° with symmetry codes $3 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 1-\mathrm{z}$. The molecules exhibit layered stackings when viewd down the ' b ' axis as shown in Fig. 2.

S2. Experimental

The 4-nitro-2-phenoxyaniline was prepared by condensation of o-chloronitrobenzene with phenol followed by acetylation and nitration (Shreenivasa et al., 2009). The final product obtained was recrystallized using ethanol as a solvent. Colorless crystals were appeared after 4 days by slow evaporation.

S3. Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA ; U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier atom $)$ for all H atoms.

Figure 1
A view of (I), with 50\% probability displacement ellipsoids.

Figure 2
Packing diagram of the molecule viewed down the ' b ' axis. The dotted lines represents the hydrogen bonds.

4-Nitro-2-phenoxyaniline

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=230.22$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=10.4100(12) \AA$
$b=15.6570(18) \AA$
$c=6.9600(17) \AA$
$\beta=103.406$ (4) ${ }^{\circ}$
$V=1103.5$ (3) \AA^{3}
$Z=4$

$$
\begin{aligned}
& F(000)=480 \\
& D_{\mathrm{x}}=1.386 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 14613 \text { reflections } \\
& \theta=2.4-32.5^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.32 \times 0.3 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

Data collection

MacScience DIPLabo 32001
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10.0 pixels mm^{-1}
ω scan
3336 measured reflections

$$
\begin{aligned}
& 1889 \text { independent reflections } \\
& 1498 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.033 \\
& \theta_{\max }=25.0^{\circ}, \theta_{\min }=2.4^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=-18 \rightarrow 18 \\
& l=-8 \rightarrow 8
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.167$
$S=1.09$
1889 reflections
154 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C1	$0.4153(2)$	$0.11783(12)$	$0.1849(3)$	$0.0575(5)$
C2	$0.4872(2)$	$0.04830(14)$	$0.2715(3)$	$0.0624(5)$
H2	0.5641	0.0561	0.3692	0.075^{*}
C3	$0.4446(2)$	$-0.03248(13)$	$0.2129(3)$	$0.0618(5)$
H3	0.4920	-0.0794	0.2737	0.074^{*}

C4	$0.3320(2)$	$-0.04544(12)$	$0.0647(3)$	$0.0578(5)$
C5	$0.2615(2)$	$0.02705(13)$	$-0.0233(3)$	$0.0637(6)$
C6	$0.3010(2)$	$0.10777(13)$	$0.0368(3)$	$0.0643(6)$
H6	0.2527	0.1550	-0.0200	0.077^{*}
N7	$0.46086(19)$	$0.20258(12)$	$0.2446(3)$	$0.0696(5)$
O8	$0.39280(19)$	$0.26405(10)$	$0.1748(3)$	$0.0929(6)$
O9	$0.56703(18)$	$0.21113(11)$	$0.3643(3)$	$0.0956(6)$
N10	$0.28775(19)$	$-0.12433(11)$	$0.0016(3)$	$0.0742(6)$
H10A	0.3300	-0.1689	0.0542	0.089^{*}
H10B	0.2174	-0.1298	-0.0909	0.089^{*}
O11	$0.15146(19)$	$0.00647(10)$	$-0.1675(3)$	$0.0991(7)$
C12	$0.0845(2)$	$0.06917(13)$	$-0.2929(3)$	$0.0710(6)$
C13	$-0.0425(2)$	$0.08508(17)$	$-0.2880(4)$	$0.0802(7)$
H13	-0.0804	0.0568	-0.1974	0.096^{*}
C14	$-0.1149(3)$	$0.1424(2)$	$-0.4153(5)$	$0.0973(9)$
H14	-0.2022	0.1528	-0.4110	0.117^{*}
C15	$-0.0624(4)$	$0.18388(18)$	$-0.5465(5)$	$0.1026(10)$
H15	-0.1127	0.2234	-0.6318	0.123^{*}
C16	$0.0659(4)$	$0.16812(19)$	$-0.5551(4)$	$0.1079(11)$
H16	0.1024	0.1967	-0.6469	0.129^{*}
C17	$0.1418(3)$	$0.10918(18)$	$-0.4262(5)$	$0.0934(8)$
H17	0.2287	0.0976	-0.4309	0.112^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0635(11)$	$0.0525(10)$	$0.0538(11)$	$0.0002(9)$	$0.0079(9)$	$-0.0054(8)$
C2	$0.0669(12)$	$0.0677(13)$	$0.0474(10)$	$0.0017(10)$	$0.0026(9)$	$0.0018(9)$
C3	$0.0713(13)$	$0.0586(11)$	$0.0523(11)$	$0.0093(9)$	$0.0079(9)$	$0.0073(9)$
C4	$0.0647(12)$	$0.0528(11)$	$0.0553(11)$	$0.0008(9)$	$0.0125(9)$	$0.0022(8)$
C5	$0.0613(12)$	$0.0559(11)$	$0.0657(12)$	$-0.0024(9)$	$-0.0018(10)$	$0.0025(9)$
C6	$0.0619(12)$	$0.0545(11)$	$0.0690(13)$	$0.0044(9)$	$-0.0003(10)$	$0.0015(9)$
N7	$0.0731(11)$	$0.0609(11)$	$0.0687(11)$	$0.0001(9)$	$0.0042(9)$	$-0.0105(9)$
O8	$0.0977(12)$	$0.0569(9)$	$0.1100(14)$	$0.0061(9)$	$-0.0044(10)$	$-0.0108(9)$
O9	$0.0884(12)$	$0.0789(11)$	$0.0993(13)$	$-0.0071(9)$	$-0.0195(10)$	$-0.0197(10)$
N10	$0.0811(12)$	$0.0523(10)$	$0.0814(13)$	$-0.0015(8)$	$0.0031(10)$	$0.0031(9)$
O11	$0.0898(12)$	$0.0568(9)$	$0.1187(15)$	$-0.0097(8)$	$-0.0408(11)$	$0.0116(9)$
C12	$0.0720(14)$	$0.0539(11)$	$0.0716(14)$	$-0.0052(10)$	$-0.0151(11)$	$-0.0015(10)$
C13	$0.0787(15)$	$0.0843(16)$	$0.0693(14)$	$0.0030(13)$	$0.0001(11)$	$-0.0023(12)$
C14	$0.0888(18)$	$0.0959(19)$	$0.0906(19)$	$0.0195(15)$	$-0.0131(15)$	$-0.0042(16)$
C15	$0.119(2)$	$0.0790(17)$	$0.0801(18)$	$0.0069(17)$	$-0.0377(17)$	$-0.0022(15)$
C16	$0.148(3)$	$0.088(2)$	$0.0770(18)$	$-0.031(2)$	$0.0041(19)$	$0.0114(15)$
C17	$0.0778(16)$	$0.0823(17)$	$0.113(2)$	$-0.0124(13)$	$0.0075(15)$	$-0.0026(16)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.378(3)$	$\mathrm{N} 10-\mathrm{H} 10 \mathrm{~A}$	0.8600
$\mathrm{C} 1-\mathrm{C} 6$	$1.390(3)$	$\mathrm{N} 10-\mathrm{H} 10 \mathrm{~B}$	0.8600

$\mathrm{C} 1-\mathrm{N} 7$	$1.438(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.371(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.385(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{N} 10$	$1.355(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.412(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.365(3)$
$\mathrm{C} 5-\mathrm{O} 11$	$1.375(3)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{~N} 7-\mathrm{O} 8$	$1.227(2)$
$\mathrm{N} 7-\mathrm{O} 9$	$1.227(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 7$	$121.29(18)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 7$	$119.55(18)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.14(18)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	$119.54(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	120.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	$121.10(18)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.4
$\mathrm{~N} 10-\mathrm{C} 4-\mathrm{C} 3$	119.4
$\mathrm{~N} 10-\mathrm{C} 4-\mathrm{C} 5$	$122.70(19)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.24(19)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{O} 11$	$118.06(18)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$125.60(19)$
$\mathrm{O} 11-\mathrm{C} 5-\mathrm{C} 4$	$121.45(19)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$112.93(18)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	$118.53(19)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	120.7
$\mathrm{O} 8-\mathrm{N} 7-\mathrm{O} 9$	120.7
$\mathrm{O} 8-\mathrm{N} 7-\mathrm{C} 1$	$119.99(19)$
$\mathrm{O} 9-\mathrm{N} 7-\mathrm{C} 1$	
$\mathrm{C} 4-\mathrm{N} 10-\mathrm{H} 10 \mathrm{~A}$	
C	

$\mathrm{O} 11-\mathrm{C} 12$	$1.389(3)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.353(4)$
$\mathrm{C} 12-\mathrm{C} 17$	$1.367(4)$
$\mathrm{C} 13-\mathrm{C} 14$	$1.359(4)$
$\mathrm{C} 13-\mathrm{H} 13$	0.9300
$\mathrm{C} 14-\mathrm{C} 15$	$1.337(5)$
$\mathrm{C} 14-\mathrm{H} 14$	0.9300
$\mathrm{C} 15-\mathrm{C} 16$	$1.374(5)$
$\mathrm{C} 15-\mathrm{H} 15$	0.9300
$\mathrm{C} 16-\mathrm{C} 17$	$1.397(4)$
$\mathrm{C} 16-\mathrm{H} 16$	0.9300
$\mathrm{C} 17-\mathrm{H} 17$	0.9300
$\mathrm{C} 4-\mathrm{N} 10-\mathrm{H} 10 \mathrm{~B}$	120.0
$\mathrm{H} 10 \mathrm{~A}-\mathrm{N} 10-\mathrm{H} 10 \mathrm{~B}$	120.0
$\mathrm{C} 5-\mathrm{O} 11-\mathrm{C} 12$	$120.32(16)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 17$	$121.1(2)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{O} 11$	$117.8(2)$
$\mathrm{C} 17-\mathrm{C} 12-\mathrm{O} 11$	$121.0(2)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$120.2(3)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	119.9
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13$	119.9
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$120.9(3)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14$	119.6
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14$	119.6
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$119.9(3)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$	120.1
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 15$	120.1
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$120.1(3)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 16$	119.9
$\mathrm{C} 17-\mathrm{C} 16-\mathrm{H} 16$	119.9
$\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$	$121.9(3)$
$\mathrm{C} 12-\mathrm{C} 17-\mathrm{H} 17$	121.1
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{H} 17$	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 10-\mathrm{H} 10 A \cdots \mathrm{O} 9^{\mathrm{i}}$	0.86	2.17	$3.023(3)$	170

Symmetry code: (i) $-x+1, y-1 / 2,-z+1 / 2$.

