organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-tert-Butyl-1H-isochromene-1-thione

F. Nawaz Khan,^a P. Manivel,^a S. Mohana Roopan,^a Venkatesha R. Hathwar^b and Mehmet Akkurt^c*

^aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ^cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 18 May 2010; accepted 24 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.074; wR factor = 0.161; data-to-parameter ratio = 21.9.

The title compound, $C_{13}H_{14}OS$, crystallizes with two independent molecules in the asymmetric unit. The unit cell contains three voids of 197 Å³, but the residual electron density (highest peak = 0.24 e Å⁻³ and deepest hole = -0.18 e Å⁻³) in the difference Fourier map suggests no solvent molecule occupies this void. The crystal structure is stabilized by π - π interactions between the isocoumarin ring systems, with centroid–centroid distances of 3.6793 (14) and 3.6566 (15) Å.

Related literature

For the crystal structure and synthesis of isocoumarin and its thioanalogues, see: Hathwar *et al.* (2007*a*,*b*, 2009); Manivel *et al.* (2008); Basvanag *et al.* (2009); Henerson & Hill (1982).

Experimental

Crystal data $C_{13}H_{14}OS$ $M_r = 218.31$

Trigonal, $R\overline{3}$ a = 43.2799 (16) Å c = 6.9025 (5) Å $V = 11197.2 (10) \text{ Å}^3$ Z = 36Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.932, T_{\rm max} = 0.966$

Refinement

 $wR(F^2) = 0.161$

5943 reflections

S = 1.09

 $R[F^2 > 2\sigma(F^2)] = 0.074$

271 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

 $\mu = 0.23 \text{ mm}^{-1}$

 $0.31 \times 0.18 \times 0.15 \text{ mm}$

33028 measured reflections

5943 independent reflections

3409 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.047$

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA– DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for the data collection. FNK thanks the DST for Fast Track Proposal funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2306).

References

- Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.
- Basvanag, U. M. V., Roopan, S. M. & Khan, F. N. (2009). Chem. Heterocycl. Compd, 45, 1276–1278.
- Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hathwar, V. R., Manivel, P., Khan, F. N. & Row, T. N. G. (2009). CrystEngComm, 11, 284–291.
- Hathwar, V. R., Manivel, P., Nawaz Khan, F. & Guru Row, T. N. (2007*a*). *Acta Cryst.* E63, 03708.
- Hathwar, V. R., Manivel, P., Nawaz Khan, F. & Guru Row, T. N. (2007b). Acta Cryst. E63, 03707.
- Henerson, G. B. & Hill, R. A. (1982). J. Chem. Soc. Perkin. Trans. 1, pp. 1111–1115.
- Manivel, P., Roopan, S. M. & Khan, F. N. (2008). J. Chil. Chem. Soc. 53, 1609– 1610.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o1470 [https://doi.org/10.1107/S1600536810019422]

3-tert-Butyl-1H-isochromene-1-thione

F. Nawaz Khan, P. Manivel, S. Mohana Roopan, Venkatesha R. Hathwar and Mehmet Akkurt

S1. Comment

Isocoumarins are isolated in a great variety of microorganisms, plants, and insects, and have been shown to have considerable biological activity. Isocoumarins and its derivatives are secondary metabolites of a wide variety of microbial plant and insect sources and in synthesis of other medicinal compounds (Manivel *et al.*, 2008, Basvanag *et al.*, 2009). Sulfur containing isocoumarins have been known and a number of substituted thioisocoumarins, (Henerson *et al.*, 1982) have been prepared. Most methods available for the construction of thioisocoumarin nucleus suffer from one or more drawbacks, such as the long reaction time required obtaining a good yield of the desired product or the use of expensive and hazardous reagents and solvents. Herewith, we are reporting the synthesis of 3-*tert*-butyl-1*H*-isochromene-1-thione using Lawessons reagent.

The isocoumarin moieties in the symmetric unit of the title compound, (I), (Fig. 1a and Fig. 1 b), are essentially parallel to each other with a small dihedral angle of 1.20 (7) °.

In the molecular structure of (I), there exist C—H···S and C—H···O intramolecular interactions (Table 1, Fig. 2). In adition, π - π interactions are observed between the isocoumarin ring systems [Cg2···Cg4(x, y, z) = 3.6793 (14) Å and Cg2···Cg5(x, y, 1 + z) = 3.6566 (15) Å; where Cg2, Cg4 and Cg5 are the centroids of the C1–C6, O2'/C1'/C6'–C9' and C1'–C6' rings, respectively]. There is no classic hydrogen bonds in the structure.

S2. Experimental

The 3-*tert*-butyl-1*H*-isochromen-1-one and Lawessons reagent were taken in toluene (1:1 ratio) and refluxed for 1 h. Then the reaction mass was quenched with water, extracted with dichloromethane, washed with water, dried, concentrated and purified by column chromatography to get the titled compound. Single crystals of the title compound were obtained *via* recrystalization from a chloroform solution.

S3. Refinement

All H-atoms were placed in calculated positions (C—H = 0.93 and 0.96 Å) and were included in the refinement in the riding model approximation, with U_{iso} (H) set to 1.2 or $1.5U_{eq}$ (C). In the crystal structure, there is an 197 Å³ void, but the low electron density (0.24 e.Å⁻³) in the difference Fourier map suggests no solvent molecule occupying this void.

Figure 1

The first molecule in the asymmetric unit with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2

The second molecule in the asymmetric unit with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 3

The packing diagram of the title compound down c axis in the unitcell.

3-tert-Butyl-1H-isochromene-1-thione

Crystal data

C₁₃H₁₄OS $M_r = 218.31$ Trigonal, $R\overline{3}$ Hall symbol: -R 3 a = 43.2799 (16) Å c = 6.9025 (5) Å V = 11197.2 (10) Å³ Z = 36F(000) = 4176

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.932, T_{\max} = 0.966$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.161$ S = 1.095943 reflections 271 parameters 0 restraints $D_x = 1.166 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 856 reflections $\theta = 1.9-24.7^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 293 KBlock, yellow $0.31 \times 0.18 \times 0.15 \text{ mm}$

33028 measured reflections 5943 independent reflections 3409 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -57 \rightarrow 57$ $k = -56 \rightarrow 56$ $l = -9 \rightarrow 9$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0599P)^2 + 4.5485P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\begin{array}{l} \Delta\rho_{\rm max}=0.24~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.18~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors wR and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement param	rameters (À	ľ²)
--	-------------	-----

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.81419 (2)	-0.00817 (2)	0.78291 (13)	0.0811 (3)
O1	0.87826 (4)	0.04385 (4)	0.7757 (3)	0.0606 (7)
C1	0.86386 (7)	0.09888 (6)	0.7809 (3)	0.0502 (8)
C2	0.85585 (8)	0.12659 (7)	0.7850 (4)	0.0631 (10)
C3	0.82145 (9)	0.11923 (8)	0.7911 (4)	0.0729 (11)
C4	0.79363 (8)	0.08436 (9)	0.7932 (4)	0.0720 (11)
C5	0.80057 (7)	0.05677 (7)	0.7903 (4)	0.0635 (10)
C6	0.83556 (6)	0.06358 (6)	0.7841 (3)	0.0492 (8)
C7	0.84331 (7)	0.03469 (6)	0.7812 (4)	0.0548 (9)
C8	0.90635 (6)	0.07871 (6)	0.7703 (3)	0.0516 (8)
C9	0.89948 (7)	0.10530 (6)	0.7739 (3)	0.0535 (8)
C10	0.94129 (7)	0.07913 (7)	0.7620 (4)	0.0639 (10)
C11	0.97229 (7)	0.11727 (8)	0.7400 (5)	0.0878 (13)
C12	0.94624 (9)	0.06357 (9)	0.9523 (5)	0.0979 (16)
C13	0.94106 (9)	0.05714 (9)	0.5875 (5)	0.1021 (16)
S1′	0.77849 (2)	0.11691 (2)	0.28420 (12)	0.0772 (3)
O2′	0.76501 (4)	0.05251 (4)	0.2971 (3)	0.0574 (6)
C1′	0.83413 (6)	0.06544 (6)	0.2874 (3)	0.0465 (8)
C2′	0.86926 (6)	0.07253 (7)	0.2822 (4)	0.0574 (9)
C3′	0.89714 (7)	0.10670 (8)	0.2764 (4)	0.0649 (10)
C4′	0.89068 (7)	0.13502 (7)	0.2747 (4)	0.0660 (10)
C5′	0.85652 (7)	0.12899 (6)	0.2800 (3)	0.0579 (9)
C6′	0.82767 (6)	0.09412 (6)	0.2863 (3)	0.0459 (8)
C7′	0.79136 (6)	0.08729 (6)	0.2900 (3)	0.0520 (8)
C8′	0.77110 (6)	0.02397 (6)	0.2971 (4)	0.0521 (8)
C9′	0.80418 (6)	0.02988 (6)	0.2925 (3)	0.0524 (9)
C10′	0.73624 (7)	-0.01086 (6)	0.3019 (5)	0.0680 (10)
C11′	0.74338 (8)	-0.04203 (7)	0.2923 (5)	0.0903 (13)
C12′	0.71642 (9)	-0.01317 (8)	0.4895 (6)	0.1127 (16)
C13′	0.71430 (8)	-0.01215 (8)	0.1256 (6)	0.1090 (16)
H2	0.87430	0.15020	0.78360	0.0760*
H3	0.81660	0.13790	0.79390	0.0880*

supporting information

H4	0.77020	0.07960	0.79660	0.0870*
Н5	0.78180	0.03330	0.79240	0.0760*
H9	0.91830	0.12870	0.77170	0.0640*
H11A	0.96880	0.12780	0.62590	0.1320*
H11B	0.99420	0.11690	0.72860	0.1320*
H11C	0.97330	0.13100	0.85160	0.1320*
H12A	0.94830	0.07890	1.05820	0.1460*
H12B	0.96750	0.06190	0.94440	0.1460*
H12C	0.92600	0.04030	0.97290	0.1460*
H13A	0.92160	0.03310	0.59980	0.1540*
H13B	0.96320	0.05700	0.58270	0.1540*
H13C	0.93820	0.06750	0.47070	0.1540*
H2′	0.87380	0.05370	0.28280	0.0690*
H3′	0.92050	0.11100	0.27370	0.0780*
H4′	0.90970	0.15830	0.26980	0.0790*
H5′	0.85250	0.14820	0.27940	0.0700*
H9′	0.80810	0.01060	0.29270	0.0630*
H11D	0.75560	-0.04070	0.17380	0.1360*
H11E	0.72110	-0.06410	0.29670	0.1360*
H11F	0.75790	-0.04080	0.40050	0.1360*
H12D	0.72880	-0.01600	0.59730	0.1690*
H12E	0.69270	-0.03330	0.48330	0.1690*
H12F	0.71530	0.00830	0.50580	0.1690*
H13D	0.71030	0.00780	0.12930	0.1630*
H13E	0.69180	-0.03400	0.12730	0.1630*
H13F	0.72700	-0.01110	0.00950	0.1630*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0696 (5)	0.0415 (4)	0.1141 (7)	0.0142 (3)	-0.0067 (4)	-0.0026 (4)
01	0.0547 (11)	0.0442 (10)	0.0807 (13)	0.0231 (8)	-0.0041 (9)	-0.0046 (8)
C1	0.0629 (16)	0.0480 (14)	0.0398 (14)	0.0278 (13)	0.0024 (11)	-0.0030 (11)
C2	0.082 (2)	0.0539 (16)	0.0593 (17)	0.0383 (15)	0.0031 (14)	-0.0037 (13)
C3	0.100(2)	0.079 (2)	0.0639 (19)	0.063 (2)	0.0030 (16)	-0.0045 (15)
C4	0.0701 (19)	0.097 (2)	0.0658 (19)	0.0544 (19)	0.0005 (15)	-0.0057 (17)
C5	0.0550 (16)	0.0694 (18)	0.0613 (17)	0.0275 (14)	0.0006 (13)	-0.0017 (14)
C6	0.0540 (14)	0.0494 (14)	0.0420 (14)	0.0243 (12)	-0.0004 (11)	-0.0034 (11)
C7	0.0536 (15)	0.0482 (14)	0.0561 (16)	0.0206 (12)	-0.0047 (12)	-0.0036 (12)
C8	0.0493 (14)	0.0467 (14)	0.0497 (15)	0.0171 (12)	-0.0020 (11)	-0.0034 (11)
C9	0.0575 (15)	0.0429 (13)	0.0497 (15)	0.0173 (12)	0.0015 (12)	-0.0028 (11)
C10	0.0535 (16)	0.0663 (17)	0.0679 (19)	0.0270 (14)	-0.0014 (13)	-0.0039 (14)
C11	0.0572 (18)	0.082 (2)	0.107 (3)	0.0220 (16)	0.0055 (17)	0.0042 (18)
C12	0.080(2)	0.115 (3)	0.111 (3)	0.058 (2)	0.0003 (19)	0.028 (2)
C13	0.081 (2)	0.117 (3)	0.121 (3)	0.059 (2)	-0.004 (2)	-0.037 (2)
S1′	0.0796 (5)	0.0522 (4)	0.1108 (7)	0.0413 (4)	0.0313 (4)	0.0127 (4)
O2′	0.0444 (9)	0.0391 (9)	0.0862 (13)	0.0191 (8)	0.0055 (8)	-0.0002 (8)
C1′	0.0473 (13)	0.0459 (13)	0.0432 (14)	0.0209 (11)	0.0008 (11)	-0.0034 (10)

supporting information

C2′	0.0506 (15)	0.0635 (16)	0.0586 (17)	0.0288 (13)	-0.0024 (12)	-0.0038 (13)	
C3′	0.0444 (15)	0.077 (2)	0.0610 (18)	0.0212 (14)	-0.0013 (12)	-0.0015 (14)	
C4′	0.0506 (16)	0.0582 (17)	0.0604 (18)	0.0055 (13)	0.0034 (13)	-0.0005 (13)	
C5′	0.0616 (17)	0.0445 (14)	0.0561 (16)	0.0178 (12)	0.0086 (13)	-0.0021 (12)	
C6′	0.0447 (13)	0.0410 (12)	0.0430 (14)	0.0147 (11)	0.0056 (10)	-0.0042 (10)	
C7′	0.0559 (15)	0.0414 (13)	0.0536 (16)	0.0205 (12)	0.0112 (12)	-0.0004 (11)	
C8′	0.0507 (14)	0.0364 (12)	0.0675 (17)	0.0206 (11)	-0.0047 (12)	-0.0061 (11)	
C9′	0.0539 (15)	0.0396 (13)	0.0665 (17)	0.0255 (12)	-0.0043 (12)	-0.0069 (11)	
C10′	0.0500 (15)	0.0382 (14)	0.105 (2)	0.0140 (12)	-0.0103 (16)	-0.0065 (14)	
C11′	0.0727 (19)	0.0383 (15)	0.147 (3)	0.0181 (14)	-0.023 (2)	-0.0098 (17)	
C12′	0.078 (2)	0.061 (2)	0.158 (4)	0.0039 (17)	0.041 (2)	0.006 (2)	
C13′	0.072 (2)	0.063 (2)	0.168 (4)	0.0157 (17)	-0.047 (2)	-0.012 (2)	

Geometric parameters (Å, °)

S1—C7	1.641 (2)	C13—H13A	0.9600	
S1'—C7'	1.634 (3)	C13—H13B	0.9600	
O1—C8	1.386 (3)	C13—H13C	0.9600	
O1—C7	1.359 (4)	C1′—C2′	1.393 (4)	
O2′—C8′	1.386 (3)	C1′—C6′	1.402 (4)	
O2′—C7′	1.361 (3)	C1′—C9′	1.434 (3)	
C1—C6	1.401 (3)	C2′—C3′	1.364 (4)	
C1—C2	1.405 (4)	C3'—C4'	1.387 (4)	
C1—C9	1.424 (5)	C4′—C5′	1.367 (5)	
C2—C3	1.359 (6)	C5′—C6′	1.398 (3)	
C3—C4	1.382 (5)	C6′—C7′	1.447 (4)	
C4—C5	1.369 (5)	C8′—C9′	1.323 (4)	
C5—C6	1.391 (4)	C8′—C10′	1.509 (4)	
С6—С7	1.448 (4)	C10′—C11′	1.529 (4)	
С8—С9	1.325 (4)	C10′—C12′	1.529 (5)	
C8—C10	1.504 (4)	C10′—C13′	1.527 (5)	
C10-C11	1.528 (4)	C2'—H2'	0.9300	
C10-C12	1.539 (5)	С3'—Н3'	0.9300	
C10-C13	1.532 (4)	C4′—H4′	0.9300	
С2—Н2	0.9300	C5'—H5'	0.9300	
С3—Н3	0.9300	С9'—Н9'	0.9300	
C4—H4	0.9300	C11′—H11D	0.9600	
С5—Н5	0.9300	C11′—H11E	0.9600	
С9—Н9	0.9300	C11′—H11F	0.9600	
C11—H11A	0.9600	C12′—H12D	0.9600	
C11—H11B	0.9600	C12′—H12E	0.9600	
C11—H11C	0.9600	C12′—H12F	0.9600	
C12—H12C	0.9600	C13'—H13D	0.9600	
C12—H12A	0.9600	C13'—H13E	0.9600	
C12—H12B	0.9600	C13'—H13F	0.9600	
S1'…C5' ⁱ	3.681 (2)	H9…H11A	2.4200	
S1…H3′ ⁱⁱ	3.0200	H9…H11C	2.4000	

S1…H11C ⁱⁱⁱ	3.0800	H9'…C11'	2.5800
S1…H5	2.7800	H9'…H2'	2.5000
S1'····H11E ^{iv}	3.1800	H9'…H11D	2.3900
S1'····H5'	2 7900	H9'…H11F	2 3200
S1'····H5' ⁱ	3 0100	H11A…H9	2.4200
\$1'H2v	3 2000	H11A···H13C	2.5000
01H134	2 4700	H11AC9	2.5000
01H12C	2.4700	H11BH12B	2.0400
O2'H12E	2.5400	H11BH13B	2.5400
O2 11121 O2'H12D	2.3000		2.4000
	2.4700		2.4000
	3.431(3)		2.8000
$C_1 \cdots C_{n}$	3.470(3)		2.4200
	3.487 (3)		3.0800
	3.418 (3)	HIID····HI3F	2.4600
C3′····C9 ^{v₁}	3.471 (3)	HIID····C9'	2.8300
C3′···C9	3.437 (3)	H11D…H9′	2.3900
$C4\cdots C7'^{vn}$	3.435 (3)	H11E····H12E	2.5700
C4…C7′	3.479 (3)	H11E····H13E	2.5100
C5′…S1′ ⁱ	3.681 (2)	H11E····S1′ ^x	3.1800
C5′····C2	3.487 (3)	H11F…C9′	2.7900
C5′····C2 ^{vi}	3.418 (3)	H11F…H12D	2.4400
C6…C1′ ^{vii}	3.476 (3)	H11F…H9′	2.3200
C6…C1′	3.431 (3)	H12A…H11C	2.4200
$C7' \cdots C4^{v_i}$	3.435 (3)	H12B…H13B	2.5000
C7′····C4	3.479 (3)	H12B…H11B	2.5400
C9…C3′	3.437 (3)	H12C…H13A	2.5900
C9…C3′ ^{vii}	3.471 (3)	H12C…O1	2.5400
C9…H11A	2.8400	H12D…H11F	2.4400
C9…H11C	2.8600	H12D…H5	2.5900
C9'…H11F	2.7900	H12E…H13E	2.4600
C9'…H11D	2.8300	H12E…H11E	2.5700
С11…Н9	2,6300	H12FO2'	2 5000
C11'····H9'	2.5800	H12F···H13E ^{iv}	2.5900
H2H9	2.5000	H13AH12C	2.5900
H2\$1/v	3 2000	H13A…O1	2.5900
H2'H9'	2 5000	H13RH12R	2.4700
H2'\$1 ^{viii}	3 0200	H13BH11B	2.5000
115 51 115112D	2 5000		2.4000
H5\$1	2.3900		2.3000
H5'	2.7800		2.4700
	2.7900		2.5100
	3.0100	HI3E···HI2E	2.4600
	2.6300	H13E···H12F [*]	2.5900
H9····H2	2.5000	HI3F…HIID	2.4600
C7—O1—C8	124.1 (2)	H13A—C13—H13B	109.00
C7'—O2'—C8'	123.9 (2)	C2'—C1'—C6'	118.9 (2)
C2—C1—C6	118.4 (3)	C2'—C1'—C9'	122.6 (2)
C2—C1—C9	122.6 (2)	C6'—C1'—C9'	118.5 (3)

C6C1C9	119.0 (2)	C1'—C2'—C3'	121.1 (3)
C1—C2—C3	120.6 (3)	C2'—C3'—C4'	119.9 (3)
C2—C3—C4	120.7 (3)	C3'—C4'—C5'	120.5 (3)
C3—C4—C5	120.1 (4)	C4′—C5′—C6′	120.3 (3)
C4—C5—C6	120.4 (3)	C1′—C6′—C5′	119.3 (3)
C1—C6—C7	119.2 (3)	C1′—C6′—C7′	119.7 (2)
C5—C6—C7	121.0 (2)	C5'—C6'—C7'	120.9 (2)
C1—C6—C5	119.8 (2)	S1'-C7'-O2'	116.3 (2)
S1—C7—C6	126.7 (2)	S1'-C7'-C6'	126.93 (18)
01 - C7 - C6	1170(2)	02'-07'-06'	116.8 (2)
S1-C7-01	1163(2)	02' - C8' - C9'	119.8 (2)
01 - C8 - C10	110.3(2)	02' - C8' - C10'	110.5(2)
C9-C8-C10	130.6(2)	C9' - C8' - C10'	129.7(2)
01 - C8 - C9	1193(3)	C1'-C9'-C8'	129.7(2) 121.2(2)
C1 - C9 - C8	119.5(3)	C8' - C10' - C11'	121.2(2) 109.8(3)
$C_{1}^{-} = C_{1}^{-} = C_{1}^{-}$	121.3(2) 108 7 (3)	C8' - C10' - C12'	109.8(3) 109.4(2)
C_{8}^{8} C_{10}^{10} C_{12}^{13}	100.7(3)	C8' - C10' - C12'	109.4(2) 108.2(2)
$C_{8} = C_{10} = C_{13}$	109.2(3)	$C_{11}^{(10)} = C_{12}^{(10)} = C_{12}^{(10)}$	108.2(2) 100.5(3)
C_{11} C_{10} C_{13}	110.0(2) 108.8(3)	C11' - C10' - C12'	109.3(3) 109.2(3)
$C_{11} = C_{10} = C_{13}$	100.0(3)	C12' - C10' - C12'	109.2(3)
C_{12} C_{10} C_{13} C_{11} C_{10} C_{12}	111.0(3) 108.6(3)	C12 - C10 - C13 C1' - C2' - H2'	120.00
$C_1 = C_1 $	108.0 (3)	$C_1 - C_2 - H_2$	120.00
C_{3} C_{2} H_{2}	120.00	$C_{3} - C_{2} - H_{2}$	119.00
$C_1 - C_2 - H_2$	120.00	$C_2 = C_3 = H_3'$	120.00
$C_2 = C_3 = H_3$	120.00	C4 - C5 - I15	120.00
$C_4 = C_5 = H_5$	120.00	$C_{3} - C_{4} - \Pi_{4}$	120.00
$C_5 = C_4 = H_4$	120.00	$C_{3} = C_{4} = 114$	120.00
$C_{5} - C_{4} - H_{4}$	120.00	C4 - C5 - H5'	120.00
C_{0}	120.00	$C_0 = C_3 = H_3$	120.00
C4 - C3 - H3	120.00	$C_1 - C_2 - H_2$	119.00
$C_1 = C_2 = 112$	119.00	$C_{8} = C_{9} = 119$	119.00
$C_{0} = C_{0} = 115$	119.00	C10' - C11' - H11E	109.00
C10_C11_H11C	109.00	C10 - C11 - H11E	109.00
	109.00		109.00
	109.00	HID—CII—HIE	110.00
	110.00		109.00
	110.00	$\frac{1112}{112} - \frac{111}{112} - \frac{1112}{112}$	110.00
	109.00	C10 - C12 - H12D	110.00
C10 - C12 - H12A	109.00	C10 - C12 - H12E	109.00
C10 - C12 - H12B	109.00	C10 - C12 - H12F	100.00
H12A-C12-H12B	109.00	$\frac{112D}{112D} = \frac{112}{112E}$	109.00
H12A - C12 - H12C	109.00	H12D - C12 - H12F	110.00
C10—C12—H12C	109.00	H12E - C12 - H12F	110.00
H12B - C12 - H12C	110.00	C10 - C13 - H13D	109.00
C_{10} C_{13} H_{13}	110.00	C10 - C13 - H13E	109.00
C10 - C12 - H13C	109.00	$U_{10} - U_{13} - H_{13}F$	109.00
$U10 - U13 - \Pi13A$	109.00		110.00
H12D C12 H12C	109.00		110.00
	110.00	H13E	109.00

C8—O1—C7—S1	178.89 (18)	C10-C8-C9-C1	179.7 (2)
C8—O1—C7—C6	-0.9 (4)	O1—C8—C10—C11	175.6 (2)
C7—O1—C8—C9	1.2 (3)	O1—C8—C10—C12	-65.3 (3)
C7—O1—C8—C10	-179.1 (2)	O1—C8—C10—C13	55.9 (3)
C8'—O2'—C7'—S1'	178.1 (2)	C6'—C1'—C2'—C3'	0.1 (4)
C8'—O2'—C7'—C6'	-1.3 (3)	C9'—C1'—C2'—C3'	179.7 (2)
C7'—O2'—C8'—C9'	0.9 (4)	C2'—C1'—C6'—C5'	0.0 (3)
C7'—O2'—C8'—C10'	-178.9 (2)	C2'—C1'—C6'—C7'	179.5 (2)
C9—C1—C2—C3	179.8 (2)	C9'—C1'—C6'—C5'	-179.56 (19)
C2-C1-C6-C5	0.3 (3)	C9'—C1'—C6'—C7'	-0.1 (3)
C6—C1—C2—C3	-0.3 (4)	C2'—C1'—C9'—C8'	-179.9 (2)
C6—C1—C9—C8	0.0 (3)	C6'—C1'—C9'—C8'	-0.4 (3)
C9—C1—C6—C5	-179.8 (2)	C1'—C2'—C3'—C4'	-0.3 (4)
C9—C1—C6—C7	0.3 (3)	C2'—C3'—C4'—C5'	0.4 (4)
C2-C1-C6-C7	-179.6 (2)	C3'—C4'—C5'—C6'	-0.3 (4)
C2-C1-C9-C8	180.0 (2)	C4'—C5'—C6'—C1'	0.1 (3)
C1—C2—C3—C4	-0.1 (4)	C4'—C5'—C6'—C7'	-179.4 (2)
C2—C3—C4—C5	0.4 (4)	C1'—C6'—C7'—S1'	-178.42 (17)
C3—C4—C5—C6	-0.4 (4)	C1'—C6'—C7'—O2'	0.9 (3)
C4—C5—C6—C7	179.9 (2)	C5'—C6'—C7'—S1'	1.1 (3)
C4—C5—C6—C1	0.0 (4)	C5'—C6'—C7'—O2'	-179.7 (2)
C1-C6-C7-O1	0.1 (3)	O2'—C8'—C9'—C1'	0.0 (4)
C5—C6—C7—S1	0.5 (4)	C10'—C8'—C9'—C1'	179.7 (3)
C5-C6-C7-O1	-179.8 (2)	O2'—C8'—C10'—C11'	177.4 (2)
C1—C6—C7—S1	-179.63 (19)	O2'—C8'—C10'—C12'	-62.5 (3)
O1—C8—C9—C1	-0.8 (3)	O2'—C8'—C10'—C13'	58.3 (3)
C9—C8—C10—C11	-4.8 (4)	C9'—C8'—C10'—C11'	-2.4 (4)
C9—C8—C10—C12	114.3 (3)	C9'—C8'—C10'—C12'	117.8 (3)
C9—C8—C10—C13	-124.5 (3)	C9'—C8'—C10'—C13'	-121.5 (3)

Symmetry codes: (i) -x+5/3, -y+1/3, -z+1/3; (ii) x-y, x-1, -z+1; (iii) x-y, x-1, -z+2; (iv) -y+2/3, x-y-2/3, z+1/3; (v) -x+5/3, -y+1/3, -z+4/3; (vi) x, y, z-1; (vii) x, y, z+1; (viii) y+1, -x+y+1, -z+1; (ix) y+1, -x+y+1, -z+2; (x) -x+y+4/3, -x+2/3, z-1/3.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
C5—H5…S1	0.93	2.78	3.148 (3)	105
C5'—H5'…S1'	0.93	2.79	3.149 (3)	104
C12—H12C···O1	0.96	2.54	2.891 (5)	102
C12′—H12F…O2′	0.96	2.50	2.879 (4)	103
C13—H13A…O1	0.96	2.47	2.800 (5)	100
C13'—H13 <i>D</i> ···O2'	0.96	2.47	2.812 (4)	101