Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

2-Amino-3-nitropyridinium perrhenate

Zeid Abdellah Al Othman, ${ }^{\text {a }}$ Samah Toumi Akriche, ${ }^{\text {b }}$ * Mohamed Rzaigui ${ }^{\text {b }}$ and Refaat Mohamed Mahfouz ${ }^{\text {a }}$

${ }^{\text {a }}$ Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, and ${ }^{\text {b }}$ Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
Correspondence e-mail: toumiakriche@yahoo.fr

Received 13 May 2010; accepted 16 May 2010

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.015 \AA$;
R factor $=0.040 ; w R$ factor $=0.111$; data-to-parameter ratio $=34.2$.

In the title molecular salt, $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\left[\mathrm{ReO}_{4}\right]$, the cations and tetrahedral anions are linked by trifurcated $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O}, \mathrm{O})$ and bifurcated $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ hydrogen bonds, as well as weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. This results in alternating corrugated inorganic and organic layers in the crystal.

Related literature

For hydrogen-bond interactions see: Katayev et al. (2006). For related structures containing 2-amino-3-nitropyridinium cations, see: Akriche \& Rzaigui (2000, 2009); Toumi Akriche et al. (2010). For related structures containing perrhenate anions, see: Rodrigues et al. (2009); Ray et al. (2002, 2003). For distortion indices, see: Baur (1974).

Experimental

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\left[\mathrm{ReO}_{4}\right]$
$M_{r}=390.33$
Monoclinic, $P 2_{1} / c$
$a=6.235$ (3) \AA
$b=22.030$ (2) A
$c=7.840(6) \AA$
$\beta=117.52(5)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.054, T_{\text {max }}=0.134$
7565 measured reflections
$V=955.0(9) \AA^{3}$
$Z=4$
Ag $K \alpha$ radiation
$\lambda=0.56087 \AA$
$\mu=6.86 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.50 \times 0.40 \times 0.30 \mathrm{~mm}$

4682 independent reflections
3532 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
2 standard reflections every 120 min intensity decay: 4\%

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
24 restraints
$w R\left(F^{2}\right)=0.111$
H -atom parameters constrained
$S=1.07$
4682 reflections
137 parameters

Table 1
Selected bond lengths (\AA).

$\mathrm{Re} 1-\mathrm{O} 1$	$1.726(6)$	$\mathrm{Re} 1-\mathrm{O} 3$	$1.708(8)$
$\mathrm{Re} 1-\mathrm{O} 2$	$1.706(7)$	$\mathrm{Re} 1-\mathrm{O} 4$	$1.665(7)$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	0.86	2.37	$3.041(10)$	135
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	2.42	$3.018(10)$	128
$\mathrm{~N} 1-\mathrm{H} 1 \cdots 1^{\mathrm{ii}}$	0.86	2.48	$3.077(11)$	128
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	2.38	$3.036(10)$	133
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.86	2.40	$3.010(10)$	129
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.86	2.55	$3.168(11)$	129
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 5$	0.86	2.02	$2.624(11)$	127
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 3^{\mathrm{iii}}$	0.86	2.26	$2.976(12)$	141
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.44	$3.138(12)$	132
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{v}}$	0.93	2.32	$3.094(13)$	141
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.41	$3.020(13)$	123

Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $-x+1,-y+2,-z+1$; (iii) $x-1, y, z ;$ (iv) $x+1,-y+\frac{3}{2}, z+\frac{1}{2}$; (v) $x+1, y, z+1$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5451).

References

Akriche, S. \& Rzaigui, M. (2000). Z. Kristallogr. New Cryst. Struct. 215, 617618.

Akriche, S. \& Rzaigui, M. (2009). Acta Cryst. E65, o1648.
Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Katayev, E. A., Ustynyuk, Y. A. \& Sessler, J. L. (2006). Coord. Chem. Rev. 250, 3004-3037.
Ray, U., Chand, B., Dasmahapatra, A. K., Mostafa, G., Lu, T. H. \& Sinha, C. (2003). Inorg. Chem. Commun. 6, 634-638.

Ray, U. S., Mostafa, G., Lu, T. H. \& Sinha, C. (2002). Cryst. Eng. 5, 95-104.
Rodrigues, V. H., Costa, M. M. R. R., Dekola, T. \& de Matos Gomes, E. (2009). Acta Cryst. E65, m19.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Toumi Akriche, S., Rzaigui, M., Al-Hokbany, N. \& Mahfouz, R. M. (2010). Acta Cryst. E66, o300.

supporting information

Acta Cryst. (2010). E66, m689 [https://doi.org/10.1107/S160053681001812X]

2-Amino-3-nitropyridinium perrhenate

Zeid Abdellah Al Othman, Samah Toumi Akriche, Mohamed Rzaigui and Refaat Mohamed Mahfouz

S1. Comment

A new engineering strategy aimed at building very cohesive frameworks based on oxyanion subnetworks in which the organic molecules are strongly anchored thanks to different interactions (electrostatic, H-bonds, Van der Waals). These interactions are all important in the construction of atomic arrangement but short and multiple hydrogen-bonds observed in these frameworks appear to be the most exciting since they have been recognized as the steering force responsible for the formation of special networks (Katayev et al., 2006). The oxoanions are good hydrogen bond acceptors, that's why they have been employed in the purification, extraction and detection techniques of dangerous pollutants (Ray et al., 2003; Ray et al., 2002; Rodrigues et al., 2009). The 2-amino-3-nitropyridine molecule has a dual nature because of its donor and acceptor groups. It can be protonated and thus serve as a hydrogen bond donor and electrostatic attractive element and also serve as a hydrogen bond acceptor which is especially useful for the binding of oxoanions. In this paper, we will account on the crystal engineering of 2-amino-3-nitropyridininium perrhenate, $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)^{+}, \mathrm{ReO}_{4}{ }^{-}$(I).
The asymmetric unit of (I) consists of one perrhenate anion $\left(\mathrm{ReO}_{4}{ }^{-}\right)$and one organic cation $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)^{+}$(Fig. 1).
The atomic arrangement of this salt is an organized dispersion of oganic cations and inorganic anions which form alternate corrugated layers (Fig. 2). This projection shows too the extensive network of H -bonds, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ between cation and anion and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ between cations (Table 1). These interactions constitute a key factor as well as electrostatic interaction in the stabilization of this structure. The nitropyridinium cations form chains running parallel to the [101/2] direction. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions have the same H -bonds geometric parameters as the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ ones which may also consolidate the cohesion of this structure. The neighbour nitropyridinium cations, are linked to form onedimensional chains via $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 5 \mathrm{H}$-bonds (see Table 1 for symmetry codes) with $\mathrm{C} \cdots \mathrm{O}$ distance of $2.44 \AA$. Such chains of 2-amino-3-nitropyridinium are also observed in the related structure of 2 A3NPClO4 (Toumi Akriche et al., 2010). In this structure, the $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)^{+\mathrm{n}}$ chains connect the discrete $\mathrm{ReO}_{4}{ }^{-}$anions through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in all directions to develop a three-dimensional network. It's worth noticing that the particular behaviour of hydrogen of nitrogen atoms which establish bi- and trifurcated H-bonds, that well explains the weak values of the corresponding angles spreading between 123 and 141°.
The $\mathrm{ReO}_{4}{ }^{-}$anion have an expected but slightly distorted tetrahedral geometry around Re atom with the $\mathrm{Re}-\mathrm{O}$ bond lengths ranging from 1.665 (7) to 1.726 (6) \AA and the $\mathrm{O} — \mathrm{Re}-\mathrm{O}$ bond angles ranging from 107.4 (4) to 113.4 (4) ${ }^{\circ}$. The average $\mathrm{Re}-\mathrm{O}$ bond distances and $\mathrm{O}-\mathrm{Re}-\mathrm{O}$ bond angles are $1.701 \AA$ and 109.45°, respectively, confirming a tetrahedral configuration, similar to other studied perrhenates (Ray et al., 2003; Ray et al., 2002). Nevertheless, the calculated average values of the distortion indices (Baur et al., 1974) corresponding to the different angles and distances in the independent ReO_{4} tetrahedron $(\mathrm{DI}(\mathrm{Re}-\mathrm{O})=0.011$, $\mathrm{DI}(\mathrm{O}-\mathrm{Re}-\mathrm{O})=0.017$, and $\mathrm{DI}(\mathrm{O}-\mathrm{O})=0.013)$ show an above distortion of the $\mathrm{O}-\mathrm{O}$ distances compared to $\mathrm{Re}-\mathrm{O}$ distances. The same feature is observed in ClO_{4} tetrahedron
of the related structure of 2-amino-3-nitropyridinium perchlorate (Toumi Akriche et al., 2010). However, the distortion indices observed in 2-amino-3-nitropyridinium phosphate and selenate structures show an above distortion of the X - O ($\mathrm{X}=\mathrm{P}$ and Se) distances compared to $\mathrm{O}-\mathrm{O}$ distances (Akriche et al., 2000; Akriche et al., 2009), that well explain the distortion of XO_{4} tetrahedra $(\mathrm{X}=\mathrm{P}$ and Se$)$ in which the P and Se atoms are displaced of 0.114 to $0.065 \AA$ from gravity center of XO_{4}. The ReO_{4} tetrahedron is thus described by a regular oxygen atoms arrangement with the rhenium atom slightly shifted from gravity center of $\mathrm{ReO}_{4}(0.042 \AA)$.

As expected, the pyridinium ring of 2-amino-3-nitropyridinium cation is nearly planar, with maximum deviation from planarity equal to 0.021 (5) \AA. The diedral angle between the planes of the NO_{2} group and the pyridinium ring is close to $4.25(9)^{\circ}$ indicating a deformation of the NO_{2} group since the oxygen atoms of this later are the seat of various types of inter-and intramolecular hydrogen bonds. The geometrical charcteristics of the (I) organic cation are normal and comparable to that observed for the same species in other structure (Akriche et al., 2000; Toumi Akriche et al., 2010; Akriche et al., 2009).

S2. Experimental

An aqueous solution $(10 \mathrm{ml})$ of $\mathrm{NH}_{4} \mathrm{ReO}_{4}(0.27 \mathrm{~g} ; 1 \mathrm{mmol})$ is added drop by drop under stirring to an ethanolic solution (5 ml) of 2-amino-3-nitropyridine ($0,139 \mathrm{~g} ; 1 \mathrm{mmol}$) in the presence of $\mathrm{HCL}(1 \mathrm{M}, 1 \mathrm{ml})$. Yellow solution was left in air for a week until yellow prisms of (I) were deposited on the wall of the beaker.

S3. Refinement

All H atoms attached to C and N atoms were fixed geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=$ $0.86 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C}$ or N$)$.

Figure 1
A view of (I) with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are represented as dashed lines.

Figure 2
Projection of (I) along the a axis. The H -atoms not involved in H -bonding are omitted.

2-Amino-3-nitropyridinium perrhenate

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\left[\mathrm{ReO}_{4}\right]$
$M_{r}=390.33$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=6.235$ (3) \AA
$b=22.030(2) \AA$
$c=7.840(6) \AA$
$\beta=117.52(5)^{\circ}$
$V=955.0(9) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: Enraf-Nonius FR590
Graphite monochromator
non-profiled ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.054, T_{\text {max }}=0.134$
7565 measured reflections
$F(000)=720$
$D_{\mathrm{x}}=2.715 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Ag} K \alpha$ radiation, $\lambda=0.56087 \AA$
Cell parameters from 25 reflections
$\theta=9-11^{\circ}$
$\mu=6.86 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, yellow
$0.50 \times 0.40 \times 0.30 \mathrm{~mm}$

4682 independent reflections
3532 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-10 \rightarrow 10$
$k=-36 \rightarrow 0$
$l=-12 \rightarrow 13$
2 standard reflections every 120 min
intensity decay: 4\%

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.111$
$S=1.07$
4682 reflections
137 parameters
24 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.052 P)^{2}+2.5911 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }=0.037\)
\(\Delta \rho_{\max }=2.71\) e \(\AA^{-3}\)
```

$\Delta \rho_{\text {min }}=-2.35$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.033 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Re1	$0.71309(5)$	$0.940210(14)$	$0.25037(4)$	$0.03320(12)$
O1	$0.5590(13)$	$0.9742(3)$	$0.3597(10)$	$0.0450(14)$
O2	$0.9536(13)$	$0.9832(4)$	$0.2759(11)$	$0.0544(17)$
O3	$0.8207(16)$	$0.8717(4)$	$0.3586(14)$	$0.062(2)$
O4	$0.5164(14)$	$0.9265(4)$	$0.0220(10)$	$0.0568(19)$
O5	$0.2048(17)$	$0.7952(4)$	$0.6686(16)$	$0.073(2)$
O6	$0.453(2)$	$0.7369(5)$	$0.8873(17)$	$0.088(3)$
N1	$0.7550(13)$	$0.9105(4)$	$0.7469(10)$	$0.0400(14)$
H1	0.7366	0.9443	0.6867	0.048^{*}
N2	$0.3526(15)$	$0.8922(3)$	$0.5588(11)$	$0.0427(15)$
H2A	0.3378	0.9264	0.5019	0.051^{*}
H2B	0.2288	0.8690	0.5260	0.051^{*}
N3	$0.4105(19)$	$0.7821(4)$	$0.7905(14)$	$0.053(2)$
C1	$0.5584(15)$	$0.8757(3)$	$0.6920(11)$	$0.0338(13)$
C2	$0.6059(16)$	$0.8218(4)$	$0.8141(13)$	$0.0386(14)$
C3	$0.8316(19)$	$0.8088(4)$	$0.9565(15)$	$0.050(2)$
H3	0.8578	0.7733	1.0280	0.060^{*}
C4	$1.0226(19)$	$0.8481(6)$	$0.9954(18)$	$0.058(3)$
H4	1.1769	0.8402	1.0937	0.070^{*}
C5	$0.9753(18)$	$0.8982(5)$	$0.8848(15)$	$0.050(2)$
H5	1.1009	0.9248	0.9059	0.060^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Re1	$0.03010(15)$	$0.03753(17)$	$0.03126(16)$	$-0.00110(11)$	$0.01359(11)$	$-0.00198(11)$
O1	$0.057(4)$	$0.041(3)$	$0.045(3)$	$-0.001(3)$	$0.030(3)$	$-0.002(3)$
O2	$0.040(3)$	$0.067(5)$	$0.055(4)$	$-0.007(3)$	$0.022(3)$	$0.008(3)$
O3	$0.062(5)$	$0.046(4)$	$0.076(6)$	$0.010(3)$	$0.030(4)$	$0.017(4)$
O4	$0.044(4)$	$0.078(5)$	$0.039(3)$	$0.001(3)$	$0.012(3)$	$-0.019(3)$
O5	$0.057(5)$	$0.057(5)$	$0.090(7)$	$-0.021(4)$	$0.021(4)$	$0.005(5)$

O6	$0.090(7)$	$0.059(6)$	$0.103(8)$	$-0.012(5)$	$0.034(6)$	$0.036(5)$
N 1	$0.041(3)$	$0.037(3)$	$0.046(4)$	$-0.001(2)$	$0.023(3)$	$0.006(3)$
N2	$0.046(4)$	$0.035(3)$	$0.037(3)$	$-0.001(3)$	$0.010(3)$	$0.006(3)$
N3	$0.064(5)$	$0.031(3)$	$0.064(5)$	$-0.004(3)$	$0.029(4)$	$0.003(3)$
C1	$0.039(3)$	$0.028(3)$	$0.034(3)$	$-0.001(2)$	$0.017(3)$	$-0.003(2)$
C2	$0.044(4)$	$0.028(3)$	$0.046(4)$	$0.003(3)$	$0.023(3)$	$0.002(3)$
C3	$0.054(5)$	$0.038(4)$	$0.057(5)$	$0.014(3)$	$0.024(4)$	$0.017(4)$
C4	$0.041(4)$	$0.062(6)$	$0.066(6)$	$0.009(4)$	$0.021(4)$	$0.016(5)$
C5	$0.040(4)$	$0.057(5)$	$0.052(5)$	$-0.001(4)$	$0.020(4)$	$0.008(4)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

Re1-O1	1.726 (6)	C2-C3	1.363 (13)
Re1-O2	1.706 (7)	C2-N3	1.441 (12)
Re1-O3	1.708 (8)	C2-C1	1.466 (11)
Rel-O4	1.665 (7)	O5-N3	1.228 (14)
N1-C5	1.325 (12)	N3-O6	1.206 (12)
N1-C1	1.338 (11)	C3-C4	1.387 (16)
N1-H1	0.8600	C3-H3	0.9300
N2-C1	1.277 (11)	C5-C4	1.350 (15)
N2-H2A	0.8600	C5-H5	0.9300
N2-H2B	0.8600	C4-H4	0.9300
O4-Re1-O2	113.4 (4)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	121.7 (8)
O4-Re1-O3	107.4 (4)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	126.0 (8)
$\mathrm{O} 2-\mathrm{Re} 1-\mathrm{O} 3$	108.1 (4)	N1-C1-C2	112.1 (7)
$\mathrm{O} 4-\mathrm{Re} 1-\mathrm{O} 1$	108.1 (4)	C3-C2-N3	118.0 (8)
$\mathrm{O} 2-\mathrm{Re} 1-\mathrm{O} 1$	111.2 (4)	C3-C2-C1	121.8 (8)
$\mathrm{O} 3-\mathrm{Re} 1-\mathrm{O} 1$	108.5 (4)	N3-C2-C1	120.3 (8)
C5-N1-C1	126.5 (8)	C2-C3-C4	120.3 (9)
C5-N1-H1	116.8	C2-C3-H3	119.9
C1-N1-H1	116.8	C4-C3-H3	119.9
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.0	C5-C4-C3	117.3 (10)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0	C5-C4-H4	121.3
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0	C3-C4-H4	121.3
O6-N3-O5	122.0 (10)	N1-C5-C4	121.9 (10)
O6-N3-C2	119.7 (10)	N1-C5-H5	119.1
O5-N3-C2	118.3 (8)	C4-C5-H5	119.1
C3-C2-N3-O6	-4.7 (15)	C2-C3-C4-C5	-1.3 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 3-\mathrm{O} 6$	177.5 (10)	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	179.0 (9)
C3-C2-N3-O5	176.6 (10)	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	4.7 (12)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 3-\mathrm{O} 5$	-1.2 (14)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2$	-178.3 (9)
N3-C2-C3-C4	-174.9 (10)	N3-C2-C1-N2	-0.6 (13)
C1-C2-C3-C4	2.9 (15)	C3-C2-C1-N1	-4.3 (12)
C1-N1-C5-C4	-3.5 (17)	N3-C2-C1-N1	173.5 (8)
N1-C5-C4-C3	1.4 (18)		

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1$	0.86	2.37	$3.041(10)$	135
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	2.42	$3.018(10)$	128
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots 1^{\mathrm{ii}}$	0.86	2.48	$3.077(11)$	128
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	2.38	$3.036(10)$	133
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.86	2.40	$3.010(10)$	129
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.86	2.55	$3.168(11)$	129
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 5$	0.86	2.02	$2.624(11)$	127
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{O}^{\mathrm{iii}}$	0.86	2.26	$2.976(12)$	141
$\mathrm{C} 3 — \mathrm{H} 3 \cdots 5^{\text {iv }}$	0.93	2.44	$3.138(12)$	132
$\mathrm{C} 5 — \mathrm{H} 5 \cdots 4^{\mathrm{v}}$	0.93	2.32	$3.094(13)$	141
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.41	$3.020(13)$	123

Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $-x+1,-y+2,-z+1$; (iii) $x-1, y, z$; (iv) $x+1,-y+3 / 2, z+1 / 2$; (v) $x+1, y, z+1$.

