Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

(R, S)-3-Carboxy-2-(isoquinolinium-2-yl)propanoate monohydrate

Vladimir Stilinović, ${ }^{\text {a }}$ Leo Frkanec ${ }^{\text {b }}$ and Branko Kaitner ${ }^{\text {a* }}$
${ }^{\text {a Laboratory of General and Inorganic Chemistry, Department of Chemistry, Faculty of }}$ Science, University of Zagreb, Horvatovac 102 A, HR-10000 Zagreb, Croatia, and ${ }^{\text {b }}$ Department of Organic Chemistry and Biochemistry, Ruder Bošković Institute, PO Box 180, HR-10002 Zagreb, Croatia
Correspondence e-mail: kaitner@chem.pmf.hr

Received 15 April 2010; accepted 18 May 2010

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$;
R factor $=0.076 ; w R$ factor $=0.222$; data-to-parameter ratio $=9.3$.

The title compound, $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, is a monohydrate of a betaine exhibiting a positively charged N-substituted isoquinoline group and a deprotonated carboxyl group. In the crystal, molecules are connected via short $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between protonated and deprotonated carboxyl groups into chains of either R or S enantiomers along [001]. These chains are additionally connected by hydrogen bonding between water molecules and the deprotonated carboxy groups of neighbouring molecules.

Related literature

For the structure of a co-crystal of a quinoline derivative betaine, see: Szafran et al. (2002) and for the structure of a 4dithiocarboxylisoquinoline betaine, see: Matthews et al. (1973). For possible applications of isoquinoline derivatives, see: Katritsky \& Pozharskii (2000). For the preparation of the title compound, see: Flett \& Gardner (1952).

$\mathrm{H}_{2} \mathrm{O}$

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} & b=8.0706(8) \AA \\
M_{r}=263.24 & c=7.8911(10) \AA \\
\text { Monoclinic, } P c & \beta=104.282(14)^{\circ} \AA \\
a=10.1030(15) \AA & V=623.53(14) \AA^{3}
\end{array}
$$

$Z=2$

$T=295 \mathrm{~K}$
Mo K α radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$0.43 \times 0.19 \times 0.17 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur CCD diffractometer
7142 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.076$
$w R\left(F^{2}\right)=0.222$
$S=1.02$
1659 reflections
178 parameters
6 restraints

1659 independent reflections 994 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.054$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H1 . ${ }^{\text {O } 2}$	0.86 (6)	2.05 (6)	2.851 (7)	156 (6)
$\mathrm{O} 5-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {i }}$	0.86 (6)	2.08 (7)	2.874 (7)	153 (6)
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {ii }}$	0.82	1.70	2.518 (7)	172

Symmetry codes: (i) $x,-y+2, z+\frac{1}{2}$; (ii) $x, y, z-1$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

The authors would like to thank the Ministry of Science, Education and Sport, Republic of Croatia, for financial support of this work through grant Nos. 119-1193079-3069, 119-1191342-2960 and 098-0982904-29121.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2195).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flett, L. H. \& Gardner, W. H. (1952). Maleic Anhydride Derivatives: Reactions of the Double Bond, p. 121. New York: John Wiley \& Sons, Inc.
Katritsky, A. R. \& Pozharskii, A. F. (2000). Handbook of Heterocyclic Chemistry, 2nd ed. Oxford: Elsevier.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Matthews, B. W., Colman, P. M., Selzer, J. O., Weaver, L. H. \& Duncan, J. A. (1973). Acta Cryst. B29, 2939-2947.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Szafran, M., Katrusiak, A., Dega-Szafran, Z., Dymarska, S. \& GrundwaldWyspiańska, M. (2002). J. Mol. Struct. 609, 19-28.

supporting information

Acta Cryst. (2010). E66, o1427 [https://doi.org/10.1107/S1600536810018428]

(R, S)-3-Carboxy-2-(isoquinolinium-2-yl)propanoate monohydrate

Vladimir Stilinović, Leo Frkanec and Branko Kaitner

S1. Comment

Isoquinoline derivatives are of interest in synthesizing new fungicides, insecticides, textile assistants, corrosion inhibitors, dye stabilizers, and pharmaceuticals (Katritsky \& Pozharskii, 2000) The molecular structure of I is given in Figure 1. The molecule of 3-carboxy-2-isoquinolinium-2-ylpropanoate is a betaine, i.e. a zwitterion containing a quaternary nitrogen atom and a deprotonated carboxyl group. It is the first betaine derived from isoquinoline to be structurally characterised, the only two similar compounds being a quinoline derivative (Szafran et al., 2002) and a 4-dithiocarboxylisoquinoline derivative (Matthews et al., 1973)

The compound crystallises in the space group $\mathrm{P} c$ with two formula units per unit cell. Molecules of 3-carboxy-2-isoquinolinium-2-ylpropanoate are connected via strong hydrogen bonds between protonated and deprotonated carboxyl groups ($\mathrm{O} 4 — \mathrm{H} 4 \cdots \mathrm{O} 12.518$ (7) \AA, $(x, y,-1+z)$) along the c axis. Water molecules bridge two deprotonated carboxyl groups of neighbouring molecules along chains ($\mathrm{O} 5-\mathrm{H} 2 \cdots \mathrm{O} 22.874$ (7) $\AA,(x, 2-y, 1 / 2+z$) and $\mathrm{O} 5-\mathrm{H} 1 \cdots \mathrm{O} 22.851$ (7) $\AA \AA$). Chains consist of either R or S enantiomers and each chain is interconnected by water molecules to a neighbouring chain in which the molecules are of opposite chirality, thus forming double chains about the glide plane.

S2. Experimental

The title compound (I) was prepared according to a method described earlier (Flett \& Gardner, 1952). Separate solutions are prepared of isoquinoline $(1.17 \mathrm{ml} ; 10 \mathrm{mmol})$ and maleic acid $(1.16 \mathrm{~g} ; 10 \mathrm{mmol})$ in anhydrous ether. Upon mixing, isoquinolinium maleate precipitates. This precipitate is separated by filtration, washed, and dried. It is then rapidly heated to its melting point at $103{ }^{\circ} \mathrm{C}$ and held at this temperature for a few minutes. Rapid conversion to the betaine takes place. The betaine is then purified by dissolving it in hot water and treatment with animal charcoal. The solution was set aside for the formation of crystals, yield is 79%. Crystals suitable for crystallographic study were grown from a solution of (I) in water by slow evaporation at room temperature.

S3. Refinement

The hydrogen atoms of the water molecule were located in the difference Fourier map and refined isotropically with the $\mathrm{O}-\mathrm{H}$ distance restrained to 0.857 (2) \AA. All other H atoms were placed geometrically and included in the refinement in the riding-model approximation with $U_{\mathrm{iso}}=1.2 U_{\mathrm{eq}}$ for hydrogen atoms bonded to carbon and $U_{\text {iso }}=1.5 U_{\text {eq }}$ for the hydroxyl hydrogen. To the quinolinium subunit rigid bond restraints were applied. Since there are no heavy atoms in the structure the Flack parameter was meaningless due to a large s.u., and the Friedel pairs were merged for the final refinement.

Figure 1
View of (I) with the atom labeling scheme. Displacement ellipsoids of are shown at 30% probability. Hydrogen atoms are shown as spheres of arbitrary radii.

Figure 2
Crystal packing of (I) viewed along the x axis.
(R, S)-3-Carboxy-2-(isoquinolin-2-ium-2-yl)propanoate monohydrate

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=263.24 \\
& \text { Monoclinic, } P c \\
& \text { Hall symbol: } \mathrm{P}-2 \mathrm{yc} \\
& a=10.1030(15) \AA \\
& b=8.0706(8) \AA \\
& c=7.8911(10) \AA \\
& \beta=104.282(14)^{\circ} \\
& V=623.53(14) \AA^{3} \\
& Z=2
\end{aligned}
$$

$$
\begin{aligned}
& F(000)=276 \\
& D_{\mathrm{x}}=1.402 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 275 \text { reflections } \\
& \theta=4.6-52.0^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& \text { Prism, colourless } \\
& 0.43 \times 0.19 \times 0.17 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Diffraction Xcalibur CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scan
7142 measured reflections
1659 independent reflections

$$
\begin{aligned}
& 994 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.054 \\
& \theta_{\max }=29^{\circ}, \theta_{\min }=3.9^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-11 \rightarrow 11 \\
& l=-10 \rightarrow 10
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.076$
$w R\left(F^{2}\right)=0.222$
$S=1.02$
1659 reflections
178 parameters
6 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1361 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.38$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.23$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
O5	$0.9214(4)$	$0.9884(8)$	$0.9683(6)$	$0.0817(17)$
H1	$0.865(6)$	$0.928(9)$	$0.895(8)$	0.085^{*}
H2	$0.885(7)$	$1.014(11)$	$1.052(7)$	0.086^{*}
O3	$0.5000(5)$	$0.8301(5)$	$0.0404(6)$	$0.0581(12)$
O1	$0.5719(5)$	$0.7025(7)$	$0.6870(6)$	$0.0664(14)$
O4	$0.6768(5)$	$0.6788(6)$	$0.0104(6)$	$0.0576(12)$
H4	0.6439	0.6955	-0.094	0.086^{*}
C2	$0.5675(6)$	$0.8088(7)$	$0.4031(6)$	$0.0340(11)$
H2A	0.5661	0.9273	0.3756	0.041^{*}
N1	$0.4242(5)$	$0.7538(5)$	$0.3583(6)$	$0.0375(10)$
C4	$0.6005(6)$	$0.7514(6)$	$0.1025(7)$	$0.0372(12)$
C1	$0.6317(6)$	$0.7933(7)$	$0.6011(7)$	$0.0384(12)$
O2	$0.7403(5)$	$0.8672(6)$	$0.6568(6)$	$0.0584(12)$
C12	$0.2584(7)$	$0.5400(7)$	$0.3023(7)$	$0.0448(13)$
C3	$0.6546(6)$	$0.7251(7)$	$0.2928(7)$	$0.0415(13)$
H3A	0.7469	0.7684	0.3277	0.05^{*}

H3B	0.6589	0.6071	0.3167	0.05^{*}
C13	$0.3918(7)$	$0.5934(7)$	$0.3442(8)$	$0.0446(13)$
H13	0.4616	0.5153	0.3632	0.054^{*}
C7	$0.1528(8)$	$0.6561(9)$	$0.2716(11)$	$0.0632(18)$
C6	$0.1918(8)$	$0.8250(10)$	$0.287(2)$	$0.115(5)$
H6	0.1246	0.9064	0.2687	0.137^{*}
C10	$0.0902(11)$	$0.3265(12)$	$0.251(2)$	$0.121(5)$
H10	0.0679	0.2145	0.2447	0.146^{*}
C8	$0.0157(8)$	$0.6063(11)$	$0.2240(15)$	$0.088(3)$
H8	-0.0545	0.6839	0.1992	0.105^{*}
C11	$0.2251(9)$	$0.3727(10)$	$0.2954(16)$	$0.093(3)$
H11	0.2935	0.2928	0.3209	0.112^{*}
C9	$-0.0115(9)$	$0.4417(12)$	$0.2152(14)$	$0.089(3)$
H9	-0.102	0.4065	0.184	0.107^{*}
C5	$0.3220(8)$	$0.8692(9)$	$0.3285(14)$	$0.083(3)$
H5	0.3444	0.9812	0.3373	0.099^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O5	$0.058(3)$	$0.088(4)$	$0.093(4)$	$0.004(3)$	$0.009(3)$	$-0.029(3)$
O3	$0.070(3)$	$0.058(3)$	$0.044(2)$	$0.011(3)$	$0.010(2)$	$0.012(2)$
O1	$0.087(4)$	$0.088(3)$	$0.0270(19)$	$-0.019(3)$	$0.020(2)$	$0.006(2)$
O4	$0.074(3)$	$0.068(3)$	$0.032(2)$	$0.004(2)$	$0.0153(19)$	$-0.004(2)$
C2	$0.050(3)$	$0.035(3)$	$0.0162(18)$	$-0.003(2)$	$0.0079(19)$	$0.0013(18)$
N1	$0.049(3)$	$0.030(2)$	$0.031(2)$	$0.0015(19)$	$0.0078(18)$	$-0.0013(17)$
C4	$0.045(3)$	$0.036(3)$	$0.030(3)$	$-0.011(2)$	$0.008(2)$	$-0.013(2)$
C1	$0.040(3)$	$0.042(3)$	$0.034(3)$	$0.000(2)$	$0.009(2)$	$0.002(2)$
O2	$0.056(3)$	$0.077(3)$	$0.037(2)$	$-0.020(2)$	$0.0025(18)$	$0.002(2)$
C12	$0.045(3)$	$0.047(3)$	$0.039(3)$	$-0.004(3)$	$0.003(2)$	$0.004(2)$
C3	$0.048(3)$	$0.043(3)$	$0.029(3)$	$0.000(3)$	$0.002(2)$	$0.007(2)$
C13	$0.049(4)$	$0.035(3)$	$0.048(3)$	$0.002(3)$	$0.007(3)$	$0.003(2)$
C7	$0.043(4)$	$0.054(4)$	$0.090(5)$	$0.003(3)$	$0.013(3)$	$-0.012(3)$
C6	$0.037(5)$	$0.043(4)$	$0.244(15)$	$0.004(3)$	$-0.002(6)$	$-0.030(6)$
C10	$0.066(6)$	$0.059(5)$	$0.215(15)$	$-0.022(4)$	$-0.010(7)$	$0.032(7)$
C8	$0.039(4)$	$0.073(5)$	$0.142(8)$	$-0.008(4)$	$0.006(4)$	$-0.010(6)$
C11	$0.067(6)$	$0.042(4)$	$0.152(9)$	$-0.010(4)$	$-0.008(6)$	$-0.001(5)$
C9	$0.047(5)$	$0.085(6)$	$0.126(8)$	$-0.029(4)$	$0.003(4)$	$-0.006(5)$
C5	$0.045(4)$	$0.034(3)$	$0.157(8)$	$0.008(3)$	$0.004(4)$	$-0.024(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 5-\mathrm{H} 1$	$0.86(6)$	$\mathrm{C} 12-\mathrm{C} 7$	$1.396(9)$
$\mathrm{O} 5-\mathrm{H} 2$	$0.86(6)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.97
$\mathrm{O} 3-\mathrm{C} 4$	$1.195(7)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.97
$\mathrm{O} 1-\mathrm{C} 1$	$1.250(7)$	$\mathrm{C} 13-\mathrm{H} 13$	0.93
$\mathrm{O} 4-\mathrm{C} 4$	$1.320(7)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.402(11)$
$\mathrm{O} 4-\mathrm{H} 4$	0.82	$\mathrm{C} 7-\mathrm{C} 6$	$1.416(11)$

C2-N1	1.471 (7)	C6-C5	1.324 (11)
C2-C3	1.538 (7)	C6-H6	0.93
$\mathrm{C} 2-\mathrm{C} 1$	1.543 (6)	C10-C9	1.364 (13)
C2-H2A	0.98	C10-C11	1.372 (12)
N1-C13	1.333 (7)	C10-H10	0.93
N1-C5	1.368 (8)	C8-C9	1.354 (12)
C4-C3	1.481 (7)	C8-H8	0.93
$\mathrm{C} 1-\mathrm{O} 2$	1.231 (7)	C11-H11	0.93
C12-C13	1.375 (8)	C9-H9	0.93
C12-C11	1.389 (10)	C5-H5	0.93
$\mathrm{H} 1-\mathrm{O} 5-\mathrm{H} 2$	109 (7)	$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	107.8
C4-O4-H4	109.5	N1-C13-C12	122.0 (5)
N1-C2-C3	113.5 (4)	N1-C13-H13	119
N1-C2-C1	111.2 (4)	C12-C13-H13	119
C3-C2-C1	112.4 (4)	C12-C7-C8	121.1 (7)
N1-C2-H2A	106.4	C12-C7-C6	116.5 (7)
C3-C2-H2A	106.4	C8-C7-C6	122.3 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	106.4	C5-C6-C7	121.3 (7)
C13-N1-C5	119.2 (6)	C5-C6-H6	119.3
C13-N1-C2	121.3 (5)	C7-C6-H6	119.3
C5-N1-C2	119.5 (5)	C9-C10-C11	121.2 (8)
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{O} 4$	124.2 (5)	C9-C10-H10	119.4
O3-C4-C3	123.8 (5)	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	119.4
O4-C4-C3	112.0 (5)	C9-C8-C7	118.0 (8)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	126.7 (5)	C9-C8-H8	121
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	116.0 (5)	C7-C8-H8	121
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.2 (5)	C10-C11-C12	119.3 (8)
C13-C12-C11	121.9 (6)	C10- $\mathrm{C} 11-\mathrm{H} 11$	120.3
C13-C12-C7	119.5 (6)	C12-C11-H11	120.3
C11-C12-C7	118.6 (7)	C8-C9-C10	121.7 (8)
C4-C3-C2	113.0 (4)	C8-C9-H9	119.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109	C10-C9-H9	119.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109	C6-C5-N1	121.4 (7)
C4-C3-H3B	109	C6-C5-H5	119.3
C2-C3-H3B	109	N1-C5-H5	119.3

Hydrogen-bond geometry (A, o)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 1 \cdots \mathrm{O} 2$	$0.86(6)$	$2.05(6)$	$2.851(7)$	$156(6)$
$\mathrm{O} 5-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.86(6)$	$2.08(7)$	$2.874(7)$	$153(6)$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}^{1 \mathrm{i}}$	0.82	1.70	$2.518(7)$	172

Symmetry codes: (i) $x,-y+2, z+1 / 2$; (ii) $x, y, z-1$.

