organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2-{1-[(Z)-3-methyl-5-oxo-1phenyl-4,5-dihydro-1H-pyrazol-4-ylidene]ethylamino}-3-phenylpropanoate

Hualing Zhu,^a* Jun Shi,^a Zhen Wei,^a Ronghua Dai^a and Xin Zhang^b

^aDepartment of Basic Science, Tianjin Agriculturial College, Tianjin Jinjing Road No. 22, Tianjin 300384, People's Republic of China, and ^bDepartment of Chemistry and Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China Correspondence e-mail: zhuhualing2004@126.com

Received 15 November 2009; accepted 11 May 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.037; wR factor = 0.096; data-to-parameter ratio = 9.2.

The molecule of the title compound, $C_{22}H_{23}N_3O_3$, exists in the enamine-keto form. A strong intramolecular N-H···O hydrogen bond occurs, generating an S(6) ring. The dihedral angle between the heterocycle and the adjacent phenyl ring is 3.75 (15)°.

Related literature

For the antibacterial activity of Schiff bases derived from 4acyl-5-pyrazolones and metal complexes, see: Li et al. (1997, 2004). For the biological activity of amino acid esters, see: Xiong et al. (1993). For related structures, see: Wang et al. (2003); Zhang et al. (2004, 2010); Zhu et al. (2005).

Experimental

Crystal data

C ₂₂ H ₂₃ N ₃ O ₃	$V = 1013.84 (16) \text{ Å}^3$
$M_r = 377.43$	Z = 2
Monoclinic, $P2_1$	Mo $K\alpha$ radiation
a = 10.940 (1) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 7.2105 (7) Å	T = 296 K
c = 12.867 (1) Å	$0.28 \times 0.12 \times 0.10 \text{ mm}$
$\beta = 92.718 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick,
2000\\bbr00)
$T_{\min} = 0.977, \ T_{\max} = 0.988$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	1 restraint
$vR(F^2) = 0.096$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.08 \text{ e } \text{\AA}^{-3}$
366 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$
56 parameters	

6036 measured reflections

 $R_{\rm int} = 0.028$

2366 independent reflections 1239 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3−H3···O1	0.86	1.98	2.695 (3)	141

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Science Development Committee of Tianjin Agricultural College for partial funding (research grant No. 2007029).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2128).

References

Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30. 565.

Li, J. Z., Jiang, L. & An, Y. M. (2004). Chin. J. Appl. Chem. 21, 150-153.

Li, J. Z., Yu, W. J. & Du, X. Y. (1997). Chin. J. Appl. Chem. 14, 98-100.

Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, 0430-0432.

Xiong, G. H., Yang, Z. M. & Guo, A. L. (1993). Fine Chem. 6, 1-3.

Zhang, X., Huang, M., Du, C. & Han, J. (2010). Acta Cryst. E66, o273.

Zhang, X., Zhu, H., Xu, H. & Dong, M. (2004). Acta Cryst. E60, o1157-o1158.

Zhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387-o2388.

supporting information

Acta Cryst. (2010). E66, o1352 [https://doi.org/10.1107/S1600536810017241] Methyl 2-{1-[(Z)-3-methyl-5-oxo-1-phenyl-4,5-dihydro-1*H*-pyrazol-4-ylidene]ethylamino}-3-phenylpropanoate

Hualing Zhu, Jun Shi, Zhen Wei, Ronghua Dai and Xin Zhang

S1. Comment

The Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes have been studied widely for their high antibacterial activation [Li *et al.*, 1997, 2004]. Since amino acid esters also possess good antibacterial and biological activations (Xiong *et al.*, 1993), several Structures of Schiff bases derived from 4-acyl-5-pyrazolones and amino acid esters and closely related to the title compound have been reported [Zhu *et al.*, 2005; Zhang *et al.*, 2010]. We report the the crystal structure of the title compound.

In the molecule of the title compound, (Fig.1) atoms O1, C7, C8, C11 and atom N3 form a plane, the largest deviation being 0.024 (2) Å for atom C11. The dihedral angle between this mean plane and the pyrazolone ring of PMAP is 1.44 (3)°, indicating that they are essentially coplanar, as seen in Ethyl 2-{[(1Z)-(3- methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-ylidene) (p-tolyl)methyl]amino}-3-phenylpropanoate (1.52 (4)°; Zhang *et al.*, 2010). The bond lengths within this part of the molecular lie between classical single-and double-bond lengths, indicating extensive conjugation. Atoms N3, C13, C14 and O2 are not coplanar, the torsion angle is -39.0 (4)°, similar to some other 4-acylpyrazolone schiff bases (Zhang *et al.* 2004; Wang *et al.* 2003). The bond lengths in this part of the molecular indicate that only C14—O2 is classical double bond, other bonds are classical single bonds. A strong intramolecular hydrogen bond N3—H3…O1 is observed (Table 1 & Fig. 1), stabilizing to an enamine–keto form.

S2. Experimental

The title compound was synthesized by refluxing the mixture of HPMAP (15 m mol) and phenylalanine methyl ester (15m mol) in ethanol (100 ml) over a steam bath for about 4 h, then the solution was cooled down to room temperature. After four days, white block was obtained and dried in air. The product was recrystallized from ethanol which afforded colorless and acerate crystals suitable for X-ray analysis.

S3. Refinement

In the absence of significant anomalous scattering effect, 1127 Friedel pairs were merged. All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for methylene, 0.98 Å for methyne and 0.96 Å for the methyl H atoms. $U_{iso}(H)$ = 1.2 $U_{eq}(C)$ for aryl, methylene and methyne, and 1.5 $U_{eq}(C)$ for methyl H atoms.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Methyl 2-{1-[(Z)-3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol- 4-ylidene]ethylamino}-3-phenylpropanoate

Crystal data

 $\begin{array}{l} C_{22}H_{23}N_{3}O_{3}\\ M_{r}=377.43\\ \text{Monoclinic, }P2_{1}\\ a=10.940\ (1)\ \text{\AA}\\ b=7.2105\ (7)\ \text{\AA}\\ c=12.867\ (1)\ \text{\AA}\\ \beta=92.718\ (2)^{\circ}\\ V=1013.84\ (16)\ \text{\AA}^{3}\\ Z=2 \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.0 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2000\bbr00) $T_{\min} = 0.977, T_{\max} = 0.988$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.096$ S = 1.012366 reflections 256 parameters F(000) = 400 $D_x = 1.236 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1220 reflections $\theta = 3.2-22.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.28 \times 0.12 \times 0.10 \text{ mm}$

6036 measured reflections 2366 independent reflections 1239 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 27.0^\circ, \theta_{min} = 1.6^\circ$ $h = -13 \rightarrow 11$ $k = -9 \rightarrow 9$ $l = -13 \rightarrow 16$

 restraint
 Primary atom site location: structure-invariant direct methods
 Secondary atom site location: difference Fourier map
 Hydrogen site location: difference Fourier map
 H-atom parameters constrained

	4.4	• •	4.4
SUD	norting	inform	ation
Jun			anon

$w = 1/[\sigma^2(F_o^2) + (0.0409P)^2]$	$\Delta \rho_{\rm max} = 0.08 \text{ e} \text{ Å}^{-3}$
where $P = (F_0^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.001$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

		• • • •	• 1• 1		221
Fractional atomic coordinates and	isotronic or	pautvalent isotror	ne displacement	narameters ()	4-1
i ractional atomic coorainates and	ison opic of v	.yuuvuucni isoirop	ne aispiacemeni	pur uniciers (1	- /

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.69537 (16)	0.7004 (4)	0.63222 (13)	0.0812 (6)
O2	0.9385 (2)	0.5317 (4)	0.4573 (2)	0.0951 (8)
O3	0.9296 (2)	0.4530 (3)	0.28897 (18)	0.0818 (7)
N1	0.49129 (18)	0.7209 (4)	0.67625 (16)	0.0594 (6)
N2	0.37536 (19)	0.7237 (4)	0.62394 (18)	0.0662 (6)
N3	0.7085 (2)	0.6887 (4)	0.42371 (17)	0.0681 (7)
Н3	0.7408	0.6814	0.4858	0.082*
C1	0.3903 (3)	0.7353 (6)	0.8383 (2)	0.0798 (10)
H1	0.3156	0.7472	0.8012	0.096*
C2	0.3948 (4)	0.7310 (7)	0.9457 (3)	0.1043 (12)
H2	0.3226	0.7392	0.9809	0.125*
C3	0.5037 (5)	0.7148 (8)	1.0007 (3)	0.1151 (14)
H3A	0.5060	0.7114	1.0730	0.138*
C4	0.6103 (3)	0.7035 (8)	0.9487 (2)	0.1075 (13)
H4	0.6849	0.6941	0.9860	0.129*
C5	0.6072 (3)	0.7060 (6)	0.8416 (2)	0.0853 (10)
H5	0.6794	0.6971	0.8066	0.102*
C6	0.4968 (3)	0.7219 (5)	0.7866 (2)	0.0626 (7)
C7	0.5836 (2)	0.7091 (5)	0.6073 (2)	0.0608 (7)
C8	0.5237 (2)	0.7100 (5)	0.5063 (2)	0.0534 (6)
C9	0.3959 (2)	0.7185 (5)	0.5250 (2)	0.0595 (7)
C10	0.2866 (2)	0.7155 (6)	0.4494 (2)	0.0834 (10)
H10A	0.2130	0.7153	0.4871	0.125*
H10B	0.2892	0.6059	0.4072	0.125*
H10C	0.2880	0.8233	0.4056	0.125*
C11	0.5879 (2)	0.7059 (5)	0.4158 (2)	0.0563 (7)
C12	0.5269 (2)	0.7185 (6)	0.3096 (2)	0.0727 (8)
H12A	0.5209	0.5969	0.2794	0.109*
H12B	0.5741	0.7971	0.2666	0.109*
H12C	0.4463	0.7697	0.3146	0.109*
C13	0.7929 (2)	0.6804 (5)	0.3398 (2)	0.0646 (8)
H13	0.7495	0.6375	0.2759	0.077*

C14	0.8937 (3)	0.5450 (5)	0.3710(3)	0.0677 (9)
C15	1.0389 (3)	0.3383 (6)	0.3056 (3)	0.1081 (14)
H15A	1.0281	0.2559	0.3631	0.162*
H15B	1.1086	0.4164	0.3206	0.162*
H15C	1.0518	0.2670	0.2441	0.162*
C16	0.8488 (3)	0.8723 (5)	0.3216 (3)	0.0724 (9)
H16A	0.7833	0.9626	0.3131	0.087*
H16B	0.8991	0.9071	0.3826	0.087*
C17	0.9252 (3)	0.8793 (4)	0.2280 (3)	0.0645 (8)
C18	1.0502 (3)	0.8632 (5)	0.2357 (3)	0.0886 (11)
H18	1.0890	0.8466	0.3009	0.106*
C19	1.1202 (4)	0.8709 (6)	0.1491 (5)	0.1149 (16)
H19	1.2049	0.8596	0.1561	0.138*
C20	1.0639 (5)	0.8953 (7)	0.0535 (4)	0.1186 (16)
H20	1.1104	0.9008	-0.0051	0.142*
C21	0.9411 (5)	0.9114 (7)	0.0431 (3)	0.1104 (14)
H21	0.9030	0.9288	-0.0223	0.133*
C22	0.8718 (3)	0.9019 (5)	0.1308 (3)	0.0847 (11)
H22	0.7871	0.9111	0.1231	0.102*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0527 (12)	0.1241 (19)	0.0665 (13)	-0.0042 (16)	-0.0012 (9)	0.0002 (17)
O2	0.0909 (17)	0.113 (2)	0.0801 (18)	0.0257 (16)	-0.0114 (13)	0.0023 (16)
O3	0.0824 (16)	0.0755 (15)	0.0886 (19)	0.0130 (13)	0.0146 (13)	-0.0103 (14)
N1	0.0538 (13)	0.0666 (16)	0.0580 (15)	-0.0033 (16)	0.0047 (11)	0.0003 (17)
N2	0.0544 (14)	0.0725 (17)	0.0719 (16)	0.0014 (15)	0.0045 (12)	0.0012 (19)
N3	0.0611 (15)	0.088 (2)	0.0548 (14)	0.0066 (16)	0.0041 (11)	0.0009 (17)
C1	0.077 (2)	0.092 (3)	0.071 (2)	0.000 (2)	0.0145 (16)	-0.010 (2)
C2	0.113 (3)	0.128 (4)	0.075 (3)	0.004 (3)	0.029 (2)	-0.012 (3)
C3	0.138 (3)	0.148 (4)	0.060(2)	0.007 (4)	0.009 (2)	-0.007(3)
C4	0.105 (3)	0.150 (4)	0.066 (2)	-0.003 (4)	-0.004 (2)	0.002 (4)
C5	0.076 (2)	0.115 (3)	0.064 (2)	-0.001 (3)	0.0007 (16)	0.001 (3)
C6	0.0731 (19)	0.0571 (18)	0.0586 (19)	-0.0032 (19)	0.0125 (15)	-0.001 (2)
C7	0.0567 (18)	0.0596 (19)	0.0664 (18)	-0.001 (2)	0.0063 (15)	0.001 (2)
C8	0.0504 (15)	0.0552 (17)	0.0546 (16)	-0.0013 (17)	0.0036 (13)	0.001 (2)
C9	0.0558 (17)	0.0545 (17)	0.0681 (19)	-0.0005 (18)	0.0007 (13)	0.002 (2)
C10	0.0553 (17)	0.110 (3)	0.084 (2)	0.002 (2)	-0.0061 (14)	-0.004 (3)
C11	0.0563 (18)	0.0512 (17)	0.0609 (18)	-0.0009 (18)	-0.0023 (13)	0.000 (2)
C12	0.0757 (19)	0.080 (2)	0.0625 (18)	0.009 (2)	0.0011 (14)	0.002 (2)
C13	0.0619 (18)	0.076 (2)	0.0568 (18)	0.0028 (18)	0.0082 (14)	0.0025 (18)
C14	0.057 (2)	0.066 (2)	0.080 (3)	-0.0016 (17)	0.0078 (19)	0.000 (2)
C15	0.091 (3)	0.089 (3)	0.146 (4)	0.037 (2)	0.018 (2)	-0.006 (3)
C16	0.076 (2)	0.069 (2)	0.073 (2)	0.0084 (18)	0.0089 (18)	0.0011 (19)
C17	0.060 (2)	0.064 (2)	0.069 (2)	0.0048 (17)	0.0073 (17)	0.0016 (18)
C18	0.073 (3)	0.092 (3)	0.102 (3)	0.003 (2)	0.008 (2)	0.000 (2)
C19	0.072 (3)	0.116 (4)	0.158 (5)	-0.002(3)	0.026 (3)	0.001 (4)

supporting information

C20	0.115 (4)	0.107 (4)	0.139 (5)	0.001 (3)	0.060 (3)	0.007 (3)
C21	0.121 (4)	0.127 (4)	0.086 (3)	0.011 (3)	0.027 (3)	0.014 (3)
C22	0.074 (2)	0.101 (3)	0.079 (3)	0.010 (2)	0.010 (2)	0.004 (2)

Geometric parameters (Å, °)

O1—C7	1.251 (3)	C10—H10B	0.9600	
O2—C14	1.197 (4)	C10—H10C	0.9600	
O3—C14	1.322 (4)	C11—C12	1.495 (3)	
O3—C15	1.462 (4)	C12—H12A	0.9600	
N1—C7	1.378 (3)	C12—H12B	0.9600	
N1—N2	1.407 (3)	C12—H12C	0.9600	
N1—C6	1.418 (3)	C13—C14	1.512 (4)	
N2—C9	1.304 (3)	C13—C16	1.535 (4)	
N3—C11	1.325 (3)	C13—H13	0.9800	
N3—C13	1.454 (3)	C15—H15A	0.9600	
N3—H3	0.8600	C15—H15B	0.9600	
C1—C6	1.372 (4)	C15—H15C	0.9600	
C1—C2	1.382 (4)	C16—C17	1.499 (4)	
C1—H1	0.9300	C16—H16A	0.9700	
C2—C3	1.362 (5)	C16—H16B	0.9700	
C2—H2	0.9300	C17—C22	1.365 (4)	
C3—C4	1.374 (5)	C17—C18	1.371 (4)	
С3—НЗА	0.9300	C18—C19	1.382 (5)	
C4—C5	1.376 (4)	C18—H18	0.9300	
C4—H4	0.9300	C19—C20	1.361 (5)	
C5—C6	1.376 (4)	C19—H19	0.9300	
С5—Н5	0.9300	C20—C21	1.349 (5)	
С7—С8	1.427 (3)	C20—H20	0.9300	
C8—C11	1.388 (3)	C21—C22	1.390 (5)	
C8—C9	1.431 (3)	C21—H21	0.9300	
C9—C10	1.506 (3)	C22—H22	0.9300	
C10—H10A	0.9600			
C14—O3—C15	116.0 (3)	C11—C12—H12B	109.5	
C7—N1—N2	111.3 (2)	H12A—C12—H12B	109.5	
C7—N1—C6	130.4 (2)	C11—C12—H12C	109.5	
N2—N1—C6	118.2 (2)	H12A—C12—H12C	109.5	
C9—N2—N1	105.9 (2)	H12B—C12—H12C	109.5	
C11—N3—C13	127.7 (2)	N3—C13—C14	108.1 (3)	
C11—N3—H3	116.1	N3—C13—C16	110.4 (3)	
C13—N3—H3	116.1	C14—C13—C16	109.4 (2)	
C6—C1—C2	119.5 (3)	N3—C13—H13	109.7	
C6C1H1	120.2	C14—C13—H13	109.7	
C2-C1-H1	120.2	C16—C13—H13	109.7	
C3—C2—C1	120.7 (3)	O2—C14—O3	125.2 (3)	
C3—C2—H2	119.7	O2—C14—C13	124.0 (3)	
C1—C2—H2	119.7	O3—C14—C13	110.7 (3)	

C2—C3—C4	119.6 (3)	O3—C15—H15A	109.5
С2—С3—НЗА	120.2	O3—C15—H15B	109.5
С4—С3—Н3А	120.2	H15A—C15—H15B	109.5
C3—C4—C5	120.4 (3)	O3—C15—H15C	109.5
C3—C4—H4	119.8	H15A—C15—H15C	109.5
C5-C4-H4	119.8	H15B-C15-H15C	109.5
C6-C5-C4	119.7 (3)	C17 - C16 - C13	103.3 113.2(3)
С6—С5—Н5	120.2	C_{17} C_{16} H_{16A}	108.9
C4-C5-H5	120.2	C_{13} C_{16} H_{16A}	108.9
$C_{1} - C_{6} - C_{5}$	120.2 120.1(3)	C_{17} C_{16} H_{16B}	108.9
C1 C6 N1	120.1(5) 110.3(3)	C_{13} C_{16} H_{16B}	108.9
C_{5} C_{6} N1	119.5(3) 120.6(3)	H_{164} C_{16} H_{16B}	107.7
C_{1} C_{7} N1	120.0(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.7 117.2(2)
O1 = C7 = C8	123.1(2) 120.4(2)	$C_{22} = C_{17} = C_{18}$	117.5(3)
$V_1 = C_7 = C_8$	129.4(2) 105.5(2)	$C_{22} = C_{17} = C_{16}$	120.0(3)
N1 - C / - C 8	103.3(2)	$C_{18} - C_{17} - C_{10}$	122.1(3)
$C_{11} = C_{8} = C_{7}$	122.3(2)	C17 - C18 - U19	121.8 (4)
C11 - C8 - C9	132.8(2)	C10 - C18 - H18	119.1
C/-C8-C9	104.9(2)	C19 - C18 - H18	119.1
N2-C9-C8	112.4 (2)	$C_{20} = C_{19} = C_{18}$	119.3 (4)
N2-C9-C10	117.6 (2)	C20—C19—H19	120.3
C8—C9—C10	130.0 (2)	C18—C19—H19	120.3
C9—C10—H10A	109.5	C21—C20—C19	120.5 (4)
C9—C10—H10B	109.5	С21—С20—Н20	119.8
H10A—C10—H10B	109.5	C19—C20—H20	119.8
С9—С10—Н10С	109.5	C20—C21—C22	119.6 (4)
H10A—C10—H10C	109.5	C20—C21—H21	120.2
H10B—C10—H10C	109.5	C22—C21—H21	120.2
N3—C11—C8	118.6 (2)	C17—C22—C21	121.6 (3)
N3—C11—C12	118.4 (2)	C17—C22—H22	119.2
C8—C11—C12	122.9 (2)	C21—C22—H22	119.2
C11—C12—H12A	109.5		
C7—N1—N2—C9	-1.6 (4)	C7—C8—C9—C10	-177.3 (4)
C6—N1—N2—C9	-178.8 (3)	C13—N3—C11—C8	179.6 (3)
C6—C1—C2—C3	0.4 (7)	C13—N3—C11—C12	0.2 (5)
C1—C2—C3—C4	0.3 (9)	C7—C8—C11—N3	4.4 (5)
C2—C3—C4—C5	-0.8 (9)	C9—C8—C11—N3	-176.7 (3)
C3—C4—C5—C6	0.6 (8)	C7—C8—C11—C12	-176.1 (3)
C2-C1-C6-C5	-0.6 (6)	C9—C8—C11—C12	2.7 (6)
C2-C1-C6-N1	178.2 (4)	C11—N3—C13—C14	-143.2 (3)
C4—C5—C6—C1	0.1 (7)	C11—N3—C13—C16	97.2 (4)
C4—C5—C6—N1	-178.7 (4)	C15-03-C14-02	-5.2 (5)
C7—N1—C6—C1	179.9 (4)	C15—O3—C14—C13	171.1 (3)
N2—N1—C6—C1	-3.4 (5)	N3—C13—C14—O2	-39.0 (4)
C7—N1—C6—C5	-1.2 (6)	C16—C13—C14—O2	81.2 (4)
N2—N1—C6—C5	175.4 (3)	N3-C13-C14-O3	144.8 (3)
N2 N1 C7 O1	· · ·		· · ·
$N_2 - N_1 - C_1 - O_1$	-178.4(3)	C16—C13—C14—O3	-95.1 (3)

N2—N1—C7—C8	1.8 (4)	C14—C13—C16—C17	68.1 (4)	
C6—N1—C7—C8	178.6 (3)	C13—C16—C17—C22	82.0 (4)	
O1—C7—C8—C11	-1.9 (6)	C13—C16—C17—C18	-97.8 (4)	
N1—C7—C8—C11	177.8 (3)	C22-C17-C18-C19	0.6 (5)	
O1—C7—C8—C9	179.0 (4)	C16—C17—C18—C19	-179.6 (4)	
N1—C7—C8—C9	-1.3 (4)	C17—C18—C19—C20	0.0 (7)	
N1—N2—C9—C8	0.7 (4)	C18—C19—C20—C21	-0.1 (7)	
N1—N2—C9—C10	178.6 (3)	C19—C20—C21—C22	-0.4 (7)	
C11—C8—C9—N2	-178.6 (4)	C18—C17—C22—C21	-1.1 (6)	
C7—C8—C9—N2	0.4 (4)	C16—C17—C22—C21	179.1 (4)	
C11—C8—C9—C10	3.8 (7)	C20—C21—C22—C17	1.0 (7)	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
N3—H3…O1	0.86	1.98	2.695 (3)	141