Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Methylmorpholinium bromide

Ji-Yuan Yao

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: yaojiyuan520@163.com

Received 8 May 2010; accepted 12 May 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.037 ; w R$ factor $=0.098$; data-to-parameter ratio $=19.9$.

The six-membered ring in the title salt, $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{NO}^{+} \cdot \mathrm{Br}^{-}$, has a chair conformation. In the crystal, the cations are linked to the anions by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds.

Related literature

For background to phase transition materials, see: Hang et al. (2009); Zhang et al. (2009).

Experimental

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{NO}^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=182.07$
Monoclinic, $P 2_{1} / m$
$a=7.3282$ (15) А
$b=7.4170(15) \AA$

$$
\begin{aligned}
& c=7.3928(15) \AA \\
& \beta=92.72(3)^{\circ} \\
& V=401.37(14) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

$\mu=5.04 \mathrm{~mm}^{-1}$	$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
$T=293 \mathrm{~K}$	
Data collection	
Rigaku Mercury2 diffractometer	4192 measured reflections
Absorption correction: multi-scan	995 independent reflections
\quad (CrystalClear; Rigaku, 2005)	866 reflections with $I>2 \sigma(I)$
$\quad T_{\min }=0.178, T_{\max }=0.365$	$R_{\text {int }}=0.046$
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$	50 parameters
$w R\left(F^{2}\right)=0.098$	$\mathrm{H}-\mathrm{atom}$ parameters constrained
$S=0.97$	$\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3}$
995 reflections	$\Delta \rho_{\min }=-0.72 \mathrm{e} \AA^{-3}$

$\mu=5.04 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Data collection
Rigaku Mercury2 diffractometer bsorption correction: multi-scan (CrystalClear; Rigaku, 2005)

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037 \quad 50$ parameters
R(F2)
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.72 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Br} 1$	0.90	2.30	$3.202(4)$	179

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

The author is grateful to the starter fund of Southeast University for supporting the purchase of a diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2770).

References

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Hang, T., Fu, D. W., Ye, Q. \& Xiong, R. G. (2009). Cryst. Growth Des. 5, 20262029.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. \& Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.

supporting information

Acta Cryst. (2010). E66, o1375 [https://doi.org/10.1107/S1600536810017447]

4-Methylmorpholinium bromide

Ji-Yuan Yao

S1. Comment

As a study of phase transition materials, including organic ligands (Hang et al. 2009), metal-organic coordination compounds (Zhang et al., 2009), organic-inorganic hybrids, we studied the dielectric properties of the title compound, but there was no distinct anomaly observed from 90 K to 420 K , (m.p. 450 K) unfortunately. In this article, the crystal structure of (I) is showed.

The structure is composed of the N-Methylmorpholinium cations, hydrobromide anions (Fig. 1). in space group P21/m. Packing structure of the title compound along b-axis are shown in Figure 2. N-Methylmorpholinium molecules are linked via hydrogen bonds of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds forming a two-dimensional planar sheets with hydrobromide anions. The hydrogen bonds are given in Table 1. The H atom of the protonated ring N atom (H1b) is donated to the Brl^{-}anions, being involved in a strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bond. Br^{-}anions take part in electrostatics equilibrium with the N-Methylmorpholinium cations. The associated distances and angles are: $\mathrm{Br} \cdots \mathrm{H}-\mathrm{N} 3.202$ (4) \AA, and 179.3°.

S2. Experimental

The title compound was prepared by reaction of stoichiometric amounts of N-Methylmorpholinium and concentrated hydrobromic acid in methanol. The obtained solution was filtered, and left at room temperature for 5 days. colorless crystals were obtained by slow evaporation.

S3. Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, N atoms to which they are bonded, with $U_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$,

$$
U_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{~N})
$$

Figure 1
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.

Figure 2
A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.

4-Methylmorpholinium bromide

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{NO}^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=182.07$
Monoclinic, $P 2_{1} / m$
Hall symbol: -P 2 yb
$a=7.3282$ (15) \AA
$b=7.4170$ (15) \AA
$c=7.3928(15) \AA$
$\beta=92.72(3)^{\circ}$
$V=401.37(14) \AA^{3}$
$Z=2$

Data collection

Rigaku Mercury2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 13.6612 pixels mm^{-1}
$F(000)=184$
$D_{\mathrm{x}}=1.506 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 0 reflections
$\theta=3.8-27.5^{\circ}$
$\mu=5.04 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colourless
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$

CCD_Profile_fitting scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.178, T_{\text {max }}=0.365$
4192 measured reflections

995 independent reflections
866 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\min }=3.8^{\circ}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.098$
$S=0.97$
995 reflections
50 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& h=-9 \rightarrow 9 \\
& k=-9 \rightarrow 9 \\
& l=-9 \rightarrow 9
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\text {eq }}$
O1	$0.5268(5)$	0.7500	$0.3399(6)$	$0.0810(14)$
N1	$0.1476(4)$	0.7500	$0.2465(5)$	$0.0352(7)$
H1B	0.1507	0.7500	0.1250	$0.062(16)^{*}$
C1	$0.4418(5)$	$0.5939(7)$	$0.2671(6)$	$0.0749(13)$
H1A	0.4478	0.5968	0.1377	$0.096(16)^{*}$
H1C	0.5054	0.4884	0.3106	$0.110(18)^{*}$
C2	$0.2434(4)$	$0.5854(5)$	$0.3149(5)$	$0.0488(8)$
H2A	0.1864	0.4810	0.2604	$0.054(10)^{*}$
H2B	0.2359	0.5765	0.4438	$0.059(11)^{*}$
C5	$-0.0464(6)$	0.7500	$0.2948(7)$	$0.0484(11)$
H5A	-0.1058	0.6449	0.2455	$0.061(11)^{*}$
H5B	-0.0534	0.7500	0.4234	$0.059(16)^{*}$
Br1	$0.15472(6)$	0.7500	$-0.18624(5)$	$0.0464(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0332(17)$	$0.143(4)$	$0.066(3)$	0.000	$-0.0037(18)$	0.000
N1	$0.0288(16)$	$0.047(2)$	$0.0300(17)$	0.000	$0.0003(13)$	0.000
C1	$0.047(2)$	$0.116(4)$	$0.062(3)$	$0.034(2)$	$0.0023(18)$	$-0.007(3)$
C2	$0.0464(17)$	$0.0512(19)$	$0.0482(19)$	$0.0130(15)$	$-0.0023(13)$	$-0.0017(15)$

C5	$0.032(2)$	$0.056(3)$	$0.057(3)$	0.000	$0.004(2)$	0.000
Br1	$0.0608(3)$	$0.0470(3)$	$0.0314(3)$	0.000	$0.0005(2)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C1	1.409 (5)	C1-H1A	0.9600
$\mathrm{O} 1-\mathrm{C} 1^{\text {i }}$	1.409 (5)	C1-H1C	0.9578
N1-C5	1.482 (5)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9597
$\mathrm{N} 1-\mathrm{C} 2{ }^{\text {i }}$	1.485 (4)	C2-H2B	0.9596
N1-C2	1.485 (4)	C5-H5A	0.9562
N1-H1B	0.8997	C5-H5B	0.9550
C1-C2	1.514 (5)		
C1-O1-C1 ${ }^{\text {i }}$	110.5 (4)	C2- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	110.2
C5-N1-C2 ${ }^{\text {i }}$	111.2 (2)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	108.0
C5-N1-C2	111.2 (2)	N1-C2-C1	109.3 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 2$	110.6 (3)	N1-C2-H2A	109.3
C5-N1-H1B	108.1	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.9
C2 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	107.8	N1-C2-H2B	110.3
C2-N1-H1B	107.8	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.6
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	110.9 (3)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.4
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.8	N1-C5-H5A	109.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.9	N1-C5-H5B	109.7
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	110.1	H5A-C5-H5B	109.5
C1- ${ }^{\text {i }}$ O1- $\mathrm{C} 1-\mathrm{C} 2$	-61.8 (5)	C2 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	-54.4 (4)
C5-N1-C2-C1	-178.4 (3)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	57.8 (4)

Symmetry code: (i) $x,-y+3 / 2, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{Br} 1$	0.90	2.30	$3.202(4)$	179

