Structure Reports

Online
ISSN 1600-5368

(E)-4-Bromo-2-[(2-hydroxyphenyl)iminiomethyl]phenolate

Naser Eltaher Eltayeb, ${ }^{\text {a }} \ddagger$ Siang Guan Teoh, ${ }^{a}$ Hoong-Kun Fun ${ }^{\text {b }}$ § and Suchada Chantrapromma ${ }^{\text {cal }}$

${ }^{\text {a }}$ School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {c Crystal Materials Research Unit, Department of }}$ Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
Correspondence e-mail: hkfun@usm.my
Received 5 April 2010; accepted 26 April 2010
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$;
R factor $=0.018 ; w R$ factor $=0.041$; data-to-parameter ratio $=16.3$.

The title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrNO}_{2}$, crystallizes in a zwitterionic form. The zwitterion exists in a trans configuration about the $\mathrm{C}=\mathrm{N}$ bond and is almost planar, the dihedral angle between the two benzene rings being $2.29(9)^{\circ}$. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond formed between the iminium NH^{+}and the phenolate O^{-}atoms generates an $S(6)$ ring motif. In the crystal, the zwitterions are linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into chains along [101] and these chains are further connected through $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions into a two-dimensional network perpendicular to (101). $\mathrm{C} \cdots \mathrm{C} \quad[3.572(3)-3.592(3) \AA]$ and $\mathrm{C} \cdots \mathrm{Br} \quad[3.5633(19)-$ 3.7339 (18) A] short contacts are observed. The crystal studied was a twin with twin law $\overline{1} 00,0 \overline{1} 0,001$ with a domain ratio of 0.09919 (2):0.90081 (2).

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogenbond motifs, see: Bernstein et al. (1995). For background to Schiff bases and their applications, see: Dao et al. (2000); Kagkelari et al. (2009); Karthikeyan et al. (2006); Sriram et al. (2006); Wei \& Atwood (1998). For related structures, see: Eltayeb et al. (2009; 2010); Tan \& Liu (2009). For the stability of the temperature controller used in the data collection, see Cosier \& Glazer, (1986).

[^0]

Experimental

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrNO}_{2}$
$V=547.02(6) \AA^{3}$
$M_{r}=291.12$
Monoclinic, $P 2$
$a=4.6387$ (3) A
$b=18.9379$ (13) \AA
Mo $K \alpha$ radiation
$\mu=3.74 \mathrm{~mm}^{-1}$
$\beta=90.144(3)^{\circ}$
$0.43 \times 0.14 \times 0.14 \mathrm{~mm}$

Data collection

Bruker APEXII DUO CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.295, T_{\text {max }}=0.628$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.041$
$S=1.02$ independent and constrained

3120 reflections
191 parameters refinement
$\Delta \rho_{\max }=0.59 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.29$ e \AA^{-3}
Absolute structure: Flack (1983), 1480 Friedel pairs
Flack parameter: 0.027 (7)

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 1 O 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	1.76	$2.5641(19)$	169
N1-H1N1 $\cdots \mathrm{O} 1$	$0.89(3)$	$1.84(3)$	$2.6129(18)$	$143(3)$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2$	0.95 (2)	$2.12(2)$	$2.794(2)$	$127.1(18)$
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{Br}^{\mathrm{ii}}$	$0.96(3)$	$2.89(3)$	$3.6982(19)$	$143.1(19)$

Symmetry codes: (i) $x+1, y, z+1$; (ii) $-x+2, y+\frac{1}{2},-z+2$.
Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the RU research grants (PKIMIA/815002 and PKIMIA/811120). NEE would like to acknowledge Universiti Sains Malaysia for a post-doctoral fellowship. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2436).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. \& Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.

Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. \& Fun, H.-K. (2010). Acta Cryst. E66, o934-o935.
Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. \& Adnan, R. (2009). Acta Cryst. E65, o2065-o2066.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. \& Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279-3283.

Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. \& Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Sriram, D., Yogeeswari, P., Myneedu, N. S. \& Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.
Tan, G.-X. \& Liu, X.-C. (2009). Acta Cryst. E65, o559.
Wei, P. \& Atwood, D. A. (1998). Inorg. Chem. 37, 4934-4938.

supporting information

Acta Cryst. (2010). E66, o1262-o1263 [https://doi.org/10.1107/S1600536810015230]

(E)-4-Bromo-2-[(2-hydroxyphenyl)iminiomethyl]phenolate

Naser Eltaher Eltayeb, Siang Guan Teoh, Hoong-Kun Fun and Suchada Chantrapromma

S1. Comment

Much attention has been given to Schiff base ligands due to their applications such as in coordination chemistry (Kagkelari et al., 2009), chelated boron catalyst (Wei \& Atwood, 1998), pharmacological activities, anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) activities. We have reported the crystal structures of Schiff base ligands which existed in a zwitterionic form i.e 2-((E)-\{2-[(E)-2,3-di-hydroxybenzylideneamino]-5-methylphenyl\}-iminiomethyl)-6-hydroxyphenolate (Eltayeb et al., 2009) and (E)-4-allyl-2-\{[(2-hydroxyphenyl)iminio]methyl\}-6-methoxyphenolate (Eltayeb et al., 2010). Herein we report the crystal structure of the title zwitterionic Schiff base ligand (I).
The molecule of (I) (Fig. 1), $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrNO}_{2}$, crystallizes in a zwitterionic form with cationic iminium and anionic enolate, and exists in a trans configuration about the $\mathrm{C}=\mathrm{N}$ bond $\left[1.310\right.$ (2) \AA]; the torsion angle $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$ is $179.25(17)^{\circ}$. The molecule is almost planar with the dihedral angle between the two benzene rings of $2.31(9)^{\circ}$. The hydroxy group is co-planar with the attached C8-C13 benzene ring with the r.m.s. of 0.0102 (2) \AA for the seven non H atoms. Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the NH^{+}and the phenolate O^{-}generates an $\mathrm{S}(6)$ ring motif (Fig. 1; Table 1) which help to stabilize the planarity of the molecule (Bernstein et al., 1995). The bond distances are in normal ranges (Allen et al., 1987) and comparable with those found in related structures (Eltayeb et al., 2009, 2010; Tan \& Liu, 2009).

In the crystal packing (Fig. 2), the zwitterions are linked through $\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} 2 \cdots \mathrm{O} 1$ hydrogen bonds into chains along the [101] and these chains are further connected through $\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A} \cdots \mathrm{Br} 1$ interactions into a 2-D network perpendicular to the (101)-plane. The crystal is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions (Table 1). C $\cdots \mathrm{C}$ [3.572 (3)-3.592 (3) \AA] and $\mathrm{C} \cdots \operatorname{Br}[3.5633$ (19)-3.7339 (18) \AA] short contacts are observed.

S2. Experimental

The title compound was synthesized by adding 5-bromo-2-hydroxybenzaldehyde ($0.402 \mathrm{~g}, 2 \mathrm{mmol}$) to a solution of 2aminophenol ($0.218 \mathrm{~g}, 2 \mathrm{mmol}$) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered and the filtrate was evaporated to give a yellow solid product. Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were obtained from ethanol by slow evaporation at room temperature after nine days.

S3. Refinement

Hydroxyl H atom was placed in calculated positions with $\mathrm{d}(\mathrm{O}-\mathrm{H})=0.82 \AA$ and the $U_{\text {iso }}$ values was constrained to be $1.5 U_{\mathrm{eq}}$ of the carrier atom. The remaining H atoms were located from the difference map and isotropically refined. The highest residual electron density peak is located at $0.80 \AA$ from Br 1 and the deepest hole is located at $0.99 \AA$ from Br 1 . The crystal studied was a twin with twin law $\overline{1} 00,0 \overline{1} 0,001$, leading to a distribution (refined BASF parameter) of
0.09919/0.90081 (2).

Figure 1
The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as dashed lines.

Figure 2
The crystal packing showing 2-D networks perpendicular to the (101)-plane.

(E)-4-Bromo-2-[(2-hydroxyphenyl)iminiomethyl]phenolate

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrNO}_{2}$

$M_{r}=291.12$
Monoclinic, $P 2_{1}$
Hall symbol: P 2yb
$a=4.6387$ (3) \AA
$b=18.9379$ (13) \AA
$c=6.2270(4) \AA$
$\beta=90.144$ (3) ${ }^{\circ}$
$V=547.02(6) \AA^{3}$
$Z=2$
$F(000)=292$
$D_{\mathrm{x}}=1.773 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3120 reflections
$\theta=1.1-30.0^{\circ}$
$\mu=3.74 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, yellow
$0.43 \times 0.14 \times 0.14 \mathrm{~mm}$

Data collection

Bruker APEXII DUO CCD area-detector diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.295, T_{\max }=0.628$
8575 measured reflections
3120 independent reflections
3034 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=1.1^{\circ}$
$h=-6 \rightarrow 6$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.041$
$S=1.02$
3120 reflections
191 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$k=-26 \rightarrow 26$
$l=-8 \rightarrow 8$

> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0035 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.59 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}$

Absolute structure: Flack (1983), 1480 Friedel pairs
Absolute structure parameter: 0.027 (7)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br1	$0.00526(4)$	$0.442840(15)$	$0.87673(2)$	$0.01554(4)$
O1	$0.5191(3)$	$0.66300(7)$	$0.29008(19)$	$0.0152(2)$
O2	$1.1314(3)$	$0.70088(8)$	$1.0194(2)$	$0.0166(3)$
H1O2	1.2697	0.6925	1.0976	0.025^{*}
N1	$0.8565(3)$	$0.69973(8)$	$0.6076(2)$	$0.0121(3)$
H1N1	$0.802(6)$	$0.6976(16)$	$0.470(5)$	$0.026(7)^{*}$
C1	$0.4132(4)$	$0.61426(10)$	$0.4149(3)$	$0.0126(3)$
C2	$0.1934(4)$	$0.56695(10)$	$0.3446(3)$	$0.0140(3)$
H2A	$0.133(6)$	$0.5756(14)$	$0.207(4)$	$0.020(6)^{*}$
C3	$0.0797(4)$	$0.51628(10)$	$0.4781(3)$	$0.0138(3)$
H3A	$-0.064(6)$	$0.4852(14)$	$0.440(4)$	$0.021(6)^{*}$
C4	$0.1776(4)$	$0.51058(9)$	$0.6919(3)$	$0.0129(3)$
C5	$0.3894(4)$	$0.55482(9)$	$0.7685(3)$	$0.0125(3)$
H5A	$0.450(6)$	$0.5535(16)$	$0.905(4)$	$0.026(7)^{*}$
C6	$0.5112(4)$	$0.60653(9)$	$0.6331(3)$	$0.0122(3)$
C7	$0.7261(4)$	$0.65154(9)$	$0.7227(3)$	$0.0123(3)$
H7A	$0.787(5)$	$0.6470(12)$	$0.868(4)$	$0.009(5)^{*}$
C8	$1.0707(4)$	$0.74911(9)$	$0.6695(3)$	$0.0117(3)$

C9	$1.2064(4)$	$0.74952(9)$	$0.8722(3)$	$0.0125(3)$
C10	$1.4149(4)$	$0.80132(10)$	$0.9137(3)$	$0.0148(3)$
H10A	$1.494(6)$	$0.8047(15)$	$1.048(5)$	$0.022(6)^{*}$
C11	$1.4940(4)$	$0.84982(10)$	$0.7569(3)$	$0.0159(3)$
H11A	$1.639(6)$	$0.8847(13)$	$0.786(4)$	$0.018(6)^{*}$
C12	$1.3635(4)$	$0.84799(10)$	$0.5548(3)$	$0.0160(3)$
H12A	$1.427(7)$	$0.8788(17)$	$0.453(5)$	$0.036(8)^{*}$
C13	$1.1523(4)$	$0.79797(9)$	$0.5130(3)$	$0.0139(3)$
H13A	$1.045(5)$	$0.7956(13)$	$0.368(3)$	$0.014(6)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.01876(7)$	$0.01522(7)$	$0.01262(6)$	$-0.00425(9)$	$-0.00307(5)$	$0.00324(8)$
O1	$0.0161(6)$	$0.0183(6)$	$0.0113(5)$	$-0.0031(5)$	$-0.0034(5)$	$0.0033(5)$
O2	$0.0167(6)$	$0.0224(7)$	$0.0106(6)$	$-0.0044(5)$	$-0.0054(5)$	$0.0042(5)$
N1	$0.0122(7)$	$0.0140(7)$	$0.0102(7)$	$-0.0004(5)$	$-0.0033(5)$	$0.0003(5)$
C1	$0.0122(7)$	$0.0150(8)$	$0.0106(7)$	$0.0001(6)$	$-0.0012(5)$	$-0.0002(6)$
C2	$0.0156(8)$	$0.0172(8)$	$0.0092(8)$	$-0.0007(6)$	$-0.0030(6)$	$-0.0007(6)$
C3	$0.0136(8)$	$0.0141(8)$	$0.0137(8)$	$-0.0022(6)$	$-0.0024(6)$	$-0.0018(6)$
C4	$0.0142(8)$	$0.0120(7)$	$0.0126(8)$	$-0.0007(6)$	$-0.0003(6)$	$0.0015(6)$
C5	$0.0150(8)$	$0.0137(8)$	$0.0087(8)$	$0.0011(6)$	$-0.0030(6)$	$0.0007(6)$
C6	$0.0116(7)$	$0.0140(7)$	$0.0109(7)$	$0.0014(6)$	$-0.0014(6)$	$-0.0021(6)$
C7	$0.0123(8)$	$0.0139(8)$	$0.0108(8)$	$0.0003(6)$	$-0.0020(6)$	$-0.0007(6)$
C8	$0.0114(7)$	$0.0114(7)$	$0.0122(7)$	$0.0001(6)$	$-0.0033(5)$	$-0.0010(6)$
C9	$0.0127(7)$	$0.0146(8)$	$0.0103(7)$	$0.0003(6)$	$-0.0012(6)$	$-0.0007(6)$
C10	$0.0146(8)$	$0.0174(9)$	$0.0123(8)$	$-0.0012(6)$	$-0.0044(6)$	$-0.0020(6)$
C11	$0.0141(8)$	$0.0154(8)$	$0.0182(8)$	$-0.0021(7)$	$-0.0016(7)$	$-0.0017(6)$
C12	$0.0172(9)$	$0.0147(8)$	$0.0161(8)$	$-0.0007(7)$	$-0.0011(6)$	$0.0022(7)$
C13	$0.0128(8)$	$0.0160(8)$	$0.0129(8)$	$0.0008(6)$	$-0.0026(6)$	$0.0011(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 4$	$1.9011(18)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.411(2)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.304(2)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	$0.89(2)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.346(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.424(2)$
$\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} 2$	0.8200	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	$0.95(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.310(2)$	$\mathrm{C} 8-\mathrm{C} 13$	$1.397(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.417(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.409(2)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	$0.89(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.401(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.425(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.391(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.439(2)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	$0.92(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.376(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.396(3)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$0.91(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	$0.96(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.409(2)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.387(3)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	$0.92(3)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	$0.91(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.376(3)$	$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	$1.03(2)$

$\mathrm{C} 9-\mathrm{O} 2-\mathrm{H1O} 2$	109.5
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	129.42 (16)
C7-N1-H1N1	111.3 (19)
C8-N1-H1N1	119.2 (18)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	122.15 (15)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	121.08 (16)
C2-C1-C6	116.76 (16)
C3-C2-C1	121.85 (16)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	125.0 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	113.1 (17)
C2-C3-C4	120.08 (16)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	124.6 (16)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	115.3 (16)
C5-C4-C3	120.59 (16)
C5- $4-\mathrm{Br} 1$	120.14 (13)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 1$	119.24 (13)
C4-C5-C6	120.14 (16)
C4-C5-H5A	122 (2)
C6-C5-H5A	118 (2)
C5-C6-C7	117.51 (15)
C5-C6-C1	120.57 (16)
C7-C6-C1	121.89 (16)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.04 (17)
C6-C1-C2-C3	0.1 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.8 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-0.8 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 1$	177.31 (14)
C3-C4-C5-C6	0.0 (3)
$\mathrm{Br} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	-178.09 (13)
C4-C5-C6-C7	178.93 (16)
C4-C5-C6-C1	0.8 (3)
O1-C1-C6-C5	178.25 (17)
C2- $12-\mathrm{C} 6-\mathrm{C} 5$	-0.8 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	0.2 (3)
C2- $12-\mathrm{C} 6-\mathrm{C} 7$	-178.85 (16)
C8-N1-C7-C6	179.25 (17)
C5-C6-C7-N1	178.12 (16)

N1-C7-C6	121.74 (16)
N1-C7-H7A	116.6 (14)
C6-C7-H7A	121.6 (14)
C13-C8-C9	120.02 (16)
C13-C8-N1	115.98 (15)
C9-C8-N1	123.97 (16)
O2-C9-C10	122.23 (15)
O2-C9-C8	119.39 (15)
C10-C9-C8	118.39 (16)
C11-C10-C9	121.08 (16)
C11-C10-H10A	119.3 (18)
C9-C10-H10A	119.6 (17)
C10-C11-C12	120.15 (17)
C10-C11-H11A	120.5 (15)
C12-C11-H11A	119.4 (15)
C13-C12-C11	119.38 (17)
C13-C12-H12A	122 (2)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	118 (2)
C12-C13-C8	120.94 (16)
C12-C13-H13A	122.2 (13)
C8-C13-H13A	116.8 (13)
C1-C6-C7-N1	-3.8 (3)
C7-N1-C8-C13	-175.04 (17)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	7.1 (3)
$\mathrm{C} 13-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2$	-178.12 (16)
N1-C8-C9-O2	-0.3 (3)
C13-C8-C9-C10	2.3 (3)
N1-C8-C9-C10	-179.92 (17)
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	178.26 (18)
C8-C9-C10-C11	-2.1 (3)
C9-C10-C11-C12	0.6 (3)
C10-C11-C12-C13	0.8 (3)
C11-C12-C13-C8	-0.6 (3)
C9-C8-C13-C12	-0.9 (3)
N1-C8-C13-C12	-178.91 (16)

Hydrogen-bond geometry ($\AA,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 1 O 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	1.76	$2.5641(19)$	169
$\mathrm{~N} 1 — \mathrm{H} 1 N 1 \cdots \mathrm{O} 1$	$0.89(3)$	$1.84(3)$	$2.6129(18)$	$143(3)$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2$	$0.95(2)$	$2.12(2)$	$2.794(2)$	$127.1(18)$
$\mathrm{C} 11 — \mathrm{H} 11 A \cdots \mathrm{Br} 1^{\mathrm{ii}}$	$0.96(3)$	$2.89(3)$	$3.6982(19)$	$143.1(19)$

Symmetry codes: (i) $x+1, y, z+1$; (ii) $-x+2, y+1 / 2,-z+2$.

[^0]: \ddagger On study leave from Department of Chemistry, International University of Africa, Khartoum, Sudan; e-mail: nasertaha90@hotmail.com.
 § Thomson Reuters ResearcherID: A-3561-2009.

 - Thomson Reuters ResearcherID: A-5085-2009.

