Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

2-Amino-5-chloropyridine-fumaric acid (1/2)

Madhukar Hemamalini and Hoong-Kun Fun* \ddagger

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: hkfun@usm.my

Received 13 May 2010; accepted 17 May 2010
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.042 ; w R$ factor $=0.143$; data-to-parameter ratio $=25.2$.

The asymmetric unit of the title compound, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ClN}_{2}$-$0.5 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$, comprises a neutral 2 -amino-5-chloropyridine molecule and one half of a fumaric acid molecule which lies on an inversion center. The dihedral angle between the pyridine ring and the plane formed by the fumaric acid molecule is $3.22(8)^{\circ}$. The 2-amino-5-chloropyridine molecule is planar, with a maximum deviation of 0.004 (1) \AA for the pyridine N atom. In the crystal, the 2-amino-5-chloropyridine molecules interact with the carboxyl groups of fumaric acid molecules through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming centrosymmetric $R_{2}^{2}(8)$ ring motifs and another $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond links these motifs into a twodimensional network parallel to (100).

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For the details of fumaric acid, see: Batchelor et al. (2000). For details of hydrogen bonding, see: Jeffrey \& Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier \& Glazer (1986).

[^0]
Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ClN}_{2} \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$
$M_{r}=186.60$
Monoclinic, $P 2_{b} / c$
$a=13.678$ (4) A
$b=5.0586(15) \AA$
$c=11.531(3) \AA$
$\beta=103.442$ (7) ${ }^{\circ}$

$$
V=776.0(4) \AA^{3}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=0.45 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.57 \times 0.25 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEXII DUO CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.784, T_{\text {max }}=0.967$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042 \quad 110$ parameters
$w R\left(F^{2}\right)=0.143 \quad \mathrm{H}$-atom parameters constrained
$S=1.06$
2771 reflections
$\Delta \rho_{\text {max }}=0.70 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.59 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$	0.82	1.82	$2.5852(17)$	154
N2-H2A 2 O1	0.86	2.00	$2.856(2)$	171
N2-H2B $\cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.26	$3.0718(18)$	158

Symmetry code: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

[^1]
References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Batchelor, E., Klinowski, J. \& Jones, W. (2000). J. Mater. Chem. 10, 839-848.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
Jeffrey, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
Katritzky, A. R., Rees, C. W. \& Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.

organic compounds

Pozharski, A. F., Soldatenkov, A. T. \& Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley
Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o1416-o1417 [https://doi.org/10.1107/S1600536810018192]

2-Amino-5-chloropyridine-fumaric acid (1/2)

Madhukar Hemamalini and Hoong-Kun Fun

S1. Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey \& Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Fumaric acid is among the organic compounds widely found in nature, and is key intermediate in the biosynthesis of organic acids. Fumaric acid is of interest since it is known to form supramolecular assemblies with N-aromatic complexes (Batchelor et al., 2000). In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title compound, (I), is presented here.

The asymmetric unit of the title compond consists of a 2-amino-5- chloropyridine molecule and a half of the fumaric acid molecule (Fig. 1). The planar fumaric acid molecule is centrosymmetric with the mid-point of the $\mathrm{C}=\mathrm{C}$ double bond located at an inversion center. The C6-O1 bond distance of 1.2375 (17) \AA is much shorter than the C6-O2 bond distance of 13061 (16) \AA, suggesting that the carboxyl group is not deprotonated in the crystal structure. The 2 -amino- 5 -chloropyridine molecule is planar, with a maximum deviation of 0.004 (1) \AA for atom N1. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the 2-amino-5-chloropyridine molecules interact with the carboxyl groups (O1 \& O2) of fumaric acid molecules through $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1$ and $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$ hydrogen bonds (Table 1), forming cyclic hydrogenbonded motifs $R_{2}{ }^{2}(8)$ (Bernstein et al., 1995) and the $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 2$ hydrogen bond links these motifs into a twodimensional network parallel to (100) plane.

S2. Experimental

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (64 mg , Aldrich) and fumaric acid (58 mg , Merck) was mixed and warmed over a a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

S3. Refinement

All hydrogen atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA]$ and were refined using a riding model, with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$ or $1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{O})$.

Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. H atoms not involved in hydrogen bond interactions are omitted for clarity.

2-Amino-5-chloropyridine-(E)-butenedioic acid (1/2)

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ClN}_{2} \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$
$M_{r}=186.60$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=13.678$ (4) \AA
$b=5.0586(15) \AA$
$c=11.531$ (3) \AA
$\beta=103.442(7)^{\circ}$
$V=776.0(4) \AA^{3}$
$Z=4$
$F(000)=384$
$D_{\mathrm{x}}=1.597 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3958 reflections
$\theta=3.6-36.5^{\circ}$
$\mu=0.45 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, colourless
$0.57 \times 0.25 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEXII DUO CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.784, T_{\text {max }}=0.967$

> 8439 measured reflections
> 2771 independent reflections
> 2420 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.036$
> $\theta_{\max }=32.5^{\circ}, \theta_{\min }=3.6^{\circ}$
> $h=-20 \rightarrow 16$
> $k=-7 \rightarrow 7$
> $l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.143$
$S=1.06$
2771 reflections
110 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cl1	$0.03621(3)$	$-0.27603(7)$	$0.40770(3)$	$0.01778(13)$
N1	$0.25244(9)$	$0.1952(2)$	$0.34964(11)$	$0.0130(2)$
N2	$0.34626(11)$	$0.2094(3)$	$0.20667(12)$	$0.0182(3)$
H2A	0.3772	0.3457	0.2420	0.022^{*}
H2B	0.3615	0.1481	0.1436	0.022^{*}
C1	$0.17992(10)$	$0.0834(3)$	$0.39610(12)$	$0.0133(2)$
H1A	0.1661	0.1550	0.4648	0.016^{*}
C2	$0.12664(10)$	$-0.1319(3)$	$0.34452(12)$	$0.0133(2)$
C3	$0.14697(11)$	$-0.2407(3)$	$0.24014(13)$	$0.0149(3)$
H3A	0.1109	-0.3861	0.2037	0.018^{*}
C4	$0.22039(11)$	$-0.1301(3)$	$0.19295(12)$	$0.0153(3)$
H4A	0.2349	-0.2000	0.1242	0.018^{*}
C5	$0.27436(10)$	$0.0926(3)$	$0.24997(12)$	$0.0133(2)$
O1	$0.44882(8)$	$0.6317(2)$	$0.34908(10)$	$0.0177(2)$

O2	$0.34481(8)$	$0.5851(2)$	$0.47334(9)$	$0.0143(2)$
H2	0.3331	0.4402	0.4412	0.022^{*}
C6	$0.41907(10)$	$0.6973(3)$	$0.43840(12)$	$0.0127(2)$
C7	$0.46749(10)$	$0.9183(3)$	$0.51670(12)$	$0.0138(2)$
H7A	0.4520	0.9427	0.5904	0.017^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.01527(19)$	$0.01894(19)$	$0.0195(2)$	$-0.00319(10)$	$0.00484(13)$	$0.00275(11)$
N1	$0.0146(5)$	$0.0132(5)$	$0.0113(5)$	$-0.0018(4)$	$0.0033(4)$	$-0.0012(4)$
N2	$0.0230(6)$	$0.0172(6)$	$0.0176(6)$	$-0.0049(4)$	$0.0111(5)$	$-0.0033(4)$
C1	$0.0145(6)$	$0.0146(5)$	$0.0112(5)$	$-0.0013(4)$	$0.0036(4)$	$-0.0002(4)$
C2	$0.0125(5)$	$0.0142(6)$	$0.0127(5)$	$-0.0013(4)$	$0.0021(4)$	$0.0015(4)$
C3	$0.0157(6)$	$0.0144(5)$	$0.0133(6)$	$-0.0021(4)$	$0.0008(5)$	$-0.0012(4)$
C4	$0.0189(6)$	$0.0148(6)$	$0.0121(5)$	$-0.0006(4)$	$0.0035(4)$	$-0.0020(4)$
C5	$0.0157(6)$	$0.0131(5)$	$0.0109(5)$	$0.0001(4)$	$0.0029(4)$	$-0.0004(4)$
O1	$0.0197(5)$	$0.0184(5)$	$0.0175(5)$	$-0.0051(4)$	$0.0089(4)$	$-0.0060(4)$
O2	$0.0155(5)$	$0.0153(4)$	$0.0130(4)$	$-0.0039(3)$	$0.0049(4)$	$-0.0023(3)$
C6	$0.0120(5)$	$0.0124(5)$	$0.0133(6)$	$-0.0001(4)$	$0.0021(4)$	$-0.0007(4)$
C7	$0.0144(6)$	$0.0135(5)$	$0.0133(6)$	$-0.0011(4)$	$0.0030(4)$	$-0.0028(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C11-C2	1.7352 (14)	C3-H3A	0.9300
N1-C1	1.3555 (17)	C4-C5	1.422 (2)
N1-C5	1.3565 (17)	C4-H4A	0.9300
N2-C5	1.3393 (18)	O1-C6	1.2375 (17)
N2-H2A	0.8600	O2-C6	1.3061 (16)
N2-H2B	0.8600	$\mathrm{O} 2-\mathrm{H} 2$	0.8200
$\mathrm{C} 1-\mathrm{C} 2$	1.3675 (19)	C6-C7	1.4920 (19)
C1-H1A	0.9300	C7- $\mathrm{C}^{\text {i }}$	1.335 (3)
C2-C3	1.409 (2)	C7-H7A	0.9300
C3-C4	1.368 (2)		
C1-N1-C5	120.10 (12)	C3-C4-C5	119.37 (13)
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.0	C3-C4-H4A	120.3
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0	C5-C4-H4A	120.3
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0	N2-C5-N1	118.25 (13)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	121.69 (12)	N2-C5-C4	121.64 (13)
N1-C1-H1A	119.2	N1-C5-C4	120.10 (12)
C2-C1-H1A	119.2	C6-O2-H2	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	119.45 (12)	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{O} 2$	124.75 (13)
C1-C2-Cl1	120.79 (11)	O1-C6-C7	121.27 (12)
C3-C2-Cl1	119.76 (11)	O2-C6-C7	113.98 (12)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.29 (13)	C7- ${ }^{\text {i }} 7-\mathrm{C} 6$	121.41 (16)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.4	C7- ${ }^{\text {i }} 7-\mathrm{H} 7 \mathrm{~A}$	119.3
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.4	C6-C7-H7A	119.3

$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-0.5(2)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2$	$179.77(13)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.3(2)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$0.9(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	$178.49(11)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2$	$-179.38(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.6(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-0.5(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-178.16(11)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$	$11.5(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.2(2)$	$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$	$-168.52(17)$

Symmetry code: (i) $-x+1,-y+2,-z+1$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 1$	0.82	1.82	$2.5852(17)$	154
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	2.00	$2.856(2)$	171
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.86	2.26	$3.0718(18)$	158

Symmetry code: (ii) $x,-y+1 / 2, z-1 / 2$.

[^0]: \ddagger Thomson Reuters ResearcherID: A-3561-2009.

[^1]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5003).

