organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-{2-[2-(2-Fluorobenzylidene)hydrazinvl]-1.3-thiazol-4-vl}-2H-chromen-2-one

Afsheen Arshad,^a Hasnah Osman,^a‡ Chan Kit Lam,^b Ching Kheng Quah^c§ and Hoong-Kun Fun^c*¶

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 11 May 2010; accepted 19 May 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.102; data-to-parameter ratio = 11.9.

In the title compound, C₁₉H₁₂FN₃O₂S, the chromene ring system and the thiazole ring are approximately planar [maximum deviations of 0.023 (3) Å and 0.004 (2) Å, respectively]. The chromene ring system is inclined at angles of 4.78 (10) and 26.51 $(10)^{\circ}$ with respect to the thiazole and benzene rings, respectively, while the thiazole ring makes a dihedral angle of $23.07 (12)^{\circ}$ with the benzene ring. The molecular structure is stabilized by an intramolecular C-H···O hydrogen bond, which generates an S(6) ring motif. The crystal packing is consolidated by intermolecular N- $H \cdots O$ hydrogen bonds, which link the molecules into chains parallel to [100], and by C-H··· π and π - π [centroid-centroid distance = 3.4954(15) Å] stacking interactions.

Related literature

For the synthesis of the title compound, see: Lv et al. (2010); Siddiqui et al. (2009). For general background to and the biological activity of coumarin derivatives, see: Anderson et al. (2002); Tassies et al. (2002); Mitscher (2002); Lafitte et al. (2002); Moffett (1964); Weber et al. (1998). For the biological activity of aminothiazoles derivatives, see: Hiremath et al. (1992); Habib & Khalil (1984); Karah et al. (1998); Gursoy & Karah (2000); Lednicer et al. (1990); Kim et al. (2002); Wattenberg et al. (1979). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

C19H12FN3O2S $M_r = 365.38$ Orthorhombic, Pbcn a = 12.303 (2) Å b = 10.4477 (17) Åc = 25.247 (4) Å

Data collection

```
Bruker SMART APEXII DUO
  CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS: Bruker 2009)
  T_{\min} = 0.919, \ T_{\max} = 0.991
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$wR(F^2) = 0.102$	independent and constrained
S = 1.04	refinement
2855 reflections	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
239 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

V = 3245.2 (9) Å³

Mo $K\alpha$ radiation

 $0.37 \times 0.08 \times 0.04 \text{ mm}$

13589 measured reflections

2855 independent reflections

1971 reflections with $I > 2\sigma(I)$

 $\mu = 0.23 \text{ mm}^{-1}$

 $T = 100 {\rm K}$

 $R_{\rm int} = 0.082$

Z = 8

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C13-C18 benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9\cdots O2$ $N2-H12N\cdots O2^{i}$ $C4-H4\cdots Cg1^{ii}$	0.93	2.27	2.823 (3)	118
	0.85 (3)	2.04 (3)	2.852 (3)	161 (3)
	0.93	2.96	3.701 (3)	138

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $x, -y, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

We thank the Malaysian Government and Universiti Sains Malaysia (USM) for a short-term grant (304/PKIMIA/639004) to conduct this work. HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/PFIZIK/ 811012). CKQ also thanks USM for the award of USM Fellowship. AA thanks the Pakistan Government and PCSIR for financial support through a scholarship.

[‡] Additional correspondence author, e-mail: ohasnah@usm.my.

[§] Thomson Reuters ResearcherID: A-5525-2009. Thomson Reuters ResearcherID: A-3561-2009.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2674).

References

- Anderson, D. M., Shelley, S., Crick, N. & Buraglio, L. (2002). J. Clin. Pharmacol. 42, 1358–1365.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Gursoy, A. & Karah, N. (2000). Arzneim. Forsch. Drug Res. 50, 167-172.
- Habib, N. S. & Khalil, M. A. (1984). J. Pharm. Sci. 73, 982-985.
- Hiremath, S. P., Swamy, K. M. K. & Mrnthyunjayaswamy, B. H. M. (1992). J. Indian Chem. Soc. 69, 87–89.
- Karah, N., Terzioglu, N. & Gursoy, A. (1998). Arzneim. Forsch. Drug Res. 48, 758–763.
- Kim, K. S., Kimball, S. D., Misra, R. N., Rawlins, D. B., Hunt, J. T., Xiao, S. L., Qian, L., Han, W. C., Shan, W., Mitt, T., Cai, Z. W., Poss, M. A., Zhu, H., Sack, J. S., Torarski, J. S., Chang, C. G., Pavletic, N., Kamath, A., Humphrey, W. G., Marathe, P., Bursuker, J., Kellar, K. A., Rongta, U., Batorsky, R., Mulheron, J. G., Bol, D., Fairchild, C. R., Lee, F. Y. & Webster, K. R. (2002). J. Med. Chem. 45, 3905–3927.

- Lafitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Braind, C. & Gilli, R. (2002). *Biochemistry*, **41**, 7217–7223.
- Lednicer, D., Mitscher, L. A. & Georg, G. I. (1990). The Organic Chemistry of Drug Synthesis, Vol. 4, New York: J. Wiley & Sons.
- Lv, P.-C., Zhou, C.-F., Chen, J., Liu, P.-G., Wang, K.-L., Mao, W.-J., Li, H.-Q., Yang, Y., Xiong, J. & Zhu, H.-L. (2010). *Bioorg. Med. Chem.* 18, 314–319.
- Mitscher, L. A. (2002). *Principles of Medicinal Chemistry*, 5th ed., pp. 819–864. Baltimore: Williams & Wilkinsons.
- Moffett, R. B. (1964). J. Med. Chem. 7, 446-449.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161–167.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tassies, D., Freire, C., Puoan, J., Maragall, S., Moonteagudo, J., Ordinas, A. & Reverter, J. C. (2002). *Haematologica*, 87, 1185–1191.
- Wattenberg, L. W., Low, L. K. T. & Fladmoe, A. V. (1979). *Cancer Res.* **39**, 1651–1654.
- Weber, U. S., Steffen, B. & Siegers, C. (1998). Res. Commun. Mol. Pathol. Pharmacol. 99, 193–206.

supporting information

Acta Cryst. (2010). E66, o1446–o1447 [https://doi.org/10.1107/S1600536810018647]
3-{2-[2-(2-Fluorobenzylidene)hydrazinyl]-1,3-thiazol-4-yl}-2H-chromen-2-one
Afsheen Arshad, Hasnah Osman, Chan Kit Lam, Ching Kheng Quah and Hoong-Kun Fun

S1. Comment

Coumarin derivatives constitute an important class of heterocyclic compounds having pronounced biological activities. For example, warfarin and cenocoumarol are used as anti-coagulants (Anderson *et al.*, 2002; Tassies *et al.*, 2002). These compounds also possess very good anti-bacterial (Mitscher, 2002; Lafitte *et al.*, 2002), anti-fungal (Moffett, 1964) and cytotoxic activities (Weber *et al.*, 1998). On the other hand, aminothiazole derivatives have been reported to exhibit significant anti-fungal (Hiremath *et al.*, 1992), anti-bacterial (Habib & Khalil, 1984), and anti-tuberculosis activities (Karah *et al.*, 1998; Gursoy & Karah, 2000). These compounds also have very important pharmaceutical value because of their anti-inflammatory (Lednicer *et al.*, 1990), enzyme inhibition (Kim *et al.*, 2002) and anti-tumour activities (Wattenberg *et al.*, 1979). Our approach is the synthesis of biologically active compounds based on the combination of different substructures to enhance the biological activity of known compounds. The title compound is a new coumarin derivative having aminothiazole moiety. We present here its crystal structure, Fig. 1.

The chromene (O1/C11–C19) ring system and thiazole (S1/N3/C8–C10) ring are approximately planar, with the maximum deviation of 0.023 (3) Å for atom C19 and 0.004 (2) Å for atom N3, respectively. The chromene ring system is inclined at angles of 4.78 (10) and 26.51 (10) ° with respect to the thiazole and benzene (C1–C6) rings, respectively. The thiazole ring makes a dihedral angle of 23.07 (12) ° with benzene ring. The molecular structure is stabilized by an intramolecular C9–H9…O2 hydrogen bond which generates an *S*(6) ring motif (Bernstein *et al.*, 1995).

The crystal packing is consolidated by intermolecular N2—H12N···O2 hydrogen bonds (Fig. 2) which link the independent molecules into chains parallel to [1 0 0]. The crystal packing is consolidated by C—H··· π (Table 1) and π – π stacking interactions between symmetry related S1/N3/C8—C10 (centroid Cg2) and O1/C11—C13/C18/C19 (centroid Cg3) rings, with Cg2···Cg3 distance of 3.4954 (15) Å [symmetry code: 3/2-x, -1/2+y, z].

S2. Experimental

Thiosemicarbazide (5.00 mmol) was slowly added to a solution of 2-fluorobenzaldehyde in hot absolute ethanol (10 ml) while stirring. The resulting solution was refluxed for 2 h and then cooled on an ice bath for 45 minutes to get white precipitates. These precipitates were filtered and recrystallized from ethanol-water to obtain 2-fluorobenzaldehyde thiosemicarbazone (Lv *et al.*, 2010). 3-[ω -Bromoacetyl coumarin] was prepared as reported in the literature (Siddiqui *et al.*, 2009). A solution of 3-[ω -bromoacetyl coumarin] (2.50 mmol) and 2-fluorobenzaldehyde thiosemicarbazone (2.50 mmol) in chloroform-ethanol (2:1) was refluxed for 30 min. Precipitates formed were filtered and boiled in water containing sodium acetate. The product was purified by recrystallization with ethanol-chloroform (8:2).

S3. Refinement

Atom H12N was located in a difference Fourier map and allowed to refined freely. The remaining hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. The intramolecular $C-H\cdots O$ interaction is shown as a dashed line.

Figure 2

The crystal structure of the title compound viewed along the *b* axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

3-{2-[2-(2-Fluorobenzylidene)hydrazinyl]-1,3-thiazol-4-yl}- 2H-chromen-2-one

F(000) = 1504
$D_{\rm x} = 1.496 {\rm Mg} {\rm m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 1466 reflections
$\theta = 3.2 - 27.1^{\circ}$
$\mu = 0.23 \text{ mm}^{-1}$
T = 100 K
Needle, yellow
$0.37 \times 0.08 \times 0.04 \text{ mm}$

Data collection

Bruker SMART APEXII DUO CCD area- detector diffractometer	13589 measured reflections 2855 independent reflections 1971 reflections with $L > 2\sigma(t)$
Radiation source: fine-focus sealed tube	$R_{int} = 0.082$
Graphite monochromator	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
φ and ω scans	$h = -12 \rightarrow 14$
Absorption correction: multi-scan	$k = -12 \rightarrow 12$
(SADABS; Bruker, 2009)	$l = -25 \rightarrow 30$
$T_{\min} = 0.919, \ T_{\max} = 0.991$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.102$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent

neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0409P)^2 + 0.4898P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.22 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.33 \text{ e } \text{Å}^{-3}$

Special details

2855 reflections

239 parameters 0 restraints

direct methods

Primary atom site location: structure-invariant

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.88953 (5)	0.06999 (6)	0.02651 (3)	0.02149 (19)
F1	0.54027 (12)	-0.24735 (15)	0.18957 (7)	0.0376 (5)
01	0.85525 (13)	0.52077 (17)	-0.12371 (7)	0.0230 (5)
O2	0.97044 (14)	0.41533 (18)	-0.07423 (8)	0.0309 (5)
N1	0.72862 (17)	-0.0844 (2)	0.07751 (9)	0.0205 (5)
N2	0.68221 (19)	0.0019 (2)	0.04366 (9)	0.0211 (5)
N3	0.71706 (16)	0.17627 (19)	-0.01285 (9)	0.0179 (5)
C1	0.8140 (2)	-0.2887 (2)	0.14056 (11)	0.0225 (6)
H1	0.8600	-0.2571	0.1144	0.027*
C2	0.8520(2)	-0.3806 (2)	0.17528 (11)	0.0244 (7)
H2	0.9232	-0.4097	0.1725	0.029*
C3	0.7845 (2)	-0.4299 (3)	0.21429 (11)	0.0293 (7)
Н3	0.8099	-0.4933	0.2370	0.035*

C4	0.6792 (2)	-0.3843 (3)	0.21930 (11)	0.0296 (7)
H4	0.6334	-0.4155	0.2456	0.035*
C5	0.6442 (2)	-0.2922 (3)	0.18451 (12)	0.0258 (7)
C6	0.7077 (2)	-0.2424 (2)	0.14401 (11)	0.0214 (6)
C7	0.6640 (2)	-0.1475 (2)	0.10749 (11)	0.0210 (6)
H7	0.5895	-0.1329	0.1060	0.025*
C8	0.7499 (2)	0.0851 (2)	0.01854 (10)	0.0181 (6)
C9	0.9051 (2)	0.1990 (2)	-0.01532 (11)	0.0216 (6)
Н9	0.9717	0.2340	-0.0250	0.026*
C10	0.80743 (19)	0.2424 (2)	-0.03219 (10)	0.0169 (6)
C11	0.78532 (19)	0.3487 (2)	-0.06865 (11)	0.0176 (6)
C12	0.6839 (2)	0.3765 (2)	-0.08582 (10)	0.0181 (6)
H12	0.6256	0.3283	-0.0735	0.022*
C13	0.6639 (2)	0.4783 (2)	-0.12245 (11)	0.0197 (6)
C14	0.5599 (2)	0.5110 (3)	-0.14162 (11)	0.0225 (6)
H14	0.4993	0.4657	-0.1300	0.027*
C15	0.5474 (2)	0.6092 (2)	-0.17731 (11)	0.0244 (7)
H15	0.4785	0.6302	-0.1897	0.029*
C16	0.6378 (2)	0.6774 (3)	-0.19495 (11)	0.0264 (7)
H16	0.6288	0.7433	-0.2193	0.032*
C17	0.7405 (2)	0.6480 (2)	-0.17669 (11)	0.0243 (7)
H17	0.8008	0.6940	-0.1881	0.029*
C18	0.7515 (2)	0.5489 (2)	-0.14105 (11)	0.0197 (6)
C19	0.8764 (2)	0.4266 (2)	-0.08730 (11)	0.0206 (6)
H12N	0.615 (2)	0.019 (3)	0.0458 (11)	0.030 (8)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0159 (3)	0.0227 (4)	0.0259 (4)	0.0030 (3)	-0.0001 (3)	0.0013 (3)
F1	0.0327 (10)	0.0392 (10)	0.0409 (12)	-0.0040 (8)	0.0141 (8)	0.0027 (9)
O1	0.0179 (10)	0.0250 (10)	0.0261 (12)	-0.0044 (8)	0.0005 (8)	0.0017 (9)
O2	0.0147 (10)	0.0368 (11)	0.0413 (14)	-0.0049 (9)	-0.0028 (9)	0.0075 (10)
N1	0.0232 (12)	0.0150 (11)	0.0233 (14)	0.0024 (10)	0.0011 (10)	-0.0016 (10)
N2	0.0160 (12)	0.0197 (12)	0.0277 (15)	0.0023 (11)	0.0025 (10)	0.0032 (11)
N3	0.0142 (11)	0.0176 (11)	0.0219 (14)	0.0009 (9)	0.0013 (9)	0.0004 (10)
C1	0.0245 (15)	0.0192 (13)	0.0237 (17)	-0.0059 (12)	0.0010 (12)	-0.0045 (13)
C2	0.0299 (16)	0.0183 (14)	0.0251 (18)	-0.0026 (12)	-0.0030 (13)	-0.0016 (13)
C3	0.0457 (19)	0.0181 (14)	0.0240 (18)	-0.0078 (14)	-0.0051 (13)	0.0032 (14)
C4	0.0436 (19)	0.0239 (15)	0.0212 (18)	-0.0147 (14)	0.0058 (14)	0.0001 (13)
C5	0.0262 (16)	0.0240 (15)	0.0273 (18)	-0.0067 (13)	0.0053 (13)	-0.0072 (14)
C6	0.0290 (15)	0.0144 (13)	0.0207 (17)	-0.0052 (12)	0.0006 (12)	-0.0050 (12)
C7	0.0242 (15)	0.0159 (13)	0.0228 (17)	-0.0007 (12)	0.0038 (12)	-0.0051 (12)
C8	0.0171 (13)	0.0158 (12)	0.0213 (16)	0.0024 (11)	-0.0012 (11)	-0.0051 (12)
C9	0.0170 (14)	0.0227 (14)	0.0252 (17)	0.0010 (12)	0.0042 (12)	-0.0024 (12)
C10	0.0148 (13)	0.0177 (12)	0.0183 (15)	-0.0012 (11)	-0.0001 (11)	-0.0049 (12)
C11	0.0165 (14)	0.0175 (13)	0.0189 (16)	-0.0013 (11)	0.0017 (11)	-0.0044 (12)
C12	0.0153 (13)	0.0189 (13)	0.0202 (16)	-0.0009 (11)	0.0040 (11)	-0.0034 (12)

supporting information

C13	0.0218 (15)	0.0182 (13)	0.0191 (16)	0.0009 (11)	0.0026 (11)	-0.0040 (12)
C14	0.0219 (15)	0.0242 (15)	0.0215 (17)	0.0026 (12)	0.0023 (12)	-0.0015 (13)
C15	0.0263 (16)	0.0250 (15)	0.0220 (18)	0.0087 (13)	-0.0023 (12)	-0.0016 (13)
C16	0.0399 (18)	0.0188 (14)	0.0206 (18)	0.0042 (13)	-0.0005 (13)	0.0003 (13)
C17	0.0310 (16)	0.0208 (14)	0.0210 (17)	-0.0051 (13)	0.0027 (13)	-0.0020 (13)
C18	0.0211 (14)	0.0175 (13)	0.0206 (16)	0.0002 (11)	0.0007 (12)	-0.0051 (12)
C19	0.0214 (15)	0.0183 (13)	0.0222 (16)	-0.0009 (12)	-0.0004 (11)	-0.0010 (13)

Geometric parameters (Å, °)

S1—C9	1.723 (3)	C5—C6	1.388 (4)	
S1—C8	1.736 (2)	C6—C7	1.456 (4)	
F1—C5	1.367 (3)	C7—H7	0.9300	
O1—C19	1.372 (3)	C9—C10	1.354 (3)	
O1—C18	1.381 (3)	С9—Н9	0.9300	
O2—C19	1.209 (3)	C10—C11	1.469 (4)	
N1—C7	1.281 (3)	C11—C12	1.353 (3)	
N1—N2	1.368 (3)	C11—C19	1.462 (4)	
N2—C8	1.361 (3)	C12—C13	1.431 (4)	
N2—H12N	0.85 (3)	C12—H12	0.9300	
N3—C8	1.303 (3)	C13—C18	1.387 (4)	
N3—C10	1.397 (3)	C13—C14	1.410 (4)	
C1—C2	1.382 (4)	C14—C15	1.374 (4)	
C1—C6	1.397 (4)	C14—H14	0.9300	
C1—H1	0.9300	C15—C16	1.394 (4)	
C2—C3	1.387 (4)	C15—H15	0.9300	
C2—H2	0.9300	C16—C17	1.379 (4)	
C3—C4	1.386 (4)	C16—H16	0.9300	
С3—Н3	0.9300	C17—C18	1.379 (4)	
C4—C5	1.372 (4)	C17—H17	0.9300	
C4—H4	0.9300			
C9—S1—C8	88.17 (12)	С10—С9—Н9	124.6	
C19—O1—C18	122.7 (2)	S1—C9—H9	124.6	
C7—N1—N2	116.7 (2)	C9—C10—N3	115.5 (2)	
C8—N2—N1	117.2 (2)	C9—C10—C11	128.0 (2)	
C8—N2—H12N	119.4 (19)	N3—C10—C11	116.5 (2)	
N1—N2—H12N	121 (2)	C12—C11—C19	119.0 (2)	
C8—N3—C10	109.1 (2)	C12—C11—C10	122.3 (2)	
C2—C1—C6	121.2 (3)	C19—C11—C10	118.7 (2)	
C2C1H1	119.4	C11—C12—C13	121.7 (2)	
C6-C1-H1	119.4	C11—C12—H12	119.2	
C1—C2—C3	120.4 (3)	C13—C12—H12	119.2	
C1—C2—H2	119.8	C18—C13—C14	117.4 (2)	
С3—С2—Н2	119.8	C18—C13—C12	118.7 (2)	
C4—C3—C2	119.8 (3)	C14—C13—C12	123.9 (2)	
С4—С3—Н3	120.1	C15—C14—C13	120.5 (2)	
С2—С3—Н3	120.1	C15—C14—H14	119.8	

$C_{5}-C_{4}-C_{3}$	1184(3)	C13_C14_H14	119.8
C_{5} C_{4} H_{4}	120.8	C_{14} C_{15} C_{16}	119.0 120.1(2)
$C_3 - C_4 - H_4$	120.8	C_{14} C_{15} H_{15}	120.1 (2)
E_{1} C_{5} C_{4}	120.0 118.3(2)	C16 C15 H15	120.0
F1_C5_C6	110.3(2) 117.8(2)	$C_{10} - C_{15} - C_{15}$	120.0 120.7(2)
11 - 05 - 06	117.0(3) 122.0(2)	C17 - C16 - U16	120.7(3)
$C_{4} = C_{5} = C_{6}$	125.9(5) 116.2(2)	C17 - C10 - H10	119.0
	110.5 (3)	CI3-CI0-HI6	119.0
$C_{5} - C_{6} - C_{7}$	120.9 (2)	C16-C17-C18	118.4 (3)
C1C6C7	122.8 (3)	С16—С17—Н17	120.8
N1—C7—C6	119.7 (2)	С18—С17—Н17	120.8
N1—C7—H7	120.2	C17—C18—O1	117.2 (2)
С6—С7—Н7	120.2	C17—C18—C13	122.9 (2)
N3—C8—N2	124.1 (2)	O1—C18—C13	119.8 (2)
N3—C8—S1	116.36 (19)	O2—C19—O1	115.7 (2)
N2—C8—S1	119.6 (2)	O2—C19—C11	126.3 (2)
C10—C9—S1	110.85 (19)	O1—C19—C11	118.0 (2)
C7—N1—N2—C8	168.7 (2)	N3-C10-C11-C12	-4.5 (4)
C6-C1-C2-C3	0.5 (4)	C9—C10—C11—C19	-4.9 (4)
C1—C2—C3—C4	-1.6 (4)	N3-C10-C11-C19	176.0 (2)
C2—C3—C4—C5	1.0 (4)	C19—C11—C12—C13	1.2 (4)
C3—C4—C5—F1	-179.9 (2)	C10-C11-C12-C13	-178.3 (2)
C3—C4—C5—C6	0.7 (4)	C11—C12—C13—C18	0.7 (4)
F1-C5-C6-C1	178.9 (2)	C11—C12—C13—C14	179.9 (2)
C4—C5—C6—C1	-1.7 (4)	C18—C13—C14—C15	0.0 (4)
F1—C5—C6—C7	-1.3 (4)	C12—C13—C14—C15	-179.2 (3)
C4—C5—C6—C7	178.1 (2)	C13—C14—C15—C16	0.1 (4)
C2-C1-C6-C5	1.0 (4)	C14—C15—C16—C17	-0.5 (4)
C2-C1-C6-C7	-178.7(2)	C15-C16-C17-C18	0.7 (4)
N2—N1—C7—C6	179.2 (2)	C16—C17—C18—O1	179.5 (2)
C5-C6-C7-N1	166.1 (2)	C_{16} $-C_{17}$ $-C_{18}$ $-C_{13}$	-0.6(4)
C1 - C6 - C7 - N1	-142(4)	$C_{19} - O_{1} - C_{18} - C_{17}$	1783(2)
C10 - N3 - C8 - N2	-1794(2)	C19-01-C18-C13	-1.6(4)
C10 N3 C8 S1	-0.9(3)	C_{14} C_{13} C_{18} C_{17}	0.3(4)
$N1_N2_C8_N3$	-1767(2)	C_{12} C_{13} C_{18} C_{17}	1795(2)
N1 N2 C8 S1	1/0.7(2)	$C_{12} = C_{13} = C_{16} = C_{17}$	-179.8(2)
$C_{0} = C_{0} = C_{0} = C_{0} = C_{0}$	(3)	$C_{12} = C_{13} = C_{16} = O_1$	-0.6(4)
$C_{9} = S_{1} = C_{8} = N_{3}$	0.9(2)	$C_{12} = C_{13} = C_{16} = O_1$	-177.4(2)
$C_{9} = S_{1} = C_{0} = C_{10}$	1/9.4(2)	C18 - 01 - C19 - 02	-1/7.4(2)
$C_{0} = S_{1} = C_{0} = C_{10}$	-0.3(2)		3.3(3)
$S_1 - C_9 - C_{10} - N_3$	0.1(3)	C_{12} $-C_{11}$ $-C_{19}$ $-O_{2}$	1/1.1(3)
S1 - C9 - C10 - C11	-1/9.0(2)	C10-C11-C19-O2	-2.7(4)
C8—N3—C10—C9	0.5 (3)	C12—C11—C19—O1	-3.3 (4)
C8—N3—C10—C11	179.7 (2)	C10—C11—C19—O1	176.3 (2)
C9—C10—C11—C12	174.6 (3)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 benzene ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С9—Н9…О2	0.93	2.27	2.823 (3)	118
$N2$ — $H12N$ ···· $O2^{i}$	0.85 (3)	2.04 (3)	2.852 (3)	161 (3)
C4—H4··· <i>Cg</i> 1 ⁱⁱ	0.93	2.96	3.701 (3)	138

Symmetry codes: (i) x-1/2, -y+1/2, -z; (ii) x, -y, z-1/2.