Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[2,2'-(2,6,9,13-Tetraazatetradecane-1,14-diyl)diphenolato]iron(III) iodide

Gervas Assey, Ray J. Butcher,* Yilma Gultneh and Teshome Yisgedu
Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
Correspondence e-mail: rbutcher99@yahoo.com

Received 11 May 2010; accepted 19 May 2010

Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.033 ; w R$ factor $=0.066 ;$ data-to-parameter ratio $=36.3$.

The title $\mathrm{Fe}^{\mathrm{III}}$ complex, $\left[\mathrm{Fe}\left(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right] \mathrm{I}$, contains a sixcoordinate $\mathrm{FeN}_{4} \mathrm{O}_{2}$ cation in which the ligand is a reduced Schiff base resulting from the NaBH_{4} reduction of the condensation product between salicylaldehyde and 1,5,8,12tetraazadodecane. In spite of the increased flexibility of the saturated backbone of the ligand compared to the Schiff base from which it was synthesized, the complex adopts a cis$\mathrm{FeN}_{4} \mathrm{O}_{2}$ conformation for the phenolic O -atom donors, which contrasts with the trans conformation adopted by the analogous $\mathrm{ClO}_{4}{ }^{-}$salt [Yisgedu et al. (2009). J. Chem. Crystallogr. 39, 315-319]. In addition to extensive $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonding between the amine H atoms and the anion there is a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interaction.

Related literature

For early literature related to hexadentate ligands, see: Dwyer \& Lions (1947); Das Sarma \& Bailar (1955). For geometric changes from cis to trans, see: Bera et al. (2005); Boinnard et al. (1994); Dorbes et al. (2005); Floquet et al. (2004); Hayami et al. (1997); Ito et al. (1983); Maeda et al. (1991); McPartlin et al. (1978); Nishida et al. (1987); Salmon et al. (1999); Sinn et al. (1978). For complexes of reduced Schiff bases, see: Harpstrite et al. (2003). For the analogous $\mathrm{ClO}_{4}{ }^{-}$salt, see: Yisgedu et al. (2009).

Experimental

Crystal data
$\left[\mathrm{Fe}\left(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right] \mathrm{I}$
$M_{r}=567.27$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$V=2379.48(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=1.96 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
$0.51 \times 0.47 \times 0.39 \mathrm{~mm}$

Data collection

Oxford Diffraction Gemini R diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.428, T_{\text {max }}=0.466$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$\Delta \rho_{\max }=1.32 \mathrm{e}_{\AA^{-3}}$
$w R\left(F^{2}\right)=0.066$
$\Delta \rho_{\min }=-0.45$ e \AA^{-3}
$S=0.94$
9836 reflections
271 parameters
H -atom parameters constrained
43714 measured reflections 9836 independent reflections 7672 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A A \cdots \mathrm{I}$	0.93	2.77	$3.6800(16)$	168
$\mathrm{~N} 2 A-\mathrm{H} 2 A A \cdots \mathrm{I}^{\mathrm{i}}$	0.93	2.96	$3.8227(17)$	155
$\mathrm{~N} 1 B-\mathrm{H} 1 B A \cdots \mathrm{I}^{\mathrm{i}}$	0.93	2.80	$3.7285(16)$	178
N2B-H2BA$\cdots \mathrm{I}$	0.93	2.81	$3.6911(17)$	158
C11B-H11C $\cdots \mathrm{I}^{\mathrm{i}}$	0.99	3.10	$3.942(2)$	144
Symmetry code: (i) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$				

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2278).

References

Bera, M., Mukhopadhyay, U. \& Ray, D. (2005). Inorg. Chim. Acta, 358, 437443
Boinnard, D., Bousseksou, A., Dworkin, A., Savariault, J.-M., Varret, F. \& Tuchagues, J.-P. (1994). Inorg. Chem. 33, 271-281.
Das Sarma, B. \& Bailar, J. C. Jr (1955). J. Am. Chem. Soc. 77, 5476-5480
Dorbes, S., Valade, L., Real, J. A. \& Faulmann, C. (2005). Chem. Commun. pp. 69-71.
Dwyer, F. P. J. \& Lions, F. (1947). J. Am. Chem. Soc. 69, 2917-2918.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Floquet, S., Munoz, M. C., Riviere, E., Clement, R., Audiere, J.-P. \& Boillot, M.-L. (2004). New J. Chem. 28, 535-541

Harpstrite, S. E., Beatty, A. A., Collins, D., Oksman, A., Goldberg, D. E. \& Sharma, V. (2003). Inorg. Chem. 42, 2294-2300.
Hayami, S., Matoba, T., Nomiyama, S., Kojima, T., Osaki, S. \& Maeda, Y. (1997). Bull. Chem. Soc. Jpn, 70, 3001-3009.

metal-organic compounds

Ito, T., Sugimoto, M., Ito, H., Toriumi, K., Nakayama, H., Mori, W. \& Sekizaki, M. (1983). Chem. Lett. 12, 121-124.

Maeda, Y., Oshio, H., Tanigawa, Y., Oniki, T. \& Takashima, Y. (1991). Bull. Chem. Soc. Jpn, 64, 522-1527.
McPartlin, M., Tasker, P. A., Bailey, N. A., McKenzie, E. D. \& Worthington, J. M. (1978). Crystallogr. Struct. Commun. 7, pp. 115-120.

Nishida, Y., Kino, K. \& Kida, S. (1987). J. Chem. Soc. Dalton Trans. pp. 19571961.

Oxford Diffraction (2007). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.
Salmon, L., Donnadieu, B., Bousseksou, A. \& Tuchagues, J.-P. (1999). C. R. Acad. Sci. Ser. IIc Chim. 2, 305-309.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sinn, E., Sim, G., Dose, E. V., Tweedle, M. F. \& Wilson, L. J. (1978). J. Am. Chem. Soc. 100, 3375-3390.
Yisgedu, T. B., Tesema, Y. T., Gultneh, Y. \& Butcher, R. J. (2009). J. Chem. Crystallogr. 39, 315-319.

supporting information

Acta Cryst. (2010). E66, m711-m712 [https://doi.org/10.1107/S1600536810018787]

[2,2'-(2,6,9,13-Tetraazatetradecane-1,14-diyl)diphenolato]iron(III) iodide

Gervas Assey, Ray J. Butcher, Yilma Gultneh and Teshome Yisgedu

S1. Comment

Metal complexes of linear hexadentate ligands have fascinated inorganic chemists since their first report in 1947 (Dwyer \& Lions, 1947). The first such report of an Fe complex of a linear $\mathrm{FeN}_{4} \mathrm{O}_{2}$ ligand derived from the Schiff base condensation of salicylaldehyde and triethylenetetraamine was in 1955 (Das Sarma \& Bailar, 1955). However, this interest lapsed for several years until the discovery that such complexes exhibited spin-crossover magnetic behavior (Sinn et al., 1978). Hexadentate linear $\mathrm{FeN}_{4} \mathrm{O}_{2}$ ligands derived from the Schiff base condensation of salicylaldehyde and linear tetramines can be characterized by the number of linking carbon atoms in the tetramine backbone (from 222 to 333). The structures of Fe complexes of Sal222 (Sinn et al., 1978; Hayami et al., 1997; Floquet et al., 2004; Dorbes et al., 2005; Bera et al., 2005; Nishida et al., 1987; Salmon et al., 1999; McPartlin et al., 1978; Maeda et al., 1991; Boinnard et al., 1994), Sal232 (Hayami et al., 1997), Sal323 (Hayami et al., 1997; Ito, et al., 1983), and Sal333 (Ito, et al., 1983) derivatives have been reported. When chelating to Fe , as the number of carbon atoms in the tetramine backbone increases from 6 to 9 , the conformation adopted by the ligand changes from a cis- $\mathrm{FeN}_{4} \mathrm{O}_{2}$ to a trans- $\mathrm{FeN}_{4} \mathrm{O}_{2}$ arrangement for the phenolic O donors. All structurally characterized Fe complexes with Sal222 have adopted the cis- $\mathrm{FeN}_{4} \mathrm{O}_{2}$ conformation while all those with either $\mathrm{Sal323}$ or $\mathrm{Sal333}$ have adopted the trans- $\mathrm{FeN}_{4} \mathrm{O}_{2}$ conformation. For Sal232, both conformations have been observed (Hayami et al., 1997). Further, it has been observed that, in addition to the usual reduction in metal ligand bond distances when going from high spin to low spin, the angles subtended at the Fe center reflect the magnetic properties of the compound (Hayami et al., 1997; Nishida et al., 1987) with low-spin compounds having such angles closer to 90° and 180°.
Despite the interest shown in salicylaldimine complexes with $\mathrm{Fe}^{\text {III }}$ due to their interesting structural and magnetic properties, there have been very few structures reported on related complexes where the $\mathrm{C}=\mathrm{N}$ imine groups have been reduced to $\mathrm{C}-\mathrm{N}-\mathrm{H}$ amine groups (Harpstrite et al., 2003; Yisgedu et al., 2009). One of these is the perchlorate analog of the title compound (Harpstrite et al., 2003). As expected, due to increased flexibility of the saturated amine, compared to the more rigid Schiff base, and also the length of the carbon backbone, this compound has adopted a trans- $\mathrm{FeN}_{4} \mathrm{O}_{2}$ conformation. To further characterize such compounds and determine the conformation adopted the structure of an $\mathrm{Fe}^{\text {III }}$ complex of the iodide salt of reduced Sal323 is reported.
The title compound, [1,12-bis(2-hydroxybenzyl)-1,5,8,12-tetraazadodecane]iron(III) iodide, $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{FeIN}_{4} \mathrm{O}_{6}$, contains a six-coordinate $\mathrm{FeN}_{4} \mathrm{O}_{2}$ cation where the ligand $\left(\mathrm{H}_{2} \mathrm{~L}\right)$ is the NaBH_{4} reduction product of the Schiff base resulting from the condensation of salicylaldehyde and 1,4,8,12-tetraazadodecane. In marked contrast to the perchlorate salt with the same 323 backbone, the title compound has adopted a cis $\mathrm{FeN}_{4} \mathrm{O}_{2}$ conformation. It is of interest to compare the metrical parameters of both the cis and trans structures with the same central Schiff base core. In the title compound, the $\mathrm{Fe}-\mathrm{O}$ distances are shorter $[1.8898(13) / 1.8999(14) ~ \AA$ versus $1.9575(10) / 1.9142(10) \AA]$ while the $\mathrm{Fe}-\mathrm{N}$ distances are longer [$\mathrm{Fe}-\mathrm{N}$ average of 2.202 (1) \AA versus 2.162 (1) \AA]. Thus, even though they adopt different conformations, the bond distances and angles of both the perchlorate and iodide salts are more indicative of a high spin $\mathrm{Fe}^{\mathrm{III}}$ complex compared to
the similar reduced 232 complex (Yisgedu et al., 2009).
In addition to extensive hydrogen bonding between the amine H atoms and the anion there is a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interaction (see table 1).

S2. Experimental

Synthesis of ligand: The procedure for the synthesis of the ligand 1,12-bis(2-hydroxybenzyl)-1,4,8,12-tetraazaundecane $\left(\mathrm{H}_{2} \mathrm{~L}\right)$ (Yisgedu et al., 2009) is as follows: A solution of $6.1 \mathrm{~g}(50 \mathrm{mmol})$ of salicylaldehyde in 10 ml ethanol was added drop-wise to a solution of $4.0 \mathrm{~g}(25 \mathrm{mmol})$ of 1,5,8,12-tetraazadodecane in 15 ml of ethanol. A deep yellow solution was obtained and was stirred for half an hour. To this yellow solution was added a NaBH_{4} solution $(3.0 \mathrm{~g} \mathrm{NaBH} 4,0.4 \mathrm{~g}$ NaOH , and $40 \mathrm{ml}_{2} \mathrm{O}$). The volume of the solution was reduced to 20 ml and extracted with chloroform (3 x 40 ml). The extracts were combined and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was filtered and the filtrate concentrated to a colorless thick oil ($8.1 \mathrm{~g}, 87 \%$).
Synthesis of $\left[\mathrm{Fe}^{\mathrm{III} \mathrm{L}]\left(\mathrm{ClO}_{4}\right) \text { : The synthesis of the above complex (Yisgedu et al., 2009) is as follows: To } 0.85 \mathrm{~g}(2 \mathrm{mmol}) ~}\right.$ of $\mathrm{H}_{2} \mathrm{~L}$ dissolved in 10.0 ml of methanol was added $0.58 \mathrm{~g}(1 \mathrm{mmol})$ of $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$. The solution became violet and red-purple solids precipitated. This was stirred overnight, the solids filtered, washed with methanol and dried to give 1.65 g of red powder. Crystallization was effected by evaporation of a DMF solution of the complex (yield, $0.96 \mathrm{~g}, 67 \%$).
Synthesis of $\left[\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{FeN}_{4} \mathrm{O}_{2}\right]$ I complex: A solution of $0.05 \mathrm{~g}(0.088 \mathrm{mmol})$ of the complex $\left[\mathrm{Fe}^{\text {III }} \mathrm{L}\right] \mathrm{ClO}_{4}$ was mixed with a solution of $10 \% \mathrm{w} / \mathrm{v}$ aqueous solution of iodine and potassium iodide. 0.095 g of the aqueous solution of iodine/KI mixture in 5 ml methanol was mixed with the complex. The mixture was then stirred at room temperature for 24 hours. The solution was then evaporated, dissolved in DMF and filtered. The filtrate was layered with diethyl ether. After the diffusion process, brownish red crystals suitable for x-ray diffraction were obtained.

Figure 1
Diagram of $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{FeIN}_{4} \mathrm{O}_{6}$ showing atom labeling. Thermal ellipsoids are at the 50% probability level.

Figure 2
The molecular packing for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{FeIN}_{4} \mathrm{O}_{6}$ viewed down the a axis. Hydrogen bonds are shown by dashed lines.

[2,2'-(2,6,9,13-Tetraazatetradecane-1,14-diyl)diphenolato]iron(III) iodide

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right] \mathrm{I}$
$M_{r}=567.27$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=9.3958$ (1) \AA
$b=13.0509$ (1) \AA
$c=19.4047$ (3) \AA
$V=2379.48(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=1148 \\
& D_{\mathrm{x}}=1.583 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 18399 \text { reflections } \\
& \theta=4.6-34.7^{\circ} \\
& \mu=1.96 \mathrm{~mm}^{-1} \\
& T=200 \mathrm{~K} \\
& \text { Chunk, dark brown-red } \\
& 0.51 \times 0.47 \times 0.39 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Diffraction Gemini R
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10.5081 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
$T_{\min }=0.428, T_{\text {max }}=0.466$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.066$
$S=0.94$
9836 reflections
271 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

43714 measured reflections
9836 independent reflections
7672 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=34.8^{\circ}, \theta_{\text {min }}=4.7^{\circ}$
$h=-14 \rightarrow 14$
$k=-20 \rightarrow 20$
$l=-30 \rightarrow 31$

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0354 P)^{2}\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=1.32$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.45$ e \AA^{-3}
> Absolute structure: Flack (1983), 4113 Friedel \quad pairs

Absolute structure parameter: -0.018 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I	$0.773383(17)$	$-0.160323(12)$	$0.264361(9)$	$0.04200(5)$
Fe	$0.82534(3)$	$0.15269(2)$	$0.131418(12)$	$0.01814(5)$
O1A	$0.79828(16)$	$0.08061(11)$	$0.04737(7)$	$0.0277(3)$
O1B	$0.71110(15)$	$0.26909(10)$	$0.11418(7)$	$0.0254(3)$
N1A	$0.64230(16)$	$0.07176(12)$	$0.17734(8)$	$0.0203(3)$
H1AA	0.6763	0.0195	0.2054	0.024^{*}
N2A	$0.86624(18)$	$0.20378(12)$	$0.23797(9)$	$0.0247(3)$
H2AA	0.9344	0.2551	0.2342	0.030^{*}
N1B	$1.01197(16)$	$0.23195(12)$	$0.09118(8)$	$0.0199(3)$
H1BA	1.0639	0.2579	0.1281	0.024^{*}
N2B	$0.97740(18)$	$0.03588(13)$	$0.16943(9)$	$0.0250(3)$
H2BA	0.9218	-0.0207	0.1805	0.030^{*}
C1A	$0.7469(2)$	$-0.01336(15)$	$0.03747(10)$	$0.0243(4)$
C2A	$0.8057(3)$	$-0.07758(19)$	$-0.01269(12)$	$0.0385(5)$

H2AB	0.8846	-0.0551	-0.0393	0.046*
C3A	0.7485 (3)	-0.17422 (19)	-0.02343 (14)	0.0450 (6)
H3AA	0.7890	-0.2178	-0.0574	0.054*
C4A	0.6331 (3)	-0.20817 (18)	0.01467 (13)	0.0447 (6)
H4AA	0.5944	-0.2744	0.0068	0.054*
C5A	0.5753 (3)	-0.14535 (17)	0.06366 (11)	0.0352 (5)
H5AA	0.4969	-0.1691	0.0902	0.042*
C6A	0.6286 (2)	-0.04757 (15)	0.07560 (10)	0.0253 (4)
C7A	0.5530 (2)	0.02586 (16)	0.12218 (10)	0.0250 (4)
H7AA	0.5130	0.0819	0.0938	0.030*
H7AB	0.4722	-0.0104	0.1440	0.030*
C8A	0.5495 (2)	0.14035 (17)	0.21940 (11)	0.0293 (4)
H8AA	0.4621	0.1025	0.2322	0.035*
H8AB	0.5206	0.1996	0.1908	0.035*
C9A	0.6201 (3)	0.17974 (17)	0.28458 (11)	0.0327 (5)
H9AA	0.5473	0.2158	0.3124	0.039*
H9AB	0.6530	0.1201	0.3117	0.039*
C10A	0.7452 (2)	0.25153 (15)	0.27417 (10)	0.0305 (4)
H10A	0.7129	0.3118	0.2475	0.037*
H10B	0.7780	0.2762	0.3197	0.037*
C11A	0.9351 (3)	0.12131 (18)	0.27913 (12)	0.0338 (5)
H11A	0.8624	0.0716	0.2948	0.041*
H11B	0.9814	0.1512	0.3203	0.041*
C1B	0.74548 (19)	0.36819 (14)	0.10896 (9)	0.0226 (4)
C2B	0.6501 (2)	0.44332 (17)	0.13160 (11)	0.0310 (4)
H2BB	0.5632	0.4239	0.1529	0.037*
C3B	0.6827 (3)	0.54589 (17)	0.12298 (12)	0.0352 (5)
H3BA	0.6161	0.5965	0.1371	0.042*
C4B	0.8109 (2)	0.57591 (16)	0.09400 (12)	0.0329 (5)
H4BA	0.8326	0.6466	0.0887	0.040*
C5B	0.9073 (2)	0.50167 (15)	0.07286 (11)	0.0273 (4)
H5BA	0.9963	0.5219	0.0540	0.033*
C6B	0.8749 (2)	0.39720 (14)	0.07890 (10)	0.0216 (4)
C7B	0.9688 (2)	0.31914 (15)	0.04574 (10)	0.0247 (4)
H7BA	1.0560	0.3539	0.0291	0.030*
H7BB	0.9189	0.2910	0.0050	0.030*
C8B	1.1072 (2)	0.16359 (18)	0.04945 (10)	0.0285 (4)
H8BA	1.1804	0.2063	0.0266	0.034*
H8BB	1.0498	0.1306	0.0129	0.034*
C9B	1.1806 (2)	0.08143 (18)	0.09064 (12)	0.0332 (5)
H9BA	1.2307	0.1142	0.1297	0.040*
H9BB	1.2534	0.0487	0.0611	0.040*
C10B	1.0824 (2)	-0.00223 (16)	0.11913 (12)	0.0315 (5)
H10C	1.0311	-0.0347	0.0803	0.038*
H10D	1.1413	-0.0557	0.1414	0.038*
C11B	1.0443 (2)	0.06764 (17)	0.23547 (12)	0.0322 (4)
H11C	1.1252	0.1143	0.2262	0.039*
H11D	1.0810	0.0067	0.2601	0.039*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I	$0.03535(8)$	$0.03358(7)$	$0.05708(10)$	$-0.00127(7)$	$-0.00778(7)$	$0.01797(7)$
Fe	$0.01560(10)$	$0.02019(11)$	$0.01862(11)$	$0.00004(10)$	$0.00055(9)$	$0.00102(10)$
O1A	$0.0264(8)$	$0.0351(7)$	$0.0216(7)$	$-0.0061(6)$	$0.0031(5)$	$-0.0040(5)$
O1B	$0.0174(6)$	$0.0267(6)$	$0.0321(7)$	$0.0016(5)$	$0.0029(5)$	$0.0081(5)$
N1A	$0.0186(7)$	$0.0219(7)$	$0.0203(7)$	$-0.0002(6)$	$0.0024(6)$	$0.0010(6)$
N2A	$0.0264(8)$	$0.0245(7)$	$0.0233(8)$	$-0.0040(6)$	$-0.0009(7)$	$0.0012(6)$
N1B	$0.0131(7)$	$0.0245(7)$	$0.0219(7)$	$0.0000(6)$	$0.0008(6)$	$0.0021(6)$
N2B	$0.0220(8)$	$0.0217(7)$	$0.0314(9)$	$-0.0003(6)$	$-0.0027(7)$	$0.0021(6)$
C1A	$0.0229(10)$	$0.0284(9)$	$0.0215(8)$	$0.0018(7)$	$-0.0041(7)$	$-0.0035(7)$
C2A	$0.0375(13)$	$0.0475(13)$	$0.0305(11)$	$0.0073(10)$	$-0.0024(9)$	$-0.0118(9)$
C3A	$0.0488(16)$	$0.0396(12)$	$0.0466(13)$	$0.0141(11)$	$-0.0102(11)$	$-0.0189(10)$
C4A	$0.0655(18)$	$0.0248(10)$	$0.0439(14)$	$0.0010(11)$	$-0.0180(13)$	$-0.0027(9)$
C5A	$0.0441(13)$	$0.0296(11)$	$0.0318(11)$	$-0.0085(10)$	$-0.0093(9)$	$0.0050(9)$
C6A	$0.0268(10)$	$0.0275(9)$	$0.0217(9)$	$-0.0018(8)$	$-0.0071(7)$	$0.0017(7)$
C7A	$0.0169(8)$	$0.0316(9)$	$0.0264(10)$	$-0.0027(7)$	$0.0000(7)$	$0.0002(7)$
C8A	$0.0231(9)$	$0.0333(11)$	$0.0314(10)$	$0.0005(8)$	$0.0099(7)$	$-0.0013(8)$
C9A	$0.0370(12)$	$0.0345(11)$	$0.0267(10)$	$-0.0021(9)$	$0.0115(8)$	$-0.0040(8)$
C10A	$0.0400(13)$	$0.0268(9)$	$0.0246(9)$	$-0.0037(8)$	$0.0064(8)$	$-0.0060(7)$
C11A	$0.0376(12)$	$0.0371(11)$	$0.0267(11)$	$-0.0007(9)$	$-0.0071(9)$	$0.0059(8)$
C1B	$0.0217(10)$	$0.0257(8)$	$0.0204(8)$	$0.0031(6)$	$-0.0008(6)$	$0.0043(6)$
C2B	$0.0251(10)$	$0.0347(10)$	$0.0331(10)$	$0.0072(8)$	$0.0044(9)$	$0.0054(9)$
C3B	$0.0404(12)$	$0.0304(10)$	$0.0350(12)$	$0.0141(9)$	$-0.0024(10)$	$-0.0017(9)$
C4B	$0.0372(13)$	$0.0243(9)$	$0.0373(12)$	$0.0035(9)$	$-0.0072(9)$	$0.0026(8)$
C5B	$0.0262(10)$	$0.0298(10)$	$0.0260(10)$	$-0.0022(8)$	$-0.0030(8)$	$0.0049(8)$
C6B	$0.0206(9)$	$0.0242(8)$	$0.0201(9)$	$0.0007(7)$	$-0.0009(7)$	$0.0041(7)$
C7B	$0.0211(9)$	$0.0297(10)$	$0.0233(9)$	$0.0015(7)$	$0.0028(7)$	$0.0083(7)$
C8B	$0.0195(8)$	$0.0346(10)$	$0.0315(10)$	$0.0057(9)$	$0.0086(7)$	$0.0007(9)$
C9B	$0.0188(9)$	$0.0382(11)$	$0.0427(13)$	$0.0100(9)$	$0.0023(9)$	$-0.0006(9)$
C10B	$0.0285(11)$	$0.0273(10)$	$0.0388(12)$	$0.0089(8)$	$-0.0002(9)$	$0.0005(8)$
C11B	$0.0325(11)$	$0.0343(10)$	$0.0296(11)$	$0.0014(8)$	$-0.0115(9)$	$0.0047(9)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Fe-O1B	$1.8898(13)$	$\mathrm{C} 8 \mathrm{~A}-\mathrm{H} 8 \mathrm{AA}$	0.9900
$\mathrm{Fe}-\mathrm{O} 1 \mathrm{~A}$	$1.8999(14)$	$\mathrm{C} 8 \mathrm{~A}-\mathrm{H} 8 \mathrm{AB}$	0.9900
$\mathrm{Fe}-\mathrm{N} 1 \mathrm{~B}$	$2.1805(15)$	$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	$1.517(3)$
$\mathrm{Fe}-\mathrm{N} 1 \mathrm{~A}$	$2.2062(15)$	$\mathrm{C} 9 \mathrm{~A}-\mathrm{H} 9 \mathrm{AA}$	0.9900
$\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}$	$2.2062(17)$	$\mathrm{C} 9 \mathrm{~A}-\mathrm{H} 9 \mathrm{AB}$	0.9900
$\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}$	$2.2158(17)$	$\mathrm{C} 10 \mathrm{~A}-\mathrm{H} 10 \mathrm{~A}$	0.9900
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$1.332(2)$	$\mathrm{C} 10 \mathrm{~A}-\mathrm{H} 10 \mathrm{~B}$	0.9900
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$1.337(2)$	$\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 11 \mathrm{~B}$	$1.504(3)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$1.486(2)$	$\mathrm{C} 11 \mathrm{~A}-\mathrm{H} 11 \mathrm{~A}$	0.9900
$\mathrm{~N} 1 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$1.493(2)$	$\mathrm{C} 11 \mathrm{~A}-\mathrm{H} 11 \mathrm{~B}$	0.9900
$\mathrm{~N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AA}$	0.9300	$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$1.399(3)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	$1.475(3)$	$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$1.401(3)$

$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	$1.488(3)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	0.9300
$\mathrm{~N} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	$1.496(2)$
$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}$	$1.501(2)$
$\mathrm{N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{BA}$	0.9300
$\mathrm{~N} 2 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$	$1.474(3)$
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$	$1.486(3)$
$\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	0.9300
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$1.398(3)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$1.408(3)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$1.387(3)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AB}$	0.9500
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$1.385(4)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{AA}$	0.9500
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$1.368(4)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{AA}$	0.9500
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$1.390(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 5 \mathrm{AA}$	0.9500
$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$1.497(3)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{H} 7 \mathrm{AA}$	0.9900
$\mathrm{C} 7 \mathrm{~A}-\mathrm{H} 7 \mathrm{AB}$	0.9900
C8A-C9A	$1.518(3)$

$\mathrm{O} 1 \mathrm{~B}-\mathrm{Fe}-\mathrm{O} 1 \mathrm{~A}$	$99.79(6)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~B}$	$90.69(6)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~B}$	$92.02(6)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~A}$	$90.78(6)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~A}$	$90.31(6)$
$\mathrm{N} 1 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~A}$	$177.01(6)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}$	$91.25(6)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}$	$167.81(6)$
$\mathrm{N} 1 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}$	$92.99(6)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}$	$84.37(6)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}$	$168.01(6)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}$	$91.80(6)$
$\mathrm{N} 1 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}$	$85.82(6)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}$	$92.22(6)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}$	$77.50(6)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}-\mathrm{Fe}$	$128.92(12)$
C1B-O1B-Fe	$130.83(12)$
C7A-N1A-C8A	$107.79(15)$
C7A-N1A-Fe	$110.01(11)$
C8A-N1A-Fe	$112.91(12)$
C7A-N1A-H1AA	108.7
C8A-N1A-H1AA	108.7
Fe-N1A-H1AA	108.7
C10A-N2A-C11A	$112.66(17)$
C10A-N2A-Fe	$116.09(13)$

C2B-C3B	$1.383(3)$
C2B-H2BB	0.9500
C3B-C4B	$1.386(3)$
C3B-H3BA	0.9500
C4B-C5B	$1.388(3)$
C4B-H4BA	0.9500
C5B-C6B	$1.402(3)$
C5B-H5BA	0.9500
C6B-C7B	$1.493(3)$
C7B-H7BA	0.9900
C7B-H7BB	0.9900
C8B-C9B	$1.505(3)$
C8B-H8BA	0.9900
C8B-H8BB	0.9900
C9B-C10B	$1.533(3)$
C9B-H9BA	0.9900
C9B-H9BB	0.9900
C10B-H10C	0.9900
C10B-H10D	0.9900
C11B-H11C	0.9900
C11B-H11D	0.9900

108.8

107.7
115.90 (17)
108.3
108.3
108.3
108.3
107.4
113.59 (16)
108.8
108.8
108.8
108.8
107.7
109.34 (17)
109.8
109.8
109.8
109.8
108.3
119.97 (17)
120.18 (16)
119.82 (17)
119.9 (2)
120.0

$\mathrm{C} 11 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{Fe}$	111.11 (13)
C10A-N2A-H2AA	105.3
C11A-N2A-H2AA	105.3
$\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	105.3
C7B-N1B-C8B	107.20 (15)
C7B-N1B-Fe	110.74 (11)
C8B-N1B-Fe	112.99 (12)
C7B-N1B-H1BA	108.6
C8B-N1B-H1BA	108.6
$\mathrm{Fe}-\mathrm{N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{BA}$	108.6
C10B-N2B-C11B	112.46 (17)
C10B-N2B-Fe	116.31 (13)
C11B-N2B-Fe	111.58 (12)
C10B-N2B-H2BA	105.1
C11B-N2B-H2BA	105.1
$\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	105.1
O1A-C1A-C2A	120.62 (19)
O1A-C1A-C6A	120.15 (17)
C2A-C1A-C6A	119.18 (19)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	119.8 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AB}$	120.1
C1A-C2A-H2AB	120.1
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	120.9 (2)
C4A-C3A-H3AA	119.5
C2A-C3A-H3AA	119.5
C5A-C4A-C3A	119.3 (2)
C5A-C4A-H4AA	120.3
C3A-C4A-H4AA	120.3
C4A-C5A-C6A	121.5 (2)
C4A-C5A-H5AA	119.2
C6A-C5A-H5AA	119.2
C5A-C6A-C1A	119.21 (19)
C5A-C6A-C7A	121.14 (19)
C1A-C6A-C7A	119.29 (17)
N1A-C7A-C6A	115.14 (16)
N1A-C7A-H7AA	108.5
C6A-C7A-H7AA	108.5
N1A-C7A-H7AB	108.5
C6A-C7A-H7AB	108.5
H7AA-C7A-H7AB	107.5
N1A-C8A-C9A	113.79 (17)
N1A-C8A-H8AA	108.8
C9A-C8A-H8AA	108.8
N1A-C8A-H8AB	108.8
O1B-Fe-O1A-C1A	-121.63 (16)
N1B-Fe-O1A-C1A	147.32 (16)
$\mathrm{N} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	-30.79 (16)

$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BB}$	120.0
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	121.0 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{BA}$	119.5
C4B-C3B-H3BA	119.5
C3B-C4B-C5B	119.31 (19)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{BA}$	120.3
C5B-C4B-H4BA	120.3
C4B-C5B-C6B	120.9 (2)
C4B-C5B-H5BA	119.6
C6B-C5B-H5BA	119.6
C1B-C6B-C5B	119.06 (18)
C1B-C6B-C7B	120.53 (17)
C5B-C6B-C7B	119.96 (18)
C6B-C7B-N1B	115.16 (15)
C6B-C7B-H7BA	108.5
N1B-C7B-H7BA	108.5
C6B-C7B-H7BB	108.5
N1B-C7B-H7BB	108.5
H7BA-C7B-H7BB	107.5
N1B-C8B-C9B	114.22 (16)
N1B-C8B-H8BA	108.7
C9B-C8B-H8BA	108.7
N1B-C8B-H8BB	108.7
C9B-C8B-H8BB	108.7
H8BA-C8B-H8BB	107.6
C8B-C9B-C10B	115.07 (18)
C8B-C9B-H9BA	108.5
C10B-C9B-H9BA	108.5
C8B-C9B-H9BB	108.5
C10B-C9B-H9BB	108.5
H9BA-C9B-H9BB	107.5
N2B-C10B-C9B	113.66 (17)
N2B-C10B-H10C	108.8
C9B-C10B-H10C	108.8
N2B-C10B-H10D	108.8
C9B-C10B-H10D	108.8
$\mathrm{H} 10 \mathrm{C}-\mathrm{C} 10 \mathrm{~B}-\mathrm{H} 10 \mathrm{D}$	107.7
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 11 \mathrm{~A}$	109.10 (17)
N2B-C11B-H11C	109.9
C11A-C11B-H11C	109.9
N2B-C11B-H11D	109.9
C11A-C11B-H11D	109.9
H11C-C11B-H11D	108.3
C6A-C1A-C2A-C3A	-1.0 (3)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	0.3 (4)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	-0.2 (4)

$\mathrm{N} 2 \mathrm{~A}-\mathrm{Fe}-\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	33.1 (4)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Fe}-\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	61.45 (16)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	-116.70 (15)
N1B-Fe-O1B-C1B	-24.54 (15)
$\mathrm{N} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	152.85 (15)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Fe}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	68.47 (16)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Fe}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	48.3 (4)
O1B-Fe-N1A-C7A	82.12 (12)
O1A-Fe-N1A-C7A	-17.68 (12)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	173.30 (13)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	-109.49 (12)
O1B-Fe-N1A-C8A	-38.34 (13)
O1A-Fe-N1A-C8A	-138.14 (13)
N2A-Fe-N1A-C8A	52.85 (13)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	130.06 (13)
O1B-Fe-N2A-C10A	38.47 (13)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	-116.6 (3)
N1B-Fe-N2A-C10A	129.23 (13)
N1A-Fe-N2A-C10A	-52.18 (13)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	-145.72 (14)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	168.93 (14)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	13.8 (4)
N1B-Fe-N2A-C11A	-100.31 (14)
N1A-Fe-N2A-C11A	78.27 (14)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	-15.27 (14)
O1B-Fe-N1B-C7B	-20.81 (13)
O1A-Fe-N1B-C7B	79.02 (13)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	-112.10 (12)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	170.67 (13)
O1B-Fe-N1B-C8B	-141.09 (13)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}$	-41.26 (13)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}$	127.62 (12)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}$	50.39 (13)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$	-122.7 (3)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$	42.58 (14)
N1B-Fe-N2B-C10B	-49.31 (14)
$\mathrm{N} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$	132.95 (14)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$	-143.31 (15)
O1B-Fe-N2B-C11B	8.1 (4)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$	173.41 (14)
N1B-Fe-N2B-C11B	81.52 (14)
$\mathrm{N} 1 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$	-96.21 (13)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$	-12.48 (13)
$\mathrm{Fe}-\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	-141.17 (18)
$\mathrm{Fe}-\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	41.5 (2)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	-178.4 (2)

61.45 (16)
-116.70 (15)
-24.54 (15)
152.85 (15)
68.47 (16)
48.3 (4)
82.12 (12)
-17.68 (12)
173.30 (13)
-109.49 (12)
-38.34 (13)
52.85 (13)
130.06 (13)
38.47 (13)
-116.6 (3)
129.23 (13)
-52.18 (13)
-145.72 (14)
168.93 (14)
13.8 (4)
-100.31 (14)
78.27 (14)
-15.27 (14)
-20.81 (13)
79.02 (13)
-112.10 (12)
170.67 (13)
-141.09 (13)
-41.26 (13)
127.62 (12)
50.39 (13)
-122.7 (3)
42.58 (14)
.31 (14)
-143.31 (15)
8.1 (4)
173.41 (14)
81.52 (14)
-96.21 (13)
-12.48 (13)
-141.17 (18)
-178.4 (2)

C3A-C4A-C5A-C6A	0.8 (4)
C4A-C5A-C6A-C1A	-1.5 (3)
C4A-C5A-C6A-C7A	171.5 (2)
O1A-C1A-C6A-C5A	178.97 (18)
C2A-C1A-C6A-C5A	1.6 (3)
O1A-C1A-C6A-C7A	5.8 (3)
C2A-C1A-C6A-C7A	-171.55 (19)
C8A-N1A-C7A-C6A	-178.68 (16)
$\mathrm{Fe}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	57.82 (18)
C5A-C6A-C7A-N1A	127.69 (19)
C1A-C6A-C7A-N1A	-59.3 (2)
C7A-N1A-C8A-C9A	170.82 (17)
Fe-N1A-C8A-C9A	-67.46 (19)
N1A-C8A-C9A-C10A	66.2 (2)
C11A-N2A-C10A-C9A	-66.6 (2)
$\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	63.1 (2)
C8A-C9A-C10A-N2A	-62.7 (3)
C10A-N2A-C11A-C11B	172.73 (16)
$\mathrm{Fe}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 11 \mathrm{~B}$	40.5 (2)
$\mathrm{Fe}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	-146.23 (16)
$\mathrm{Fe}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	35.7 (2)
O1B-C1B-C2B-C3B	-176.72 (19)
$\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	1.3 (3)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	-2.0 (3)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	0.6 (3)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	1.6 (3)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	178.81 (17)
C2B-C1B-C6B-C5B	0.8 (3)
O1B-C1B-C6B-C7B	6.5 (3)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	-171.54 (18)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	-2.2 (3)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	170.12 (19)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	-56.4 (2)
C5B-C6B-C7B-N1B	131.38 (19)
C8B-N1B-C7B-C6B	-178.95 (16)
$\mathrm{Fe}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	57.38 (19)
C7B-N1B-C8B-C9B	170.13 (18)
$\mathrm{Fe}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$	-67.59 (19)
N1B-C8B-C9B-C10B	68.4 (2)
C11B-N2B-C10B-C9B	-69.6 (2)
$\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$	60.8 (2)
C8B-C9B-C10B-N2B	-63.9 (3)
C10B-N2B-C11B-C11A	170.70 (16)
$\mathrm{Fe}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 11 \mathrm{~A}$	37.91 (19)
N2A-C11A-C11B-N2B	-51.6 (2)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A A \cdots \mathrm{I}$	0.93	2.77	$3.6800(16)$	168
$\mathrm{~N} 2 A — \mathrm{H} 2 A A \cdots \mathrm{I}^{\mathrm{i}}$	0.93	2.96	$3.8227(17)$	155
$\mathrm{~N} 1 B-\mathrm{H} 1 B A \cdots \mathrm{I}^{\mathrm{i}}$	0.93	2.80	$3.7285(16)$	178
$\mathrm{~N} 2 B — \mathrm{H} 2 B A \cdots \mathrm{I}$	0.93	2.81	$3.6911(17)$	158
$\mathrm{C} 11 B-\mathrm{H} 11 C \cdots \mathrm{I}^{\mathrm{i}}$	0.99	3.10	$3.942(2)$	144

Symmetry code: (i) $-x+2, y+1 / 2,-z+1 / 2$.

