Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Hexakis(4-acetylpyridinium) octadecachloridotetraantimonate(III)

#### **Xue-qun Fu**

Ordered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: fuxuequn222@163.com

Received 10 May 2010; accepted 31 May 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.030; wR factor = 0.070; data-to-parameter ratio = 22.2.

The title compound,  $(C_7H_8NO)_6[Sb_4Cl_{18}]$ , contains centrosymmetric hexaanions built up from four vertex-sharing alternating SbCl<sub>5</sub> square-based pyramids and highly distorted SbCl<sub>6</sub> octahedra when long (<3.2 Å) 'secondary' Sb–Cl interactions are taken into account. The inter-polyhedral Sb–Cl bonds define a square-shape. In the crystal, the components are linked by N–H···Cl, C–H···Cl and C– H···O hydrogen bonds, generating a three-dimensional network.

#### **Related literature**

For general background to phase transitions in coordination networks, see: Li *et al.* (2008); Zhang *et al.* (2009). For crystal structures containing the 4-acetylpyridinium cation, see: Fu (2009*a*,*b*); Majerz *et al.* (1991); Pang *et al.* (1994); Steffen & Palenik (1977).



#### Experimental

Crystal data ( $C_7H_8NO$ )<sub>6</sub>[Sb<sub>4</sub>Cl<sub>18</sub>]  $M_r = 1857.96$ Triclinic,  $P\overline{1}$  a = 9.0589 (18) Å b = 13.838 (3) Å c = 15.128 (3) Å  $\alpha = 108.29$  (3)°  $\beta = 98.00$  (3)°

 $\gamma = 107.10 (3)^{\circ}$   $V = 1664.1 (6) \text{ Å}^3$  Z = 1Mo K\alpha radiation  $\mu = 2.37 \text{ mm}^{-1}$  T = 298 K $0.40 \times 0.30 \times 0.20 \text{ mm}$ 



Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005)  $T_{min} = 0.430, T_{max} = 0.622$ 

Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.030$ | 343 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.070$               | H-atom parameters constrained                              |
| S = 1.04                        | $\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$    |
| 7613 reflections                | $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$ |

17638 measured reflections

 $R_{\rm int} = 0.028$ 

7613 independent reflections

6371 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Selected bond lengths (Å).

| Sb1-Cl4              | 2.4036 (9)  | Sb2-Cl7 | 2.3516 (12) |
|----------------------|-------------|---------|-------------|
| Sb1-Cl3              | 2.4107 (10) | Sb2-Cl8 | 2.4459 (10) |
| Sb1-Cl2              | 2.4113 (14) | Sb2-Cl9 | 2.4498 (10) |
| Sb1-Cl1              | 2.9359 (12) | Sb2-Cl5 | 2.8352 (11) |
| Sb1-Cl5              | 3.0214 (12) | Sb2-Cl6 | 2.8937 (11) |
| Sb1-Cl6 <sup>i</sup> | 3.1275 (12) |         |             |
|                      |             |         |             |

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

| Table 2       |                 |
|---------------|-----------------|
| Hydrogen-bond | geometry (Å °). |

| $D - H \cdots A$                      | D-H       | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------------------|-----------|-------------------------|--------------|---------------------------|
| $N2-H2A\cdots Cl6$                    | 0.86      | 2.30                    | 3.148 (3)    | 170                       |
| $N1 - H1D \cdot \cdot \cdot Cl1^{ii}$ | 0.86      | 2.20                    | 3.056 (3)    | 174                       |
| $N3 - H3A \cdots Cl5^{iii}$           | 0.86      | 2.35                    | 3.198 (3)    | 168                       |
| $C1 - H1A \cdots O2^{iv}$             | 0.96      | 2.60                    | 3.506 (5)    | 158                       |
| $C5-H5A\cdots Cl8^{v}$                | 0.93      | 2.78                    | 3.585 (4)    | 146                       |
| $C13-H13A\cdots Cl1^{i}$              | 0.93      | 2.76                    | 3.661 (4)    | 162                       |
| C19−H19A···Cl7 <sup>iii</sup>         | 0.93      | 2.67                    | 3.449 (4)    | 141                       |
| $C21 - H21A \cdots O1^{iii}$          | 0.93      | 2.42                    | 3.349 (4)    | 177                       |
| Summatry andag                        | (i) x 1 2 |                         | 1. (ii) x.   | 1. (;;;)                  |

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x, y, z - 1; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y - 1, z; (v) x, y - 1, z - 1.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The author is grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5440).

#### References

- Fu, X. (2009a). Acta Cryst. E65, o1804.
- Fu, X. (2009b). Acta Cryst. E65, o2385.
- Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.
- Majerz, I., Malarski, Z. & Sawka-Dobrowolska, W. (1991). J. Mol. Struct. 249, 109–116.
- Pang, L., Whitehead, M. A., Bermardinelli, G. & Lucken, E. A. C. (1994). J. Chem. Crystallogr. 24, 203–211.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119-1128.
- Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.

# supporting information

Acta Cryst. (2010). E66, m736 [doi:10.1107/S160053681002057X]

# Hexakis(4-acetylpyridinium) octadecachloridotetraantimonate(III)

## Xue-qun Fu

#### S1. Comment

As a continuation of our study of phase transition materials, including organic ligands (Li *et al.*, 2008), metal-organic coordination compounds (Zhang *et al.*, 2009), organic-inorganic hybrids, we studied the dielectric properties of the title compound, unfortunately, there was no distinct anomaly observed from 93 K to 400 K, (m.p. 421–423 K), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. In this article, the crystal structure of (I) has been presented.

4-Acetylpyridine may be used as a ligand in coordination compounds *e.g.* with Zn (Steffen & Palenik, 1977) or Ni (Pang *et al.*, 1994). The crystal structures of 4-acetylpyridine together with inorganic acids are also known *e.g.* with sulfuric acid (Fu, 2009b) and perchloric acid (Fu, 2009a).

The cell unit of the title compound is made up of six almost planar protonated 4-acetylpyridinium cations and a  $[Sb_4Cl_{18}]^{6-}$  anion (Fig. 1.).In the coordinate anion of  $[Sb_4Cl_{18}]^{6-}$ , antimony(III) atoms have two kinds of coordination pattern.  $Sb^{3+}(2)$  coordinated with five Cl ions construct a distorted tetragonal pyramidal structure, composing two briding and three terminal Cl atoms. There are Cl—Sb secondary bonds by the linkage between the  $Sb^{3+}(1)$ ···Cl5 and  $Sb^{3+}(1)$ ···Cl6, with the bond lengths of these secondary bonds 3.0210 (11)Å and 3.1280 (11) Å, respectively, compared to the normal coordination bonds of Sb—Cl 2.3516 (12)Å to 2.8937 (11) Å. Owing to these secondary bonds, the coordination number of the central ion  $Sb^{3+}(1)$  increases to six, and it adopts a distorted octahedral geometry.

The tridimensional network arrangement in the crystal structure of (I) is mainly determined by relatively strong and directional hydrogen bonds (Table. 1),

### **S2. Experimental**

2.28 g (10 mmol) SbCl<sub>3</sub> was firstly dissolved in 10 ml 1:1 HCl solution, to which 2.42 g (20 mmol) 4-acetylpyridine ethanol solution was then added under stirring. Hydrochloric acid was added until the precipitated substrates disappeared. The acid solution was allowed to slowly evaporate at room temperature until colorless prisms of (I) were grown.

#### **S3. Refinement**

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with  $U_{iso}(H) = 1.2U_{eq}(C)$ ,

 $U_{iso}(H) = 1.2U_{eq}(N).$ 



## Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (all H atoms have been omitted for clarity). Unlabelled atoms are generated by the symmetry operation (2-x, 1-y, 1-z).



## Figure 2

A view of the packing of (I), stacking along the *a* axis. Dashed lines indicate hydrogen bonds.

## Hexakis(4-acetylpyridinium) octadecachloridotetraantimonate(III)

| Crystal data                                         |                                                                    |
|------------------------------------------------------|--------------------------------------------------------------------|
| $(C_7H_8NO)_6[Sb_4Cl_{18}]$                          | Z = 1                                                              |
| $M_r = 1857.96$                                      | F(000) = 900                                                       |
| Triclinic, $P\overline{1}$                           | $D_{\rm x} = 1.854 {\rm ~Mg} {\rm ~m}^{-3}$                        |
| Hall symbol: -P 1                                    | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å              |
| a = 9.0589 (18)  Å                                   | Cell parameters from 8056 reflections                              |
| b = 13.838 (3) Å                                     | $\theta = 3.1 - 27.7^{\circ}$                                      |
| c = 15.128 (3) Å                                     | $\mu = 2.37 \text{ mm}^{-1}$                                       |
| $\alpha = 108.29 \ (3)^{\circ}$                      | T = 298  K                                                         |
| $\beta = 98.00 \ (3)^{\circ}$                        | Prism, colourless                                                  |
| $\gamma = 107.10 \ (3)^{\circ}$                      | $0.40 \times 0.30 \times 0.20 \text{ mm}$                          |
| V = 1664.1 (6) Å <sup>3</sup>                        |                                                                    |
| Data collection                                      |                                                                    |
| Rigaku SCXmini                                       | 17638 measured reflections                                         |
| diffractometer                                       | 7613 independent reflections                                       |
| Radiation source: fine-focus sealed tube             | 6371 reflections with $I > 2\sigma(I)$                             |
| Graphite monochromator                               | $R_{\rm int} = 0.028$                                              |
| Detector resolution: 13.6612 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 27.5^{\circ},  \theta_{\rm min} = 3.1^{\circ}$ |
| $\omega$ scans                                       | $h = -11 \rightarrow 11$                                           |
| Absorption correction: multi-scan                    | $k = -17 \rightarrow 17$                                           |
| (CrystalClear; Rigaku, 2005)                         | $l = -19 \rightarrow 19$                                           |
| $T_{\min} = 0.430, \ T_{\max} = 0.622$               |                                                                    |
|                                                      |                                                                    |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier     |
|-------------------------------------------------|------------------------------------------------------|
| Least-squares matrix: full                      | map                                                  |
| $R[F^2 > 2\sigma(F^2)] = 0.030$                 | Hydrogen site location: inferred from                |
| $wR(F^2) = 0.070$                               | neighbouring sites                                   |
| S = 1.04                                        | H-atom parameters constrained                        |
| 7613 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0307P)^2 + 0.5066P]$    |
| 343 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                       |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                  |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.39$ e Å <sup>-3</sup>       |
| direct methods                                  | $\Delta  ho_{\min} = -0.38 \text{ e} \text{ Å}^{-3}$ |
|                                                 |                                                      |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|---------------|---------------|-----------------------------|
| 01  | 0.7595 (3)   | 0.1417 (2)    | 0.15768 (17)  | 0.0544 (6)                  |
| N1  | 0.9897 (4)   | 0.2973 (3)    | -0.0627 (2)   | 0.0573 (8)                  |
| H1D | 1.0377       | 0.3389        | -0.0898       | 0.069*                      |
| C3  | 0.8404 (4)   | 0.1681 (3)    | 0.0233 (2)    | 0.0408 (7)                  |
| C6  | 0.9436 (5)   | 0.3405 (3)    | 0.0152 (3)    | 0.0574 (10)                 |
| H6A | 0.9616       | 0.4147        | 0.0386        | 0.069*                      |
| C4  | 0.8871 (4)   | 0.1248 (3)    | -0.0588 (2)   | 0.0490 (8)                  |
| H4A | 0.8660       | 0.0503        | -0.0855       | 0.059*                      |
| C7  | 0.8713 (4)   | 0.2783 (3)    | 0.0610 (3)    | 0.0525 (9)                  |
| H7A | 0.8428       | 0.3094        | 0.1169        | 0.063*                      |
| C5  | 0.9634 (5)   | 0.1912 (3)    | -0.0998 (2)   | 0.0557 (9)                  |
| H5A | 0.9976       | 0.1629        | -0.1540       | 0.067*                      |
| C2  | 0.7623 (4)   | 0.0986 (3)    | 0.0748 (3)    | 0.0497 (8)                  |
| Sb1 | 0.86744 (2)  | 0.350428 (15) | 0.674838 (14) | 0.03137 (6)                 |
| Cl4 | 0.83619 (12) | 0.17158 (6)   | 0.67419 (6)   | 0.0519 (2)                  |
| C13 | 0.74694 (11) | 0.39130 (8)   | 0.80769 (6)   | 0.0528 (2)                  |
| C12 | 0.61006 (10) | 0.27520 (7)   | 0.56102 (6)   | 0.0543 (2)                  |
| C1  | 0.6945 (7)   | -0.0208 (3)   | 0.0234 (4)    | 0.110 (2)                   |
| H1A | 0.6487       | -0.0545       | 0.0648        | 0.165*                      |
| H1B | 0.7775       | -0.0467       | 0.0054        | 0.165*                      |
| H1C | 0.6133       | -0.0390       | -0.0333       | 0.165*                      |
| Cl1 | 1.15940 (10) | 0.43033 (7)   | 0.82937 (7)   | 0.0529 (2)                  |
| Sb2 | 0.93951 (2)  | 0.785682 (15) | 0.693125 (14) | 0.03208 (6)                 |
| C17 | 0.67862 (9)  | 0.73910 (7)   | 0.60241 (6)   | 0.0474 (2)                  |
| C19 | 0.83859 (11) | 0.82021 (8)   | 0.83764 (6)   | 0.0544 (2)                  |

| C18  | 0.99930 (12) | 0.97530 (7) | 0.70831 (7) | 0.0595 (2)  |
|------|--------------|-------------|-------------|-------------|
| C15  | 0.86213 (12) | 0.56019 (7) | 0.65539 (7) | 0.0577 (2)  |
| C16  | 1.00732 (11) | 0.73440 (8) | 0.50601 (6) | 0.0557 (2)  |
| C10  | 0.6128 (4)   | 0.9155 (3)  | 0.3188 (2)  | 0.0436 (8)  |
| C14  | 0.6375 (4)   | 0.8208 (3)  | 0.2737 (3)  | 0.0525 (9)  |
| H14A | 0.5913       | 0.7814      | 0.2082      | 0.063*      |
| N2   | 0.7927 (4)   | 0.8408 (3)  | 0.4180 (3)  | 0.0584 (8)  |
| H2A  | 0.8511       | 0.8172      | 0.4493      | 0.070*      |
| C12  | 0.7702 (5)   | 0.9308 (3)  | 0.4648 (3)  | 0.0595 (10) |
| H12A | 0.8150       | 0.9669      | 0.5308      | 0.071*      |
| C11  | 0.6807 (4)   | 0.9711 (3)  | 0.4161 (3)  | 0.0512 (9)  |
| H11A | 0.6659       | 1.0355      | 0.4484      | 0.061*      |
| C13  | 0.7289 (5)   | 0.7851 (3)  | 0.3245 (3)  | 0.0610 (10) |
| H13A | 0.7471       | 0.7216      | 0.2939      | 0.073*      |
| O2   | 0.4633 (4)   | 0.9034 (3)  | 0.1749 (2)  | 0.0794 (9)  |
| C9   | 0.5172 (4)   | 0.9568 (3)  | 0.2594 (3)  | 0.0537 (9)  |
| C8   | 0.4958 (6)   | 1.0602 (4)  | 0.3054 (3)  | 0.0865 (15) |
| H8A  | 0.4326       | 1.0748      | 0.2582      | 0.130*      |
| H8B  | 0.5982       | 1.1180      | 0.3327      | 0.130*      |
| H8C  | 0.4424       | 1.0555      | 0.3553      | 0.130*      |
| C18  | 0.4716 (4)   | 0.5259 (3)  | 0.7037 (3)  | 0.0540 (9)  |
| H18A | 0.5403       | 0.4988      | 0.7313      | 0.065*      |
| N3   | 0.3089 (4)   | 0.5204 (3)  | 0.5680 (2)  | 0.0584 (8)  |
| H3A  | 0.2674       | 0.4905      | 0.5069      | 0.070*      |
| C17  | 0.4345 (4)   | 0.6097 (2)  | 0.7603 (2)  | 0.0418 (7)  |
| C16  | 0.4972 (4)   | 0.6600 (3)  | 0.8688 (3)  | 0.0587 (10) |
| C21  | 0.3347 (4)   | 0.6486 (3)  | 0.7166 (3)  | 0.0537 (9)  |
| H21A | 0.3100       | 0.7066      | 0.7534      | 0.064*      |
| C15  | 0.5935 (6)   | 0.6125 (4)  | 0.9162 (3)  | 0.0897 (15) |
| H15A | 0.6250       | 0.6526      | 0.9845      | 0.135*      |
| H15B | 0.6870       | 0.6161      | 0.8924      | 0.135*      |
| H15C | 0.5314       | 0.5377      | 0.9027      | 0.135*      |
| C20  | 0.2716 (5)   | 0.6023 (3)  | 0.6191 (3)  | 0.0588 (10) |
| H20A | 0.2035       | 0.6280      | 0.5892      | 0.071*      |
| O3   | 0.4681 (4)   | 0.7375 (2)  | 0.9125 (2)  | 0.0803 (9)  |
| C19  | 0.4076 (5)   | 0.4828 (3)  | 0.6073 (3)  | 0.0642 (11) |
| H19A | 0.4332       | 0.4264      | 0.5686      | 0.077*      |
|      |              |             |             |             |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|-------------|-------------|-------------|-------------|-------------|-------------|
| 01 | 0.0600 (16) | 0.0584 (15) | 0.0478 (14) | 0.0245 (12) | 0.0219 (12) | 0.0173 (12) |
| N1 | 0.068 (2)   | 0.063 (2)   | 0.0528 (19) | 0.0261 (16) | 0.0166 (16) | 0.0331 (17) |
| C3 | 0.0408 (17) | 0.0425 (18) | 0.0348 (17) | 0.0151 (14) | 0.0048 (13) | 0.0109 (15) |
| C6 | 0.075 (3)   | 0.046 (2)   | 0.058 (2)   | 0.0281 (19) | 0.023 (2)   | 0.0205 (19) |
| C4 | 0.065 (2)   | 0.0417 (19) | 0.0358 (18) | 0.0204 (17) | 0.0090 (16) | 0.0096 (15) |
| C7 | 0.060(2)    | 0.049 (2)   | 0.050(2)    | 0.0259 (17) | 0.0191 (17) | 0.0118 (17) |
| C5 | 0.076 (3)   | 0.060 (2)   | 0.0344 (18) | 0.031 (2)   | 0.0144 (18) | 0.0157 (18) |
|    |             |             |             |             |             |             |

| $C^{2}$    | 0.050(2)                 | 0.047(2)                 | 0.048(2)    | 0.0174 (16)              | 0.0158 (16)              | 0.0107(17)               |
|------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|--------------------------|
| Sb1        | 0.030(2)                 | 0.047(2)<br>0.03025(11)  | 0.040(2)    | 0.0174(10)<br>0.01447(8) | 0.0130(10)<br>0.00818(8) | 0.0107(17)<br>0.01327(9) |
| C14        | 0.0760 (6)               | 0.03025(11)<br>0.0343(4) | 0.05202(11) | 0.01447(0)<br>0.0230(4)  | 0.00010(0)               | 0.01327(9)               |
|            | 0.0700(0)                | 0.0545 (4)               | 0.0302(5)   | 0.0290(4)                | 0.0131(4)<br>0.0235(4)   | 0.0200(4)                |
| C12        | 0.0333(3)                | 0.0604 (0)               | 0.0477(5)   | 0.0294(4)                | -0.0025(4)               | 0.0201(4)                |
| C12        | 0.0417(4)                | 0.0004(3)                | 0.0524(3)   | 0.0143(4)                | 0.0025(4)                | 0.012(3)                 |
| Cli        | 0.130(3)                 | 0.050(3)                 | 0.100(4)    | 0.001(3)                 | 0.070(4)                 | 0.012(3)                 |
| Sh2        | 0.0434(3)                | 0.03102(11)              | 0.03265(11) | 0.0120(4)                | 0.0120(4)                | 0.0201(4)                |
| S02        | 0.03311(11)<br>0.0387(4) | 0.05102(11)              | 0.03203(11) | 0.01310(8)               | 0.00399(8)               | 0.01088(9)               |
| C1/        | 0.0387(4)                | 0.0337(3)                | 0.0403(3)   | 0.0207(4)                | 0.0039(3)                | 0.0135(4)                |
| C19<br>C19 | 0.0333(3)                | 0.0718(0)                | 0.0403(4)   | 0.0200(4)                | 0.0207(4)                | 0.0193(4)                |
| C18        | 0.0743(0)                | 0.0327(4)                | 0.0724(6)   | 0.0175(4)                | 0.0249(3)                | 0.0198(4)                |
|            | 0.0680 (6)               | 0.0411 (5)               | 0.0661 (6)  | 0.0207(4)                | 0.0095 (5)               | 0.0252 (4)               |
| C16        | 0.0632 (6)               | 0.0692 (6)               | 0.0527(5)   | 0.0359 (5)               | 0.02/4 (4)               | 0.0295 (5)               |
| C10        | 0.03/8(1/)               | 0.0436 (18)              | 0.050 (2)   | 0.0115 (14)              | 0.0189 (15)              | 0.01/4 (16)              |
| C14        | 0.049 (2)                | 0.045 (2)                | 0.054 (2)   | 0.0113 (16)              | 0.0148 (17)              | 0.0098 (17)              |
| N2         | 0.0512 (18)              | 0.062 (2)                | 0.074 (2)   | 0.0242 (16)              | 0.0188 (17)              | 0.0363 (19)              |
| C12        | 0.060 (2)                | 0.066 (3)                | 0.051 (2)   | 0.021 (2)                | 0.0104 (19)              | 0.024 (2)                |
| C11        | 0.058 (2)                | 0.0444 (19)              | 0.048 (2)   | 0.0174 (17)              | 0.0160 (17)              | 0.0134 (17)              |
| C13        | 0.062 (2)                | 0.045 (2)                | 0.084 (3)   | 0.0245 (19)              | 0.032 (2)                | 0.025 (2)                |
| O2         | 0.086 (2)                | 0.097 (2)                | 0.0539 (18) | 0.0350 (18)              | 0.0098 (16)              | 0.0284 (18)              |
| C9         | 0.049 (2)                | 0.064 (2)                | 0.054 (2)   | 0.0180 (18)              | 0.0191 (18)              | 0.029 (2)                |
| C8         | 0.115 (4)                | 0.073 (3)                | 0.086 (3)   | 0.058 (3)                | 0.019 (3)                | 0.029 (3)                |
| C18        | 0.052 (2)                | 0.050 (2)                | 0.063 (2)   | 0.0253 (17)              | 0.0139 (18)              | 0.0182 (19)              |
| N3         | 0.0535 (19)              | 0.059 (2)                | 0.0435 (17) | 0.0063 (15)              | 0.0064 (14)              | 0.0091 (15)              |
| C17        | 0.0345 (16)              | 0.0369 (17)              | 0.0491 (19) | 0.0089 (13)              | 0.0141 (14)              | 0.0118 (15)              |
| C16        | 0.043 (2)                | 0.062 (2)                | 0.054 (2)   | 0.0087 (18)              | 0.0123 (17)              | 0.011 (2)                |
| C21        | 0.057 (2)                | 0.056 (2)                | 0.060 (2)   | 0.0328 (18)              | 0.0253 (19)              | 0.0211 (19)              |
| C15        | 0.084 (3)                | 0.105 (4)                | 0.068 (3)   | 0.033 (3)                | -0.005 (3)               | 0.028 (3)                |
| C20        | 0.055 (2)                | 0.072 (3)                | 0.062 (3)   | 0.030 (2)                | 0.0186 (19)              | 0.034 (2)                |
| 03         | 0.082 (2)                | 0.0704 (19)              | 0.0608 (18) | 0.0244 (16)              | 0.0179 (15)              | -0.0077 (15)             |
| C19        | 0.081 (3)                | 0.046 (2)                | 0.057 (2)   | 0.026 (2)                | 0.020 (2)                | 0.0038 (19)              |
|            |                          |                          |             | × /                      |                          | · /                      |

Geometric parameters (Å, °)

| 01—C2  | 1.215 (4) | C14—C13  | 1.350 (5) |
|--------|-----------|----------|-----------|
| N1—C6  | 1.327 (4) | C14—H14A | 0.9300    |
| N1—C5  | 1.329 (5) | N2       | 1.316 (5) |
| N1—H1D | 0.8600    | N2—C13   | 1.325 (5) |
| С3—С7  | 1.374 (4) | N2—H2A   | 0.8600    |
| C3—C4  | 1.381 (4) | C12—C11  | 1.367 (5) |
| С3—С2  | 1.502 (5) | C12—H12A | 0.9300    |
| С6—С7  | 1.348 (5) | C11—H11A | 0.9300    |
| С6—Н6А | 0.9300    | C13—H13A | 0.9300    |
| C4—C5  | 1.345 (5) | O2—C9    | 1.200 (4) |
| C4—H4A | 0.9300    | C9—C8    | 1.464 (5) |
| C7—H7A | 0.9300    | C8—H8A   | 0.9600    |
| С5—Н5А | 0.9300    | C8—H8B   | 0.9600    |
| C2—C1  | 1.476 (5) | C8—H8C   | 0.9600    |
|        |           |          |           |

| C1—H1A               | 0.9600      | C18—C19      | 1.354 (5) |
|----------------------|-------------|--------------|-----------|
| C1—H1B               | 0.9600      | C18—C17      | 1.370 (4) |
| C1—H1C               | 0.9600      | C18—H18A     | 0.9300    |
| Sb1—Cl4              | 2.4036 (9)  | N3—C20       | 1.320 (5) |
| Sb1—Cl3              | 2.4107 (10) | N3—C19       | 1.320 (5) |
| Sb1—Cl2              | 2.4113 (14) | N3—H3A       | 0.8600    |
| Sb1—C11              | 2.9359 (12) | C17—C21      | 1.374 (5) |
| Sb1—C15              | 3.0214 (12) | C17—C16      | 1.514 (5) |
| Sb1—Cl6 <sup>i</sup> | 3.1275 (12) | C16—O3       | 1.194 (4) |
| Sb2—C17              | 2.3516 (12) | C16—C15      | 1.473 (6) |
| Sb2—C18              | 2.4459 (10) | C21—C20      | 1.367 (5) |
| Sb2—C19              | 2.4498 (10) | C21—H21A     | 0.9300    |
| Sb2—C15              | 2.8352 (11) | С15—Н15А     | 0.9600    |
| Sb2—C16              | 2.8937 (11) | C15—H15B     | 0.9600    |
| C10—C14              | 1.373 (4)   | C15—H15C     | 0.9600    |
| C10—C11              | 1.378 (5)   | C20—H20A     | 0.9300    |
| C10—C9               | 1.511 (5)   | C19—H19A     | 0.9300    |
|                      |             |              | 0.9500    |
| C6—N1—C5             | 121.5 (3)   | C12—N2—H2A   | 118.7     |
| C6—N1—H1D            | 119.2       | C13—N2—H2A   | 118.7     |
| C5—N1—H1D            | 119.2       | N2—C12—C11   | 119.7 (4) |
| C7—C3—C4             | 119.3 (3)   | N2—C12—H12A  | 120.1     |
| C7—C3—C2             | 118.9 (3)   | C11—C12—H12A | 120.1     |
| C4—C3—C2             | 121.8 (3)   | C12—C11—C10  | 119.3 (3) |
| N1—C6—C7             | 121.0 (3)   | C12—C11—H11A | 120.3     |
| N1—C6—H6A            | 119.5       | C10—C11—H11A | 120.3     |
| С7—С6—Н6А            | 119.5       | N2—C13—C14   | 119.8 (3) |
| C5—C4—C3             | 119.5 (3)   | N2—C13—H13A  | 120.1     |
| C5—C4—H4A            | 120.2       | C14—C13—H13A | 120.1     |
| C3—C4—H4A            | 120.2       | O2—C9—C8     | 122.4 (4) |
| C6—C7—C3             | 118.6 (3)   | O2—C9—C10    | 117.8 (4) |
| С6—С7—Н7А            | 120.7       | C8—C9—C10    | 119.7 (3) |
| С3—С7—Н7А            | 120.7       | С9—С8—Н8А    | 109.5     |
| N1—C5—C4             | 120.0 (3)   | C9—C8—H8B    | 109.5     |
| N1—C5—H5A            | 120.0       | H8A—C8—H8B   | 109.5     |
| C4—C5—H5A            | 120.0       | C9—C8—H8C    | 109.5     |
| O1—C2—C1             | 121.9 (4)   | H8A—C8—H8C   | 109.5     |
| O1—C2—C3             | 119.5 (3)   | H8B—C8—H8C   | 109.5     |
| C1—C2—C3             | 118.6 (3)   | C19—C18—C17  | 119.5 (4) |
| Cl4—Sb1—Cl3          | 92.15 (4)   | C19—C18—H18A | 120.2     |
| Cl4—Sb1—Cl2          | 89.42 (5)   | C17—C18—H18A | 120.2     |
| Cl3—Sb1—Cl2          | 90.96 (4)   | C20—N3—C19   | 122.4 (3) |
| C2—C1—H1A            | 109.5       | C20—N3—H3A   | 118.8     |
| C2—C1—H1B            | 109.5       | C19—N3—H3A   | 118.8     |
| H1A—C1—H1B           | 109.5       | C18—C17—C21  | 118.4 (3) |
| C2—C1—H1C            | 109.5       | C18—C17—C16  | 122.7 (3) |
| H1A—C1—H1C           | 109.5       | C21—C17—C16  | 118.8 (3) |
| H1B—C1—H1C           | 109.5       | O3—C16—C15   | 122.5 (4) |
|                      |             |              | ~ /       |

| Cl7—Sb2—Cl8     | 90.05 (5)  | O3—C16—C17      | 118.7 (4)  |
|-----------------|------------|-----------------|------------|
| Cl7—Sb2—Cl9     | 87.97 (4)  | C15—C16—C17     | 118.8 (4)  |
| Cl8—Sb2—Cl9     | 90.76 (4)  | C20—C21—C17     | 120.2 (3)  |
| Cl7—Sb2—Cl5     | 86.83 (5)  | C20—C21—H21A    | 119.9      |
| Cl8—Sb2—Cl5     | 174.29 (3) | C17—C21—H21A    | 119.9      |
| C19—Sb2—C15     | 93.90 (4)  | C16—C15—H15A    | 109.5      |
| Cl7—Sb2—Cl6     | 83.07 (4)  | C16—C15—H15B    | 109.5      |
| Cl8—Sb2—Cl6     | 89.72 (4)  | H15A—C15—H15B   | 109.5      |
| Cl9—Sb2—Cl6     | 171.03 (3) | C16—C15—H15C    | 109.5      |
| Cl5—Sb2—Cl6     | 85.17 (4)  | H15A—C15—H15C   | 109.5      |
| C14—C10—C11     | 118.7 (3)  | H15B—C15—H15C   | 109.5      |
| C14—C10—C9      | 118.9 (3)  | N3—C20—C21      | 119.0 (4)  |
| C11—C10—C9      | 122.4 (3)  | N3—C20—H20A     | 120.5      |
| C13—C14—C10     | 119.9 (4)  | C21—C20—H20A    | 120.5      |
| C13—C14—H14A    | 120.0      | N3—C19—C18      | 120.4 (3)  |
| C10—C14—H14A    | 120.0      | N3—C19—H19A     | 119.8      |
| C12—N2—C13      | 122.5 (3)  | C18—C19—H19A    | 119.8      |
|                 |            |                 |            |
| C5—N1—C6—C7     | 1.5 (6)    | C12—N2—C13—C14  | 0.3 (6)    |
| C7—C3—C4—C5     | 0.7 (5)    | C10-C14-C13-N2  | 0.9 (6)    |
| C2—C3—C4—C5     | -176.9 (3) | C14—C10—C9—O2   | 1.7 (5)    |
| N1—C6—C7—C3     | -2.4 (6)   | C11—C10—C9—O2   | 179.5 (3)  |
| C4—C3—C7—C6     | 1.3 (5)    | C14—C10—C9—C8   | -177.2 (4) |
| C2—C3—C7—C6     | 179.0 (3)  | C11—C10—C9—C8   | 0.6 (5)    |
| C6—N1—C5—C4     | 0.6 (6)    | C19—C18—C17—C21 | -1.1 (5)   |
| C3—C4—C5—N1     | -1.7 (6)   | C19—C18—C17—C16 | 178.2 (4)  |
| C7—C3—C2—O1     | -16.1 (5)  | C18—C17—C16—O3  | 175.1 (4)  |
| C4—C3—C2—O1     | 161.5 (3)  | C21—C17—C16—O3  | -5.6 (5)   |
| C7—C3—C2—C1     | 165.5 (4)  | C18—C17—C16—C15 | -4.1 (5)   |
| C4—C3—C2—C1     | -16.9 (5)  | C21—C17—C16—C15 | 175.1 (4)  |
| C11—C10—C14—C13 | -1.0 (5)   | C18—C17—C21—C20 | 1.6 (5)    |
| C9—C10—C14—C13  | 176.9 (3)  | C16—C17—C21—C20 | -177.7 (3) |
| C13—N2—C12—C11  | -1.4 (6)   | C19—N3—C20—C21  | -1.3 (6)   |
| N2-C12-C11-C10  | 1.2 (6)    | C17—C21—C20—N3  | -0.4 (6)   |
| C14—C10—C11—C12 | 0.0 (5)    | C20—N3—C19—C18  | 1.9 (6)    |
| C9—C10—C11—C12  | -177.8 (3) | C17—C18—C19—N3  | -0.6 (6)   |
|                 |            |                 |            |

Symmetry code: (i) -x+2, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

| D—H···A                      | <i>D</i> —Н | H···A | $D \cdots A$ | D—H…A |
|------------------------------|-------------|-------|--------------|-------|
| N2—H2A···Cl6                 | 0.86        | 2.30  | 3.148 (3)    | 170   |
| N1—H1D····Cl1 <sup>ii</sup>  | 0.86        | 2.20  | 3.056 (3)    | 174   |
| N3—H3A····Cl5 <sup>iii</sup> | 0.86        | 2.35  | 3.198 (3)    | 168   |
| C1—H1A···O2 <sup>iv</sup>    | 0.96        | 2.60  | 3.506 (5)    | 158   |
| C5—H5A···Cl8 <sup>v</sup>    | 0.93        | 2.78  | 3.585 (4)    | 146   |
| C13—H13A···Cl1 <sup>i</sup>  | 0.93        | 2.76  | 3.661 (4)    | 162   |
|                              |             |       |              |       |

|                               |      |      | supportin | supporting information |  |  |
|-------------------------------|------|------|-----------|------------------------|--|--|
| C19—H19A…Cl7 <sup>iii</sup>   | 0.93 | 2.67 | 3.449 (4) | 141                    |  |  |
| C21—H21A····O1 <sup>iii</sup> | 0.93 | 2.42 | 3.349 (4) | 177                    |  |  |

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) *x*, *y*, *z*-1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*, *y*-1, *z*; (v) *x*, *y*-1, *z*-1.