metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[aqua(imidazole)cadmium(II)]-µ₃-benzene-1,3dicarboxylato]

Zhengfang Zeng^a and Hongyan Xu^b*

^aSchool of Sciences, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China, and ^bFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China Correspondence e-mail: hongyan@fjirsm.ac.cn

Received 21 April 2010; accepted 9 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.028; wR factor = 0.072; data-to-parameter ratio = 11.3.

In the title compound, $[Cd(C_8H_4O_4)(C_3H_4N_2)(H_2O)]_n$, the Cd^{II} ion is seven-coordinated by five O atoms from three crystallographically independent benzene-1,3-carboxylate ligands, one N atom from the imidazole ligand and one coordinated water molecule. Neighboring Cd^{II} ions are bridged by the benzene-1,3-dicarboxylate ligands, forming a zigzag polymeric chain structure. These chains are further extended into a three-dimensional supramolecular structure through $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonds.

Related literature

For the synthesis, see: Yaghi et al. (1998). For related structures, see: Ma et al. (2008); Wang et al. (2008).

Experimental

Crystal data $[Cd(C_8H_4O_4)(C_3H_4N_2)(H_2O)]$ c = 10.235 (1) Å $M_r = 362.61$ $\alpha = 67.017 \ (2)^{\circ}$ Triclinic, P1 $\beta = 68.176 \ (2)^{\circ}$ a = 8.2616 (8) Å $= 81.054 (2)^{\circ}$ b = 8.3138 (8) Å $V = 600.76 (10) \text{ Å}^3$

```
Z = 2
Mo K\alpha radiation
\mu = 1.84 \text{ mm}^{-1}
```

Data collection

Bruker APEX CCD diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.536, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of
$wR(F^2) = 0.072$	independent and constrained
S = 1.15	refinement
2086 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
184 parameters	$\Delta \rho_{\rm min} = -0.79 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Cd1-N1	2.216 (3)	Cd1-O1	2.413 (3)
$Cd1 - O3^{i}$	2.251 (3)	Cd1-O1 ⁱⁱ	2.626 (3)
$Cd1 - O2^{ii}$	2.311 (3)	Cd1-O4 ⁱ	2.663 (3)
Cd1-O5	2.394 (3)		

T = 293 K

 $R_{\rm int} = 0.019$

 $0.27 \times 0.18 \times 0.06 \; \rm mm$

3166 measured reflections 2086 independent reflections

2049 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 2.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$05 - H5A \cdots O2^{iii}$	0.84 (8)	2.07 (8)	2.809 (4)	146 (7)
$05 - H5B \cdots O3^{iv}$	0.87 (8)	1.96 (8)	2.786 (4)	158 (7)
$N2 - H2 \cdots O4^{v}$	0.85 (7)	2.00 (7)	2.854 (5)	175 (6)

Symmetry codes: (iii) x, y - 1, z; (iv) x, y - 1, z + 1; (v) x + 1, y, z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (20971122) and the State Key Laboratory of Structural Chemistry for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2148).

References

Ma, S., Sun, D., Simmons, J. M., Collier, C. D., Yuan, D. & Zhou, H. C. (2008). J. Am. Chem. Soc. 130, 1012-1016.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Simemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, J., Lin, Z., Ou, Y. C., Yang, N. L., Zhang, Y. H. & Tong, M. L. (2008). Inorg. Chem. 47, 190-199.
- Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.

supporting information

Acta Cryst. (2010). E66, m794 [doi:10.1107/S1600536810022117]

catena-Poly[[aqua(imidazole)cadmium(II)]-µ₃-benzene-1,3-dicarboxylato]

Zhengfang Zeng and Hongyan Xu

S1. Comment

In recent years, considerable effort was paied in the study of metal-organic hybrid materials with the extended supermolecular framework structures, owing to their intriguing network topologies and potential application in adsorption, molecular recognition, catalysis and maganetism (Yaghi *et al.*, 1998). Currently, carboxylic acids have been widely used as polydentate and bridging ligands since they can bind metal ions in diverse modes and play an important role in adjusting verious topologies structures. A number of promising supramolecular complexes have been designed and constructed by using carboxylic acids as favorable conditions. (Ma *et al.*, 2008; Wang *et al.*, 2008). In this paper, we report the synthesis and structural characterzation of the title compound in which the isophthalic acid ligand displayed its good coordination ability and diverse coordination modes.

The Cd^{II} ion is six-coordinated by four O atoms from three crystallographically independent benzene-1,3- dicarboxylate ligands and one N atom from the chelating imidazole ligand and one coordinated water molecule (Fig. 1 & Table 1). The neighboring Cdⁱ ion is bridged by the benzene-1, 3-dicarboxylate ligands to form a one-dimensional chain structure. In the crystal structure, the adjacent chains are linked *via* O–H···O and N–H···O hydrogen bonds (Fig. 2 & Table 2) resulting in the formation of a three dimensional supramolecular structure.

S2. Experimental

A 10 ml aqueous solution of imidazole (0.014 g, 0.20 mmol) and isophthalic acid (0.034 g,0.020 *m*mol) was slowly added into cadmium nitrate (0.062 g, 0.20 *m*mol) solution in methanol (10 ml), and the mixed solution was stirred for 20 min and then was heated in a 30 ml Teflon-line autoclave under autogeneous pressure at 423 K for 3 d. After cooling to room temperature, colorless block crystals were obtained. (yield 38%).

S3. Refinement

H atoms bound to H₂O and NH atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. [Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y+1, -z+1; (iii) x, y, z+1.]

Figure 2

The crystal packing of (I), showing one layer of molecules connected by O–H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) x, y-1, z; (ii) x, y-1, z+1; (iii) x+1, y, z; (iv) -x, -y+1, -z+1; (v) -x, -y+1, -z+2.]

catena-Poly[[aqua(imidazole)cadmium(II)]-µ₃-benzene-1,3-dicarboxylato]

Crystal data	
$\begin{bmatrix} Cd(C_8H_4O_4)(C_3H_4N_2)(H_2O) \end{bmatrix}$ $M_r = 362.61$ Triclinic, $P1$ Hall symbol: -P 1 a = 8.2616 (8) Å b = 8.3138 (8) Å c = 10.235 (1) Å a = 67.017 (2)° $\beta = 68.176$ (2)° $\gamma = 81.054$ (2)° V = 600.76 (10) Å ³	Z = 2 F(000) = 356 $D_x = 2.005 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3126 reflections $\theta = 3.3-27.5^{\circ}$ $\mu = 1.84 \text{ mm}^{-1}$ T = 293 K Block, yellow $0.27 \times 0.18 \times 0.06 \text{ mm}$
Data collection	
Bruker APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10 pixels mm ⁻¹ ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.536$, $T_{max} = 1.000$ 3166 measured reflections 2086 independent reflections 2049 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.019$ $\theta_{\rm out} = 25.0^{\circ}$ $\theta_{\rm out} = 2.3^{\circ}$	$k = -9 \rightarrow 4$
$b_{\text{max}} = 25.0^\circ$, $b_{\text{min}} = 2.5^\circ$ $h = -9 \rightarrow 9$	$l = 12 \rightarrow 11$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.072$	H atoms treated by a mixture of independent
S = 1.15	and constrained refinement
2086 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0315P)^2 + 1.1125P]$
184 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.79 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or e	quivalent isotrop	oic displacement	parameters	$(Å^2)$)
----------------------------------	------------------	-------------------	------------------	------------	---------	---

	r	12	7	I. */IT	
~	<i>x</i>	<u> </u>	2		
Cd1	0.08672 (3)	0.32297 (3)	0.90289 (3)	0.02898 (11)	
01	-0.0532 (4)	0.6070 (4)	0.8593 (3)	0.0337 (6)	
O2	0.0672 (4)	0.8334 (4)	0.8475 (3)	0.0382 (6)	
03	0.1082 (4)	0.7617 (4)	0.1628 (3)	0.0347 (6)	
O4	-0.1232 (4)	0.6718 (4)	0.3685 (3)	0.0405 (7)	
05	0.2389 (4)	0.0533 (4)	0.9029 (4)	0.0414 (7)	
H5A	0.209 (10)	0.017 (10)	0.849 (9)	0.10 (2)*	
H5B	0.211 (10)	-0.024 (10)	0.994 (9)	0.10 (3)*	
N1	0.3422 (4)	0.4507 (4)	0.8114 (4)	0.0340 (7)	
N2	0.5999 (5)	0.5524 (5)	0.6516 (4)	0.0453 (9)	
H2	0.687 (9)	0.587 (9)	0.570 (8)	0.08 (2)*	
C1	0.0393 (5)	0.7429 (5)	0.7840 (4)	0.0272 (7)	
C2	0.1174 (5)	0.7962 (5)	0.6165 (4)	0.0255 (7)	
C3	0.2660 (5)	0.8979 (5)	0.5366 (4)	0.0325 (8)	
H3	0.3153	0.9372	0.5868	0.039*	
C4	0.3406 (5)	0.9406 (6)	0.3814 (5)	0.0398 (9)	
H4	0.4428	1.0048	0.3284	0.048*	
C5	0.2642 (5)	0.8885 (5)	0.3047 (4)	0.0333 (8)	
H5	0.3145	0.9184	0.2006	0.040*	
C8	0.0251 (5)	0.7384 (5)	0.3016 (4)	0.0293 (8)	
C7	0.0420 (4)	0.7439 (4)	0.5394 (4)	0.0248 (7)	
H7	-0.0575	0.6757	0.5930	0.030*	

C11	0.4652 (6)	0.4570 (6)	0.6844 (5)	0.0425 (10)
H11	0.4592	0.4010	0.6235	0.051*
C10	0.4032 (6)	0.5481 (6)	0.8641 (5)	0.0436 (10)
H10	0.3441	0.5688	0.9532	0.052*
C9	0.5632 (6)	0.6097 (7)	0.7663 (6)	0.0488 (11)
Н9	0.6338	0.6779	0.7762	0.059*
C6	0.1121 (5)	0.7914 (5)	0.3837 (4)	0.0261 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	U ¹³	<i>U</i> ²³
Cd1	0.03179(17)	0.03203 (17)	0.02429 (16)	-0.01047(11)	_0.00754 (11)	-0.01069(12)
	0.03179(17)	0.03293(17)	0.02429(10)	0.01047(11)	0.00734(11)	0.01009(12)
01	0.0381 (15)	0.0359 (15)	0.0243 (13)	-0.00/0(12)	-0.0089 (11)	-0.0074 (11)
02	0.0528 (17)	0.0447 (16)	0.0260 (13)	-0.0095 (13)	-0.0144 (12)	-0.0175 (12)
O3	0.0442 (15)	0.0420 (15)	0.0236 (13)	-0.0069 (12)	-0.0114 (11)	-0.0154 (11)
04	0.0422 (16)	0.0530 (18)	0.0302 (14)	-0.0195 (13)	-0.0118 (12)	-0.0125 (13)
05	0.0440 (17)	0.0385 (16)	0.0405 (17)	-0.0083 (13)	-0.0105 (14)	-0.0137 (15)
N1	0.0310 (16)	0.0374 (18)	0.0328 (17)	-0.0080 (13)	-0.0085 (13)	-0.0114 (14)
N2	0.0336 (19)	0.055 (2)	0.039 (2)	-0.0110 (17)	-0.0046 (16)	-0.0120 (18)
C1	0.0274 (18)	0.0310 (19)	0.0236 (17)	-0.0004 (14)	-0.0103 (14)	-0.0091 (15)
C2	0.0289 (18)	0.0254 (17)	0.0223 (17)	-0.0011 (14)	-0.0100 (14)	-0.0073 (14)
C3	0.036 (2)	0.042 (2)	0.0276 (19)	-0.0122 (16)	-0.0133 (16)	-0.0137 (16)
C4	0.033 (2)	0.053 (3)	0.032 (2)	-0.0214 (18)	-0.0048 (16)	-0.0118 (18)
C5	0.035 (2)	0.042 (2)	0.0202 (17)	-0.0076 (16)	-0.0060 (15)	-0.0092 (16)
C8	0.038 (2)	0.0273 (18)	0.0267 (18)	-0.0028 (15)	-0.0152 (16)	-0.0089 (15)
C7	0.0250 (17)	0.0278 (17)	0.0220 (17)	-0.0045 (13)	-0.0084 (13)	-0.0075 (14)
C11	0.040 (2)	0.050 (3)	0.040 (2)	-0.0124 (19)	-0.0100 (18)	-0.017 (2)
C10	0.036 (2)	0.057 (3)	0.042 (2)	-0.0128 (19)	-0.0100 (18)	-0.021 (2)
C9	0.040 (2)	0.057 (3)	0.054 (3)	-0.017 (2)	-0.015 (2)	-0.020 (2)
C6	0.0285 (18)	0.0281 (18)	0.0248 (17)	-0.0013 (14)	-0.0113 (14)	-0.0105 (14)

Geometric parameters (Å, °)

Cd1—N1	2.216 (3)	N2—H2	0.85 (7)	
Cd1—O3 ⁱ	2.251 (3)	C1—C2	1.492 (5)	
Cd1—O2 ⁱⁱ	2.311 (3)	C2—C7	1.384 (5)	
Cd1—O5	2.394 (3)	C2—C3	1.388 (5)	
Cd1—O1	2.413 (3)	C3—C4	1.389 (5)	
Cd1—O1 ⁱⁱ	2.626 (3)	С3—Н3	0.9300	
Cd1—O4 ⁱ	2.663 (3)	C4—C5	1.387 (6)	
01—C1	1.266 (5)	C4—H4	0.9300	
O2—C1	1.260 (4)	C5—C6	1.391 (5)	
O3—C8	1.276 (4)	C5—H5	0.9300	
O4—C8	1.252 (5)	C8—C6	1.501 (5)	
O5—H5A	0.84 (8)	C7—C6	1.387 (5)	
O5—H5B	0.87 (8)	C7—H7	0.9300	
N1-C11	1.306 (5)	C11—H11	0.9300	
N1-C10	1.368 (5)	C10—C9	1.356 (6)	

N2—C11	1.330 (6)	C10—H10	0.9300
N2—C9	1.351 (6)	С9—Н9	0.9300
N1—Cd1—O3 ⁱ	143.34 (11)	C9—N2—H2	124 (4)
N1—Cd1—O2 ⁱⁱ	127.43 (11)	O2-C1-O1	121.5 (3)
O3 ⁱ —Cd1—O2 ⁱⁱ	88.49 (10)	O2—C1—C2	119.4 (3)
N1—Cd1—O5	88.63 (11)	O1—C1—C2	119.1 (3)
O3 ⁱ —Cd1—O5	87.33 (11)	C7—C2—C3	119.4 (3)
O2 ⁱⁱ —Cd1—O5	85.20 (11)	C7—C2—C1	120.0 (3)
N1—Cd1—O1	89.20 (11)	C3—C2—C1	120.5 (3)
O3 ⁱ —Cd1—O1	89.03 (10)	C2—C3—C4	119.7 (3)
O2 ⁱⁱ —Cd1—O1	103.25 (10)	С2—С3—Н3	120.2
O5—Cd1—O1	170.71 (11)	С4—С3—Н3	120.2
N1—Cd1—O1 ⁱⁱ	83.08 (10)	C5—C4—C3	120.6 (4)
$O3^{i}$ —Cd1—O1 ⁱⁱ	131.61 (9)	C5—C4—H4	119.7
$O2^{ii}$ —Cd1—O1 ⁱⁱ	52.58 (9)	C3—C4—H4	119.7
05—Cd1—O1 ⁱⁱ	112.79 (11)	C4—C5—C6	119.8 (3)
$01 - Cd1 - 01^{ii}$	75.89 (9)	C4—C5—H5	120.1
$N1-Cd1-O4^{i}$	91.00 (10)	C6-C5-H5	120.1
$O3^{i}$ —Cd1—O4 ⁱ	52 54 (9)	04 - C8 - 03	120.1 121.5(3)
02^{ii} Cd1 04^{i}	137 72 (9)	04-C8-C6	121.3(3) 120.7(3)
$05-Cd1-04^{i}$	78 09 (11)	03 - C8 - C6	120.7(3) 117.8(3)
01—Cd1—O4 ⁱ	92 92 (9)	$C_{2}-C_{7}-C_{6}$	121.2(3)
01^{ii} Cd1 04^{i}	167 35 (9)	C2H7	119.4
C1 - O1 - Cd1	119 5 (2)	C6-C7-H7	119.4
$C1 - O1 - Cd1^{ii}$	85 5 (2)	N1-C11-N2	112.7 (4)
$Cd1 = O1 = Cd1^{ii}$	104 11 (9)	N1-C11-H11	123.7 (4)
$C1 - O2 - Cd1^{ii}$	100.4(2)	N2H11	123.7
$C8-O3-Cd1^{i}$	100.4(2) 102.2(2)	C9-C10-N1	109 4 (4)
Cd1 = 05 = H5A	102.2(2) 108(5)	C9-C10-H10	105.4 (4)
Cd1 = 05 = H5R	110(5)	N1_C10_H10	125.3
H5AH5B	100(3) 109(7)	$N^{2} - C^{9} - C^{10}$	125.5 106 5 (4)
$\frac{11}{10} \frac{11}{10} 11$	1047(3)	N2 - C9 - H9	126.7
C11 N1 $Cd1$	104.7(3) 125.3(3)	C10 - C9 - H9	126.7
C10 N1 $Cd1$	129.8(3)	C7 - C6 - C5	119 1 (3)
$C_{11} = N_{12} = C_{9}$	129.8(3) 106 7 (4)	C7 - C6 - C8	119.1(3) 1204(3)
$C11_N2_H2$	129 (4)	$C_{2} = C_{2} = C_{3}$	120.4(3)
011-112-112	127 (4)	05-00-00	120.4 (5)
N1-Cd1-01-C1	98(3)	$0^{2}-1^{2}-1^{2}-1^{2}$	-1561(3)
$O_{3^{i}}$ C_{d1} O_{1} C_{1}	-1336(3)	01 - C1 - C2 - C7	241(5)
03^{ii} Cd1 01^{ii} Cl	138.2(3)	$0^{2}-0^{2}-0^{2}-0^{2}$	24.1(5)
02 - cd1 - 01 - c1	92.8(3)	02 - C1 - C2 - C3	-1556(4)
04^{i} Cd1 01 Cl	-81 2 (3)	C7 - C2 - C3 - C4	-23(6)
$N1 - Cd1 - O1 - Cd1^{ii}$	-83.06 (11)	$C_1 - C_2 - C_3 - C_4$	2.3(0) 177 5 (4)
$O_{3i} = Cd_1 = O_1 = Cd_{1i}$	133 56 (10)	$C_1 = C_2 = C_3 = C_4$	26(7)
O_2^{ii} Cd1 O1 Cd1 ⁱⁱ	A5 3A (11)	$C_2 - C_3 - C_4 - C_5$	2.0(7)
$O_2 = Cu_1 = O_1 = Cu_1$	0.0	$C_{3} - C_{4} - C_{3} - C_{6}$	4 2 (4)
$O_1 = Cu_1 = O_1 = Cu_1$	-174.03(0)	$C_{d1i} = 03 = 08 = 04$	т.2 (т) _176 6 (2)
	1/4.05 (9)	CuiCoC0	1/0.0(3)

$\begin{array}{c} O3^{i} - Cd1 - N1 - C11 \\ O2^{ii} - Cd1 - N1 - C11 \\ O5 - Cd1 - N1 - C11 \\ O1 - Cd1 - N1 - C11 \\ O1^{ii} - Cd1 - N1 - C11 \\ O4^{i} - Cd1 - N1 - C11 \\ O3^{i} - Cd1 - N1 - C10 \\ O2^{ii} - Cd1 - N1 - C10 \\ O5 - Cd1 - N1 - C10 \\ O1 - Cd1 - N1 - C10 \\ O1^{ii} - Cd1 - N1 - C10 \\ O1^{ii} - Cd1 - N1 - C10 \\ O4^{i} - Cd1 - N1 - C10 \\ O4^{ii} - Cd1 - N1 - C10 \\ Cd1^{ii} - O2 - C1 - O1 \\ Cd1^{ii} - O2 - C1 - C2 \\ Cd1 - O1 - C1 - O2 \\ Cd1^{ii} - O1 - C1 - O1 \\ Cd1^{ii} - O1 - C1 \\ Cd1^{ii} - O1 \\ $	$\begin{array}{c} -24.3 (5) \\ 142.2 (3) \\ 59.3 (4) \\ -111.6 (4) \\ 172.5 (4) \\ -18.7 (4) \\ 150.6 (3) \\ -42.9 (4) \\ -125.8 (4) \\ 63.3 (4) \\ -12.6 (4) \\ 156.2 (4) \\ 0.1 (4) \\ -179.6 (3) \\ -103.8 (4) \\ -0.1 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.1 (5) \\ -179.9 (3) \\ -0.4 (5) \\ 175.6 (3) \\ 1.0 (6) \\ -0.4 (5) \\ -176.1 (3) \\ -1.2 (5) \\ 0.9 (6) \\ 2.1 (5) \\ -178.0 (3) \\ -1.8 (6) \\ 178.3 (4) \\ 9.7 (5) \\ -169.4 (3) \\ -170.4 (4) \end{array}$
Cd1 ⁱⁱ —O1—C1—O2 Cd1—O1—C1—C2 Cd1 ⁱⁱ —O1—C1—C2	-0.1 (3) 76.0 (4) 179.6 (3)	O4—C8—C6—C5 O3—C8—C6—C5	-170.4 (4) 10.4 (5)

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
O5—H5 <i>A</i> ···O2 ⁱⁱⁱ	0.84 (8)	2.07 (8)	2.809 (4)	146 (7)
O5—H5 <i>B</i> ···O3 ^{iv}	0.87 (8)	1.96 (8)	2.786 (4)	158 (7)
N2— $H2$ ···O4 ^v	0.85 (7)	2.00 (7)	2.854 (5)	175 (6)

Symmetry codes: (iii) *x*, *y*–1, *z*; (iv) *x*, *y*–1, *z*+1; (v) *x*+1, *y*, *z*.