

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-Ethyl-9H-carbazole-3-carbaldehyde

Mao-Sen Yuan,^a* Li Zhao^b and Ran-rong Zhang^a

^aCollege of Science, Northwest A&F University, Yangling 712100, Shannxi Province, People's Republic of China, and ^bHospital of Northwest A&F University, Yangling 712100, Shannxi Province, People's Republic of China Correspondence e-mail: yuanms@nwsuaf.edu.cn

Received 18 June 2010; accepted 27 June 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.044; *wR* factor = 0.116; data-to-parameter ratio = 13.3.

The title molecule, C₁₅H₁₃NO, approximates a planar conformation except for the alkyl chain (ethyl group) bonded to the N atom with a maximum deviation from the leastsquares plane through the 15 planar atoms of 0.120 (2) Å for the O atom. The distance of the formyl O atom from the plane of the carbazole ring is 0.227 (2) Å. The N-C bond lengths in the central ring are significantly different, reflecting the electron-withdrawing properties of the aldehyde group. As a consequence, charge transfer may occur from the carbazole N atom to the substituted benzene ring.

Related literature

For the properties of carbazole derivatives, see: van Dijken et al. (2004); Li et al. (2005). For the X-ray structure of 9-ethyl-3.6-diformyl-9H-carbazole, see: Wang et al. (2008) and of 9ethyl-9H-carbazole, see: Kimura et al. (1985).

Experimental

Crystal data

$V = 1172.10 (17) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.08 \text{ mm}^{-1}$
$T = 298 { m K}$
$0.50 \times 0.44 \times 0.43 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.961, \ T_{\max} = 0.967$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.116$ S = 1.052065 reflections

5763 measured reflections 2065 independent reflections 1313 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.029$

```
155 parameters
H-atom parameters constrained
\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}
\Delta \rho_{\rm min} = -0.11 e Å<sup>-3</sup>
```

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the PhD Programs Foundation of the Ministry of Education of China (No. 20090204120033).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2297).

References

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dijken, A. van, Bastiaansen, J. J. A. M., Kiggen, N. M. M., Langeveld, B. M. W., Rothe, C., Monkman, A., Bach, I., Stössel, P. & Brunner, K. (2004). J. Am. Chem. Soc. 126, 7718-7727.
- Kimura, T., Kai, Y., Yasuoka, N. & Kasai, N. (1985). Bull. Chem. Soc. Jpn, 58, 2268-2271.
- Li, J., Liu, D., Li, Y., Lee, C.-S., Kwong, H.-L. & Lee, S. (2005). Chem. Mater. 17, 1208-1212.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, J. J., Zhang, X., Zhang, B. Q., Wang, G. & Yu, X. Q. (2008). Acta Cryst. E64. o1293.

supporting information

Acta Cryst. (2010). E66, o1885 [https://doi.org/10.1107/S1600536810025183]

9-Ethyl-9H-carbazole-3-carbaldehyde

Mao-Sen Yuan, Li Zhao and Ran-rong Zhang

S1. Comment

Carbazole is a conjugated unit which has interesting optical and electronic properties. A number of carbazole derivatives have been designed and synthesized to be used as luminescent materials and hole-transporting materials (van Dijken *et al.*, 2004; Li *et al.*, 2005). In the course of exploring new luminescent compounds, we obtained an intermediate compound, 9-ethyl-3-formyl-9*H*-carbazole (I). Here we report the structure and synthesis of (I).

The molecule (Fig. 1) lies approximately in a plane besides the alkyl chain (ethyl group). There is a minor displacement between the oxygen atom O1 and the plane of the carbazole ring. And the distance from the oxygen atom O1 to the carbazole plane (the least-squares plane defined by all the 13 atoms of the carbazole framework) is 0.227 (2) Å. The remarkable difference of N—C bond lengths is observed in this structure: N1—C1 = 1.372 (3), N1—C12 = 1.391 (3) Å, which is obviously different from that of 9-ethyl-3,6-diformyl-9*H*-carbazole (Wang *et al.*, 2008) and that of 9-ethyl-9*H*-carbazole (Kimura *et al.*, 1985). The different N—C bond lengths maybe root from the structural asymmetry. The pullelectron property of aldehyde group induces a charge-transfer from nitrogen atom N1 to the benzene ring which connects with the aldehyde group.

The molecules are packed in $P2_1/n$ space group, which is the same as for 9-ethyl-3,6-diformyl-9*H*-carbazole, but different from that of 9-ethyl-9*H*-carbazole (*Pbca*). There are no classic hydrogen bonds in this structure. However, the weak intermolecular interaction C11—H11…O1 (symmetry code for O1: *x*-1, *y*, *z*), is helpful to the stabilization of the crystal structure (Fig. 2). This intermolecular hydrogen bond is characterized by the H11…O1 separation of 2.54 Å.

S2. Experimental

9-Ethyl-9*H*-carbazole (0.30 g, 1.54 mmol) was dissolved in *N*,*N*-dimethylformamide (DMF, 10 ml). After cooling the mixture to 273 K, a DMF solution of POCl₃ (0.24 g, 1.60 mmol) was slowly added. After stirring for 10 h., the mixture was poured into ice water and further stirred for 0.5 h. The solution was extracted with chloroform and dried over Na_2SO_4 . After removing the solvent, the crude product was purified by recrystallization from ethanol, affording the title compound, (I) (0.29 g, 85%). Then, compound (I) was dissolved in a mixture of solvents, chloroform and hexane, and colorless block crystals were formed on slow evaporation at room temperature over one week.

S3. Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93 Å (for aromatic CH), C—H = 0.97 %A (for CH₂ groups), and 0.96 %A (for CH₃ groups). Their isotropic displacement parameters were set to 1.2 times (1.5 times for CH₃ groups) the equivalent displacement parameter of their parent atoms.

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view of the molecular packing of (I) along axis b.

9-Ethyl-9H-carbazole-3-carbaldehyde

Crystal data

C₁₅H₁₃NO $M_r = 223.26$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 10.6523 (10) Å b = 8.2312 (6) Å c = 13.8005 (12) Å $\beta = 104.387 (1)^{\circ}$ $V = 1172.10 (17) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans F(000) = 472 $D_x = 1.265 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 1960 reflections $\theta = 2.8-25.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.50 \times 0.44 \times 0.43 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.961$, $T_{max} = 0.967$ 5763 measured reflections 2065 independent reflections 1313 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.029$	$k = -9 \rightarrow 5$
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 2.2^{\circ}$	$l = -16 \rightarrow 16$
$h = -12 \rightarrow 12$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.05	H-atom parameters constrained
2065 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0369P)^2 + 0.3721P]$
155 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
0 constraints	$\Delta ho_{ m max} = 0.13 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.23808 (16)	0.0604 (2)	0.36043 (12)	0.0579 (5)	
01	0.83067 (17)	0.1354 (3)	0.36513 (14)	0.0966 (6)	
C1	0.3591 (2)	0.0376 (3)	0.34470 (15)	0.0518 (5)	
C2	0.3972 (2)	-0.0683 (3)	0.27949 (16)	0.0631 (6)	
H2	0.3382	-0.1383	0.2390	0.076*	
C3	0.5250 (2)	-0.0665 (3)	0.27648 (16)	0.0626 (6)	
H3	0.5528	-0.1382	0.2340	0.075*	
C4	0.6142 (2)	0.0397 (3)	0.33530 (15)	0.0545 (6)	
C5	0.5753 (2)	0.1450 (3)	0.40056 (14)	0.0529 (5)	
Н5	0.6347	0.2157	0.4401	0.063*	
C6	0.44792 (19)	0.1444 (2)	0.40663 (13)	0.0466 (5)	
C7	0.37450 (19)	0.2342 (2)	0.46404 (14)	0.0489 (5)	
C8	0.4063 (2)	0.3526 (3)	0.53694 (16)	0.0639 (6)	
H8	0.4914	0.3886	0.5592	0.077*	
C9	0.3104 (3)	0.4162 (3)	0.57591 (18)	0.0766 (7)	
H9	0.3304	0.4973	0.6242	0.092*	
C10	0.1842 (3)	0.3611 (3)	0.54428 (19)	0.0773 (7)	
H10	0.1211	0.4063	0.5720	0.093*	
C11	0.1490 (2)	0.2417 (3)	0.47318 (17)	0.0666 (7)	
H11	0.0640	0.2049	0.4524	0.080*	
C12	0.2467 (2)	0.1786 (3)	0.43386 (15)	0.0531 (5)	
C13	0.7479 (2)	0.0386 (3)	0.32700 (18)	0.0709 (7)	
H13	0.7716	-0.0439	0.2890	0.085*	
C14	0.1223 (2)	-0.0304 (3)	0.31232 (18)	0.0747 (7)	
H14A	0.1251	-0.0561	0.2443	0.090*	
H14B	0.0467	0.0368	0.3092	0.090*	
C15	0.1098 (3)	-0.1842 (4)	0.3666 (2)	0.1012 (10)	
H15A	0.1832	-0.2527	0.3679	0.152*	
H15B	0.0318	-0.2395	0.3329	0.152*	
H15C	0.1065	-0.1593	0.4339	0.152*	

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0484 (11)	0.0677 (12)	0.0556 (11)	-0.0109 (9)	0.0089 (8)	-0.0058 (10)
01	0.0640 (12)	0.1300 (18)	0.1015 (14)	-0.0201 (12)	0.0310 (10)	0.0030 (13)
C1	0.0529 (13)	0.0550 (13)	0.0474 (12)	-0.0049 (10)	0.0122 (10)	0.0044 (10)
C2	0.0631 (15)	0.0672 (16)	0.0590 (14)	-0.0122 (12)	0.0152 (11)	-0.0083 (12)
C3	0.0731 (17)	0.0609 (15)	0.0577 (14)	0.0011 (12)	0.0239 (12)	-0.0005 (12)
C4	0.0584 (14)	0.0573 (14)	0.0494 (12)	-0.0012 (11)	0.0169 (10)	0.0115 (11)
C5	0.0529 (13)	0.0560 (13)	0.0480 (12)	-0.0121 (10)	0.0093 (10)	0.0098 (11)
C6	0.0495 (12)	0.0483 (12)	0.0411 (11)	-0.0056 (10)	0.0093 (9)	0.0083 (10)
C7	0.0567 (13)	0.0473 (12)	0.0427 (11)	-0.0095 (10)	0.0123 (9)	0.0086 (10)
C8	0.0803 (17)	0.0608 (15)	0.0553 (13)	-0.0202 (13)	0.0257 (12)	-0.0002 (12)
C9	0.109 (2)	0.0605 (16)	0.0702 (16)	-0.0180 (15)	0.0410 (15)	-0.0074 (13)
C10	0.095 (2)	0.0729 (17)	0.0764 (17)	0.0029 (16)	0.0449 (15)	0.0022 (15)
C11	0.0623 (15)	0.0761 (17)	0.0652 (14)	-0.0018 (13)	0.0228 (12)	0.0092 (14)
C12	0.0581 (14)	0.0559 (13)	0.0454 (11)	-0.0020 (11)	0.0129 (10)	0.0079 (11)
C13	0.0654 (17)	0.0861 (19)	0.0677 (16)	0.0026 (14)	0.0289 (13)	0.0157 (14)
C14	0.0548 (15)	0.097 (2)	0.0704 (15)	-0.0197 (13)	0.0114 (12)	-0.0166 (15)
C15	0.108 (2)	0.108 (2)	0.092 (2)	-0.0571 (19)	0.0328 (17)	-0.0225 (19)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C1	1.372 (3)	C7—C12	1.398 (3)	
N1-C12	1.391 (3)	C8—C9	1.371 (3)	
N1C14	1.453 (3)	C8—H8	0.9300	
O1—C13	1.208 (3)	C9—C10	1.382 (3)	
C1—C2	1.384 (3)	С9—Н9	0.9300	
C1—C6	1.413 (3)	C10-C11	1.374 (3)	
C2—C3	1.372 (3)	C10—H10	0.9300	
С2—Н2	0.9300	C11—C12	1.388 (3)	
C3—C4	1.394 (3)	C11—H11	0.9300	
С3—Н3	0.9300	C13—H13	0.9300	
C4—C5	1.385 (3)	C14—C15	1.494 (4)	
C4—C13	1.457 (3)	C14—H14A	0.9700	
C5—C6	1.380 (3)	C14—H14B	0.9700	
С5—Н5	0.9300	C15—H15A	0.9600	
C6—C7	1.447 (3)	C15—H15B	0.9600	
С7—С8	1.381 (3)	C15—H15C	0.9600	
C1—N1—C12	108.45 (16)	C8—C9—C10	120.8 (2)	
C1—N1—C14	125.50 (19)	С8—С9—Н9	119.6	
C12—N1—C14	125.96 (19)	С10—С9—Н9	119.6	
N1—C1—C2	128.9 (2)	C11—C10—C9	122.1 (2)	
N1—C1—C6	109.47 (18)	C11-C10-H10	118.9	
C2—C1—C6	121.60 (19)	C9—C10—H10	118.9	
C3—C2—C1	117.8 (2)	C10-C11-C12	116.7 (2)	
С3—С2—Н2	121.1	C10-C11-H11	121.7	

C1—C2—H2	121.1	C12—C11—H11	121.7
C2—C3—C4	121.8 (2)	C11—C12—N1	128.8 (2)
С2—С3—Н3	119.1	C11—C12—C7	122.0 (2)
С4—С3—Н3	119.1	N1—C12—C7	109.22 (18)
C5—C4—C3	120.0 (2)	O1—C13—C4	125.7 (3)
C5—C4—C13	120.7 (2)	O1—C13—H13	117.1
C3—C4—C13	119.2 (2)	C4—C13—H13	117.1
C6—C5—C4	119.61 (19)	N1-C14-C15	112.2 (2)
С6—С5—Н5	120.2	N1—C14—H14A	109.2
С4—С5—Н5	120.2	C15—C14—H14A	109.2
C5—C6—C1	119.12 (19)	N1—C14—H14B	109.2
C5—C6—C7	134.79 (19)	C15—C14—H14B	109.2
C1—C6—C7	106.09 (17)	H14A—C14—H14B	107.9
C8—C7—C12	119.5 (2)	C14—C15—H15A	109.5
C8—C7—C6	133.74 (19)	C14—C15—H15B	109.5
С12—С7—С6	106.76 (18)	H15A—C15—H15B	109.5
C9—C8—C7	118.9 (2)	C14—C15—H15C	109.5
С9—С8—Н8	120.6	H15A—C15—H15C	109.5
С7—С8—Н8	120.6	H15B—C15—H15C	109.5
C12—N1—C1—C2	179.4 (2)	C1—C6—C7—C12	-0.3 (2)
C14—N1—C1—C2	2.6 (3)	C12—C7—C8—C9	-1.9 (3)
C12—N1—C1—C6	-1.4 (2)	C6—C7—C8—C9	178.8 (2)
C14—N1—C1—C6	-178.23 (19)	C7—C8—C9—C10	1.1 (3)
N1—C1—C2—C3	179.0 (2)	C8—C9—C10—C11	0.0 (4)
C6-C1-C2-C3	-0.1 (3)	C9-C10-C11-C12	-0.2 (3)
C1—C2—C3—C4	-1.2 (3)	C10-C11-C12-N1	-178.6 (2)
C2—C3—C4—C5	1.4 (3)	C10-C11-C12-C7	-0.6 (3)
C2—C3—C4—C13	-178.5 (2)	C1—N1—C12—C11	179.4 (2)
C3—C4—C5—C6	-0.2 (3)	C14—N1—C12—C11	-3.8 (3)
C13—C4—C5—C6	179.62 (18)	C1—N1—C12—C7	1.2 (2)
C4—C5—C6—C1	-1.0 (3)	C14—N1—C12—C7	178.0 (2)
C4—C5—C6—C7	-179.8 (2)	C8—C7—C12—C11	1.7 (3)
N1—C1—C6—C5	-178.10 (17)	C6-C7-C12-C11	-178.88 (19)
C2-C1-C6-C5	1.2 (3)	C8—C7—C12—N1	-179.94 (17)
N1-C1-C6-C7	1.1 (2)	C6—C7—C12—N1	-0.5 (2)
C2—C1—C6—C7	-179.68 (19)	C5—C4—C13—O1	-8.4 (3)
C5—C6—C7—C8	-2.0 (4)	C3—C4—C13—O1	171.5 (2)
C1—C6—C7—C8	179.0 (2)	C1—N1—C14—C15	86.1 (3)
C5—C6—C7—C12	178.6 (2)	C12—N1—C14—C15	-90.2 (3)
	× /		