

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## *N*-(4-Bromobenzylidene)-3,4-dimethylisoxazol-5-amine

## Abdullah M. Asiri,<sup>a,b</sup> Salman A. Khan<sup>b</sup> and M. Nawaz Tahir<sup>c</sup>\*

<sup>a</sup>The Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, <sup>b</sup>Department of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and <sup>c</sup>Department of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir\_uos@yahoo.com

Received 11 July 2010; accepted 13 July 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.025; wR factor = 0.059; data-to-parameter ratio = 14.4.

In the title compound,  $C_{12}H_{11}BrN_2O$ , the 4-bromobenzaldehyde and 5-amino-3,4-dimethylisoxazole units are oriented at a dihedral angle of 4.89 (8)°. In the crystal, weak  $\pi$ - $\pi$  interactions are present between the benzene rings at a centroid–centroid distance of 3.7862 (14) Å.

#### **Related literature**

For related structures, see: Asiri *et al.* (2010): Fun *et al.* (2010*a*,*b*): Shad *et al.* (2008): Tahir *et al.* (2008). For graph-set notation, see: Bernstein *et al.* (1995).



b = 8.8709 (5) Å

c = 9.1052 (5) Å

 $\alpha = 97.024 \ (2)^{\circ}$ 

 $\beta = 102.961 (1)^{\circ}$ 

#### **Experimental**

Crystal data

| $C_{12}H_{11}BrN_2O$       |   |
|----------------------------|---|
| $M_r = 279.14$             |   |
| Triclinic, $P\overline{1}$ |   |
| a = 7.6406 (4)             | Å |

 $\gamma = 92.786 \ (2)^{\circ}$   $V = 595.06 \ (6) \text{ Å}^3$  Z = 2Mo  $K\alpha$  radiation

#### Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005)  $T_{min} = 0.568, T_{max} = 0.665$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$  $wR(F^2) = 0.059$ S = 1.032119 reflections  $\mu = 3.43 \text{ mm}^{-1}$  T = 296 K $0.30 \times 0.14 \times 0.12 \text{ mm}$ 

organic compounds

8212 measured reflections 2119 independent reflections 1643 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.022$ 

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia, for the provision of research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2226).

#### References

- Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, 01783.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fun, H.-K., Hemamalini, M., Asiri, A. M. & Khan, S. A. (2010a). Acta Cryst. E66, 01037–01038.
- Fun, H.-K., Hemamalini, M., Asiri, A. M., Khan, S. A. & Khan, K. A. (2010b). Acta Cryst. E66, 0773–0774.
- Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, 0635.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, 0720.

# supporting information

 Acta Cryst. (2010). E66, o2077 [https://doi.org/10.1107/S1600536810027893]

 N-(4-Bromobenzylidene)-3,4-dimethylisoxazol-5-amine

## Abdullah M. Asiri, Salman A. Khan and M. Nawaz Tahir

## S1. Comment

Heterocycles such as nitrogen and oxygen containing compounds are abundant in nature and are of great significance to life. We herein report the synthesis and crystal structure of title compound (I, Fig. 1).

The crystal structures of 4-chloro-2-  $[(E)-(\{4-[N-(3,4-dimethylisoxazol-5-yl)sulfamoyl]phenyl\}iminio) methyl]-phenolate (Shad$ *et al.* $, 2008), 4-bromo-2-((E)-{4-[(3,4-dimethylisoxazol-5-yl)sulfamoyl]phenyl} iminiomethyl)phenolate (Tahir$ *et al.*, 2008), 2-[(E)-(3,4-dimethylisoxazol-5-yl)iminomethyl]phenol (Fun*et al.*, 2010*a*), 1-[(E)-(3,4-dimethylisoxazol-5-yl)iminomethyl]phenol (Fun*et al.*, 2010*a*), 1-[(E)-(3,4-dimethylisoxazol-5-yl)iminomethyl]phenol (Fun*et al.*, 2010*a*), 1-[(E)-(3,4-dimethylisoxazol-5-yl)iminomethyl]-2-naphthol (Fun*et al.*, 2010*b*) and*N*-[4-(dimethylamino)benzylidene]-3,4-dimethylisoxazole isoxazol-5-amine (Asiri*et al.*, 2010) have been published previously, which contain the 5-amino-3,4-dimethylisoxazole moiety.

In (I), the 4-bromobenzaldehyde moiety A (C1—C7/BR1) and 5-amino-3,4-dimethylisoxazole moiety B (N1/C8—C12/N2/O1) are planar with r. m. s. deviations of 0.0119 Å and 0.0128 Å, respectively. The dihedral angle between A/B is 4.89 (8)°. The title compound essentially consists of monomers. Weak intramolecular H-bonding of C—H···O type (Table 1, Fig. 1) exists and complete an S(5) ring motif (Bernstein *et al.*, 1995). There exists also  $\pi$ - $\pi$  interaction between the centroids of phenyl rings at a distance of 3.7862 (14) Å [symmetry code: -x, 2 - y, 1 - z].

## **S2.** Experimental

A mixture of 4-bromobenzaldehyde (0.40 g, 0.0022 mol) and 5-amino-3,4-dimethylisoxazole (0.24 g, 0.0022 mol) in ethanol (15 ml) was refluxed for 5 h with stirring to give a light brown needles of title compound (I).

## **S3. Refinement**

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with  $U_{iso}(H) = x U_{eq}(C)$ , where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.



### Figure 1

View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. The dotted line indicate the intramolecular H-bond.

Z = 2

F(000) = 280

N-(4-Bromobenzylidene)-3,4-dimethylisoxazol-5-amine

Crystal data

C<sub>12</sub>H<sub>11</sub>BrN<sub>2</sub>O  $M_r = 279.14$ Triclinic,  $P\overline{1}$ Hall symbol: -P 1 a = 7.6406 (4) Å b = 8.8709 (5) Å c = 9.1052 (5) Å  $\alpha = 97.024$  (2)°  $\beta = 102.961$  (1)°  $\gamma = 92.786$  (2)° V = 595.06 (6) Å<sup>3</sup>

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.10 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005)  $T_{\min} = 0.568$ ,  $T_{\max} = 0.665$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.025$  $wR(F^2) = 0.059$ S = 1.032119 reflections 147 parameters  $D_{x} = 1.558 \text{ Mg m}^{-3}$ Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1643 reflections  $\theta = 2.3-25.3^{\circ}$   $\mu = 3.43 \text{ mm}^{-1}$  T = 296 KNeedle, brown  $0.30 \times 0.14 \times 0.12 \text{ mm}$ 8212 measured reflections 2119 independent reflections 1643 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.022$  $\theta_{max} = 25.3^{\circ}, \theta_{min} = 2.3^{\circ}$ 

 $h = -9 \rightarrow 9$   $k = -10 \rightarrow 10$  $l = -10 \rightarrow 10$ 

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

| H-atom parameters constrained                     | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
|---------------------------------------------------|------------------------------------------------------------|
| $w = 1/[\sigma^2(F_o^2) + (0.0225P)^2 + 0.2246P]$ | $\Delta \rho_{\rm max} = 0.20 \ { m e} \ { m \AA}^{-3}$    |
| where $P = (F_0^2 + 2F_c^2)/3$                    | $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$ |

Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| Fractional atomic coordinates and isotropic or | equivalent isotropic disp | vlacement parameters ( $\AA^2$ ) |
|------------------------------------------------|---------------------------|----------------------------------|
|------------------------------------------------|---------------------------|----------------------------------|

|      | <i>x</i>     | у            | Z            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|--------------|--------------|--------------|-------------------------------|
| Br1  | -0.32255 (4) | 1.00984 (3)  | 0.72075 (3)  | 0.0712 (1)                    |
| O1   | 0.4539 (2)   | 0.51578 (18) | 0.30328 (18) | 0.0572 (6)                    |
| N1   | 0.1487 (3)   | 0.55019 (19) | 0.3071 (2)   | 0.0440 (6)                    |
| N2   | 0.5503 (3)   | 0.4289 (3)   | 0.2111 (3)   | 0.0656 (8)                    |
| C1   | 0.0706 (3)   | 0.7262 (2)   | 0.4987 (2)   | 0.0421 (8)                    |
| C2   | -0.1140 (3)  | 0.7008 (2)   | 0.4413 (3)   | 0.0471 (8)                    |
| C3   | -0.2317 (3)  | 0.7844 (3)   | 0.5070 (3)   | 0.0509 (8)                    |
| C4   | -0.1622 (3)  | 0.8940 (2)   | 0.6301 (3)   | 0.0489 (9)                    |
| C5   | 0.0186 (4)   | 0.9215 (3)   | 0.6888 (3)   | 0.0571 (9)                    |
| C6   | 0.1356 (3)   | 0.8365 (3)   | 0.6240 (3)   | 0.0538 (9)                    |
| C7   | 0.1988 (3)   | 0.6429 (2)   | 0.4298 (3)   | 0.0455 (8)                    |
| C8   | 0.2749 (3)   | 0.4794 (2)   | 0.2430 (3)   | 0.0433 (8)                    |
| C9   | 0.2501 (3)   | 0.3744 (2)   | 0.1180 (3)   | 0.0457 (8)                    |
| C10  | 0.4265 (3)   | 0.3478 (3)   | 0.1044 (3)   | 0.0517 (9)                    |
| C11  | 0.4836 (4)   | 0.2423 (3)   | -0.0149 (3)  | 0.0745 (11)                   |
| C12  | 0.0764 (4)   | 0.3028 (3)   | 0.0200 (3)   | 0.0659 (10)                   |
| H2   | -0.15915     | 0.62688      | 0.35786      | 0.0565*                       |
| H3   | -0.35551     | 0.76687      | 0.46887      | 0.0611*                       |
| Н5   | 0.06270      | 0.99657      | 0.77139      | 0.0686*                       |
| H6   | 0.25905      | 0.85335      | 0.66457      | 0.0646*                       |
| H7   | 0.32075      | 0.65805      | 0.47691      | 0.0546*                       |
| H11A | 0.61269      | 0.24881      | 0.00435      | 0.1118*                       |
| H11B | 0.43483      | 0.27080      | -0.11341     | 0.1118*                       |
| H11C | 0.43975      | 0.13964      | -0.01207     | 0.1118*                       |
| H12A | -0.02153     | 0.34332      | 0.05809      | 0.0989*                       |
| H12B | 0.07209      | 0.19462      | 0.02086      | 0.0989*                       |
| H12C | 0.06658      | 0.32433      | -0.08221     | 0.0989*                       |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$   | $U^{13}$   | $U^{23}$    |
|-----|-------------|-----------------|-----------------|------------|------------|-------------|
| Br1 | 0.0760 (2)  | 0.0641 (2)      | 0.0851 (2)      | 0.0188 (1) | 0.0448 (2) | 0.0012 (1)  |
| 01  | 0.0487 (11) | 0.0650 (10)     | 0.0542 (10)     | 0.0090 (8) | 0.0134 (8) | -0.0109 (8) |

# supporting information

| N1  | 0.0499 (12) | 0.0408 (10) | 0.0421 (11) | 0.0068 (8)  | 0.0138 (9)  | 0.0023 (9)   |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|
| N2  | 0.0549 (14) | 0.0742 (14) | 0.0684 (15) | 0.0155 (11) | 0.0226 (12) | -0.0074 (12) |
| C1  | 0.0501 (15) | 0.0399 (12) | 0.0394 (13) | 0.0059 (10) | 0.0163 (10) | 0.0061 (10)  |
| C2  | 0.0523 (16) | 0.0422 (12) | 0.0466 (14) | 0.0001 (10) | 0.0157 (11) | -0.0006 (10) |
| C3  | 0.0448 (15) | 0.0493 (13) | 0.0603 (16) | 0.0033 (10) | 0.0164 (12) | 0.0063 (12)  |
| C4  | 0.0598 (17) | 0.0419 (12) | 0.0521 (15) | 0.0077 (10) | 0.0271 (12) | 0.0063 (11)  |
| C5  | 0.0624 (19) | 0.0568 (15) | 0.0492 (15) | 0.0015 (12) | 0.0174 (12) | -0.0115 (12) |
| C6  | 0.0456 (15) | 0.0632 (15) | 0.0486 (15) | 0.0020 (11) | 0.0104 (11) | -0.0063 (12) |
| C7  | 0.0449 (14) | 0.0482 (13) | 0.0446 (14) | 0.0075 (10) | 0.0117 (10) | 0.0071 (11)  |
| C8  | 0.0476 (15) | 0.0428 (12) | 0.0410 (13) | 0.0081 (10) | 0.0119 (10) | 0.0065 (10)  |
| C9  | 0.0590 (16) | 0.0397 (12) | 0.0398 (13) | 0.0087 (10) | 0.0140 (11) | 0.0045 (10)  |
| C10 | 0.0652 (17) | 0.0456 (13) | 0.0482 (15) | 0.0143 (12) | 0.0209 (13) | 0.0037 (11)  |
| C11 | 0.089 (2)   | 0.0725 (18) | 0.0698 (19) | 0.0249 (15) | 0.0379 (16) | -0.0036 (14) |
| C12 | 0.073 (2)   | 0.0616 (16) | 0.0553 (16) | 0.0060 (13) | 0.0070 (14) | -0.0075 (13) |
|     |             |             |             |             |             |              |

Geometric parameters (Å, °)

| Br1—C4                 | 1.899 (2) | C9—C10                     | 1.409 (3) |
|------------------------|-----------|----------------------------|-----------|
| O1—N2                  | 1.420 (3) | C9—C12                     | 1.486 (4) |
| O1—C8                  | 1.361 (3) | C10-C11                    | 1.500 (4) |
| N1C7                   | 1.274 (3) | C2—H2                      | 0.9300    |
| N1-C8                  | 1.374 (3) | С3—Н3                      | 0.9300    |
| N2-C10                 | 1.307 (4) | С5—Н5                      | 0.9300    |
| C1—C2                  | 1.387 (3) | С6—Н6                      | 0.9300    |
| C1—C6                  | 1.390 (3) | С7—Н7                      | 0.9300    |
| C1—C7                  | 1.460 (3) | C11—H11A                   | 0.9600    |
| C2—C3                  | 1.384 (3) | C11—H11B                   | 0.9600    |
| C3—C4                  | 1.378 (4) | C11—H11C                   | 0.9600    |
| C4—C5                  | 1.363 (4) | C12—H12A                   | 0.9600    |
| C5—C6                  | 1.382 (4) | C12—H12B                   | 0.9600    |
| C8—C9                  | 1.351 (3) | C12—H12C                   | 0.9600    |
| Br1…C11 <sup>i</sup>   | 3.595 (3) | C4····C6 <sup>ii</sup>     | 3.553 (3) |
| Br1…C7 <sup>ii</sup>   | 3.687 (2) | C6···C4 <sup>ii</sup>      | 3.553 (3) |
| O1···C3 <sup>iii</sup> | 3.355 (3) | C7…Br1 <sup>ii</sup>       | 3.687 (2) |
| O1···H3 <sup>iii</sup> | 2.6900    | C7····C2 <sup>iv</sup>     | 3.481 (3) |
| O1…H7                  | 2.3400    | C8····C3 <sup>iv</sup>     | 3.512 (3) |
| N1…C2 <sup>iv</sup>    | 3.426 (3) | C11····Br1 <sup>viii</sup> | 3.595 (3) |
| N1…H2                  | 2.6000    | H2…N1                      | 2.6000    |
| N1…H12A                | 2.7600    | H2…N2 <sup>vii</sup>       | 2.7400    |
| N1…H12C <sup>v</sup>   | 2.7100    | H3…O1 <sup>vii</sup>       | 2.6900    |
| N2…H2 <sup>iii</sup>   | 2.7400    | H6…H7                      | 2.4200    |
| N2…H11B <sup>vi</sup>  | 2.9100    | H7…O1                      | 2.3400    |
| C2…N1 <sup>iv</sup>    | 3.426 (3) | H7…H6                      | 2.4200    |
| C2···C7 <sup>iv</sup>  | 3.481 (3) | H11B···N2 <sup>vi</sup>    | 2.9100    |
| C3…O1 <sup>vii</sup>   | 3.355 (3) | H12A…N1                    | 2.7600    |
| C3····C8 <sup>iv</sup> | 3.512 (3) | H12C…N1 <sup>v</sup>       | 2.7100    |

| N2—O1—C8      | 107.76 (18) | C1—C2—H2       | 120.00      |
|---------------|-------------|----------------|-------------|
| C7—N1—C8      | 119.9 (2)   | С3—С2—Н2       | 120.00      |
| O1—N2—C10     | 105.0 (2)   | С2—С3—Н3       | 121.00      |
| C2—C1—C6      | 118.9 (2)   | С4—С3—Н3       | 121.00      |
| C2—C1—C7      | 122.08 (18) | С4—С5—Н5       | 120.00      |
| C6—C1—C7      | 119.0 (2)   | С6—С5—Н5       | 120.00      |
| C1—C2—C3      | 120.6 (2)   | С1—С6—Н6       | 120.00      |
| C2—C3—C4      | 118.8 (2)   | С5—С6—Н6       | 120.00      |
| Br1-C4-C3     | 119.17 (18) | N1—C7—H7       | 119.00      |
| Br1-C4-C5     | 119.02 (19) | С1—С7—Н7       | 119.00      |
| C3—C4—C5      | 121.8 (2)   | C10-C11-H11A   | 109.00      |
| C4—C5—C6      | 119.2 (2)   | C10-C11-H11B   | 109.00      |
| C1—C6—C5      | 120.6 (2)   | C10—C11—H11C   | 109.00      |
| N1—C7—C1      | 122.0 (2)   | H11A—C11—H11B  | 109.00      |
| O1—C8—N1      | 120.5 (2)   | H11A—C11—H11C  | 109.00      |
| O1—C8—C9      | 110.4 (2)   | H11B—C11—H11C  | 109.00      |
| N1—C8—C9      | 129.2 (2)   | C9—C12—H12A    | 109.00      |
| C8—C9—C10     | 103.9 (2)   | C9—C12—H12B    | 109.00      |
| C8—C9—C12     | 127.6 (2)   | C9—C12—H12C    | 109.00      |
| C10—C9—C12    | 128.5 (2)   | H12A—C12—H12B  | 110.00      |
| N2—C10—C9     | 113.0 (2)   | H12A—C12—H12C  | 109.00      |
| N2-C10-C11    | 118.9 (2)   | H12B—C12—H12C  | 109.00      |
| C9—C10—C11    | 128.1 (2)   |                |             |
|               |             |                |             |
| C8-01-N2-C10  | -0.1 (3)    | C1—C2—C3—C4    | 0.3 (4)     |
| N2-O1-C8-C9   | 0.1 (2)     | C2—C3—C4—Br1   | 179.81 (18) |
| N2-O1-C8-N1   | -178.1 (2)  | C2—C3—C4—C5    | -0.3 (4)    |
| C7—N1—C8—C9   | 177.3 (2)   | Br1-C4-C5-C6   | 179.42 (19) |
| C8—N1—C7—C1   | 177.18 (18) | C3—C4—C5—C6    | -0.5 (4)    |
| C7—N1—C8—O1   | -4.8 (3)    | C4—C5—C6—C1    | 1.2 (4)     |
| O1—N2—C10—C9  | 0.1 (3)     | O1—C8—C9—C10   | 0.0 (3)     |
| O1—N2—C10—C11 | 179.6 (2)   | N1—C8—C9—C12   | -2.8 (4)    |
| C2-C1-C6-C5   | -1.2 (3)    | O1—C8—C9—C12   | 179.1 (2)   |
| C6—C1—C2—C3   | 0.4 (3)     | N1—C8—C9—C10   | 178.0 (2)   |
| C7—C1—C2—C3   | -178.4 (2)  | C8—C9—C10—N2   | -0.1 (3)    |
| C7—C1—C6—C5   | 177.6 (2)   | C12—C9—C10—C11 | 1.4 (4)     |
| C2-C1-C7-N1   | 5.0 (3)     | C8—C9—C10—C11  | -179.5 (3)  |
| C6—C1—C7—N1   | -173.7 (2)  | C12—C9—C10—N2  | -179.2 (2)  |

Symmetry codes: (i) *x*-1, *y*+1, *z*+1; (ii) -*x*, -*y*+2, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) -*x*, -*y*+1, -*z*+1; (v) -*x*, -*y*+1, -*z*; (vi) -*x*+1, -*y*+1, -*z*; (vii) *x*-1, *y*, *z*; (viii) *x*+1, *y*-1, *z*-1.

## *Hydrogen-bond geometry (Å, °)*

| D—H···A  | D—H    | H···A  | D····A    | <i>D</i> —H··· <i>A</i> |
|----------|--------|--------|-----------|-------------------------|
| С7—Н7…О1 | 0.9300 | 2.3400 | 2.702 (3) | 103.00                  |