Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2Z)-2-[(2,3-Dimethylphenyl)imino]-1,2diphenylethanone

Muhammad Ilyas Tariq,^a Muhammad Sarfraz,^a M. Nawaz Tahir,^{b*} Shahbaz Ahmad^a and Ishtiag Hussain^a

^aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 13 July 2010; accepted 14 July 2010

Key indicators: single-crystal X-ray study: T = 296 K: mean σ (C–C) = 0.002 Å: R factor = 0.040; wR factor = 0.119; data-to-parameter ratio = 14.2.

In the title compound, $C_{22}H_{19}NO$, the 2,3-dimethylanilinic group is planar with an r.m.s. deviation of 0.0226 Å. The phenyl rings with the carbonyl and imine substituents are also planar with r.m.s. deviations of 0.0019 and 0.0048 Å, respectively. These phenyl rings are oriented at dihedral angles of 74.70 (5) and 79.43 (5) $^{\circ}$, respectively, with the 2,3dimethylanilinic group, whereas the dihedral angle between them is 88.28 (4)°. Weak intramolecular $C-H \cdots N$ hydrogen bonding occurs and completes an S(5) ring motif in the molecule. In the crystal, weak π - π interactions are present between the carbonyl-containing phenyl rings at a centroidcentroid distance of 3.5958 (12) Å. $C-H\cdots\pi$ interactions between the 2,3-dimethylanilinic and the carbonyl-containing phenyl rings are also present, where the C-H group is from the former.

Related literature

For title compound has been characterized as part of our programme for the synthesis of Schiff bases derived from 2,3dimethylaniline, see: Hussain et al. (2010); Sarfraz et al. (2010); Tahir et al. (2010a,b); Tariq et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data C22H19NO $M_r = 313.38$

Monoclinic, $P2_1/n$ a = 13.3342 (3) Å

b = 8.7021 (2) Å c = 15.6944 (5) Å $\beta = 108.448 \ (1)^{\circ}$ V = 1727.52 (8) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD	13196 measured reflections
diffractometer	3116 independent reflections
Absorption correction: multi-scan	2296 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.027$
$T_{\min} = 0.982, T_{\max} = 0.988$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	219 parameters
$wR(F^2) = 0.119$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}$
3116 reflections	$\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$

Mo $K\alpha$ radiation

 $0.32 \times 0.25 \times 0.14 \text{ mm}$

 $\mu = 0.07 \text{ mm}^{-1}$

T = 296 K

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C18-C23 ring.

D-H $D - H \cdot \cdot \cdot A$ $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $C7 - H7B \cdot \cdot \cdot N1$ 0.96 2.38 2.849 (2) 109 $C5-H5\cdots Cg1^{i}$ 0.93 2.99 3.6636 (19) 130

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2227).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, 01953.
- Sarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010a). Acta Cryst. E66, 01562.
- Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010b). Acta Cryst. E66, 01817.
- Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Crvst. E66, 01561.

supporting information

Acta Cryst. (2010). E66, o2078 [https://doi.org/10.1107/S1600536810028217]

(2Z)-2-[(2,3-Dimethylphenyl)imino]-1,2-diphenylethanone

Muhammad Ilyas Tariq, Muhammad Sarfraz, M. Nawaz Tahir, Shahbaz Ahmad and Ishtiaq Hussain

S1. Comment

The title compound (I, Fig. 1) is being reported in continuation to synthesize various Schiff bases (Hussain *et al.*, 2010; (Sarfraz *et al.*, 2010; Tahir *et al.*, 2010*a*; Tahir *et al.*, 2010*b*; Tariq *et al.*, 2010) of 2,3-dimethylaniline.

The crystal structures of (II) i.e, 2,3-dimethyl-*N*-[(*E*)-4-nitrobenzylidene]aniline (Tariq *et al.*, 2010), (III) *N*-[(*E*)-4-chlorobenzylidene]-2,3-dimethylaniline (Tahir *et al.*, 2010*a*), (IV) (*E*)-2,3-dimethyl-*N*-(2-nitrobenzylidene)aniline (Tahir *et al.*, 2010*b*), (V) 2,3-dimethyl-*N*-[(*E*)-2,4,5-trimethoxybenzylidene]aniline (Hussain *et al.*, 2010) and (VI) N-{(*E*)-[4-(dimethylamino)phenyl]methylidene}-2,3-dimethylaniline (Sarfraz *et al.*, 2010) have been published previously, which contain 2,3-dimethylaniline moiety. The title compound differs from these due to substitutions at the N-atom of 2,3-dimethylaniline.

In (I), the 2,3-dimethylanilinic group A (C1—C8/N1), the phenyl rings B (C11—C16) and C (C18—C23) are planar with r. m. s. deviation of 0.0226 Å, 0.0048 Å and 0.0019 Å, respectively. The dihedral angle between A/B, A/C and B/C is 79.43 (5)°, 74.70 (5)° and 88.28 (4)°, respectively. The central group D (C10/C17/O2) is oriented at 87.95 (9) ° and 5.37 (21)° with phenyl rings B and C, respectively. The title compound essentially consists of monomers. Weak intramolecular H-bonding of C—H…N type (Table 1, Fig. 1) exists and complete an S(5) ring motif (Bernstein *et al.*, 1995). There exists π - π interaction between the centroids of phenyl rings C at a distance of 3.5958 (12) Å [symmetry code: 1 - *x*, 1 - *y*, - *z*]. The C—H… π interaction (Table 1) also play an important role in stabilizing the molecules.

S2. Experimental

Equimolar quantities of 2,3-dimethylaniline and benzil were refluxed in methanol for 1 h. The yellow solution obtained was kept at room temperature to afford yellow prisms in 12 h.

S3. Refinement

All H-atoms were positioned geometrically (C–H = 0.93, 0.96 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for aryl and x = 1.5 for methyl H-atoms.

View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The dotted line represents the intramolecular H-bonding.

(2Z)-2-[(2,3-Dimethylphenyl)imino]-1,2-diphenylethanone

Crystal data

C₂₂H₁₉NO $M_r = 313.38$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 13.3342 (3) Å b = 8.7021 (2) Å c = 15.6944 (5) Å $\beta = 108.448$ (1)° V = 1727.52 (8) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.20 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.982, T_{max} = 0.988$ F(000) = 664 $D_x = 1.205 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2296 reflections $\theta = 1.8-25.3^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 296 KPrism, yellow $0.32 \times 0.25 \times 0.14 \text{ mm}$

13196 measured reflections 3116 independent reflections 2296 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.3^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -11 \rightarrow 16$ $k = -10 \rightarrow 10$ $l = -18 \rightarrow 18$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 1.02	H-atom parameters constrained
3116 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0557P)^2 + 0.2716P]$
219 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.13 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.33949 (10)	0.06238 (15)	-0.06560 (8)	0.0853 (5)
N1	0.15316 (9)	0.23294 (14)	-0.01278 (8)	0.0570 (4)
C1	0.14965 (10)	0.34191 (17)	-0.08138 (10)	0.0534 (5)
C2	0.13588 (10)	0.49776 (18)	-0.06490 (10)	0.0557 (5)
C3	0.12551 (11)	0.60342 (18)	-0.13434 (11)	0.0621 (5)
C4	0.12628 (13)	0.5525 (2)	-0.21774 (11)	0.0691 (6)
C5	0.13790 (14)	0.3994 (2)	-0.23354 (11)	0.0708 (6)
C6	0.15002 (12)	0.29351 (19)	-0.16559 (10)	0.0632 (5)
C7	0.13588 (14)	0.5497 (2)	0.02641 (11)	0.0749 (7)
C8	0.11407 (16)	0.7732 (2)	-0.11967 (14)	0.0891 (7)
C10	0.23292 (11)	0.14528 (16)	0.02009 (9)	0.0501 (5)
C11	0.23229 (11)	0.02975 (17)	0.08880 (9)	0.0530 (5)
C12	0.32515 (13)	-0.03892 (19)	0.14156 (11)	0.0663 (6)
C13	0.32375 (16)	-0.1451 (2)	0.20646 (12)	0.0810 (7)
C14	0.23045 (18)	-0.1860 (2)	0.21891 (13)	0.0847 (8)
C15	0.13777 (16)	-0.1198 (2)	0.16724 (12)	0.0811 (7)
C16	0.13822 (13)	-0.0116 (2)	0.10313 (11)	0.0656 (6)
C17	0.33233 (11)	0.15133 (18)	-0.00799 (10)	0.0558 (5)
C18	0.41638 (11)	0.25999 (18)	0.03844 (10)	0.0575 (5)
C19	0.51182 (13)	0.2572 (2)	0.01995 (14)	0.0829 (7)
C20	0.59158 (15)	0.3559 (3)	0.06489 (19)	0.1088 (10)
C21	0.57832 (18)	0.4566 (3)	0.1268 (2)	0.1134 (10)
C22	0.48486 (16)	0.4608 (2)	0.14604 (14)	0.0894 (8)
C23	0.40401 (12)	0.36191 (19)	0.10183 (11)	0.0652 (6)
H4	0.11880	0.62314	-0.26379	0.0830*
Н5	0.13760	0.36700	-0.29009	0.0849*

supporting information

H6	0.15842	0.18989	-0.17616	0.0758*
H7A	0.20171	0.59963	0.05676	0.1123*
H7B	0.12724	0.46230	0.06075	0.1123*
H7C	0.07868	0.62036	0.02005	0.1123*
H8A	0.11330	0.82866	-0.17276	0.1336*
H8B	0.17250	0.80753	-0.06987	0.1336*
H8C	0.04916	0.79136	-0.10707	0.1336*
H12	0.38899	-0.01309	0.13306	0.0796*
H13	0.38668	-0.18905	0.24194	0.0972*
H14	0.22976	-0.25844	0.26227	0.1016*
H15	0.07422	-0.14803	0.17551	0.0974*
H16	0.07512	0.03397	0.06924	0.0787*
H19	0.52156	0.18919	-0.02245	0.0995*
H20	0.65549	0.35378	0.05280	0.1303*
H21	0.63292	0.52304	0.15624	0.1360*
H22	0.47601	0.52948	0.18847	0.1072*
H23	0.34068	0.36404	0.11489	0.0783*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0909 (9)	0.0965 (10)	0.0757 (8)	0.0177 (7)	0.0368 (7)	-0.0170 (7)
N1	0.0486 (7)	0.0597 (7)	0.0594 (8)	-0.0032 (6)	0.0124 (6)	-0.0042 (6)
C1	0.0406 (7)	0.0582 (9)	0.0551 (8)	-0.0017 (6)	0.0063 (6)	-0.0042 (7)
C2	0.0390 (7)	0.0623 (9)	0.0591 (9)	0.0028 (6)	0.0061 (6)	-0.0078 (7)
C3	0.0453 (8)	0.0602 (9)	0.0688 (10)	0.0036 (7)	0.0008 (7)	-0.0033 (8)
C4	0.0623 (10)	0.0705 (11)	0.0626 (10)	0.0005 (8)	0.0027 (8)	0.0070 (8)
C5	0.0731 (10)	0.0782 (12)	0.0524 (9)	-0.0019 (9)	0.0076 (8)	-0.0075 (8)
C6	0.0651 (10)	0.0595 (9)	0.0571 (9)	-0.0011 (7)	0.0082 (7)	-0.0111 (8)
C7	0.0703 (11)	0.0791 (12)	0.0745 (11)	0.0095 (9)	0.0219 (9)	-0.0162 (9)
C8	0.0879 (13)	0.0651 (11)	0.0983 (14)	0.0132 (10)	0.0067 (11)	-0.0013 (10)
C10	0.0482 (8)	0.0526 (8)	0.0472 (8)	-0.0039 (6)	0.0120 (6)	-0.0107 (6)
C11	0.0563 (8)	0.0545 (8)	0.0489 (8)	-0.0050 (7)	0.0176 (7)	-0.0105 (6)
C12	0.0619 (10)	0.0688 (10)	0.0680 (10)	0.0039 (8)	0.0201 (8)	0.0054 (8)
C13	0.0876 (13)	0.0823 (12)	0.0716 (11)	0.0145 (10)	0.0230 (10)	0.0160 (10)
C14	0.1126 (16)	0.0796 (12)	0.0691 (12)	-0.0015 (12)	0.0389 (11)	0.0111 (10)
C15	0.0891 (13)	0.0915 (13)	0.0752 (12)	-0.0198 (11)	0.0436 (10)	-0.0038 (10)
C16	0.0601 (9)	0.0762 (11)	0.0629 (10)	-0.0075 (8)	0.0230 (8)	-0.0069 (8)
C17	0.0573 (9)	0.0609 (9)	0.0513 (8)	0.0110 (7)	0.0202 (7)	0.0044 (7)
C18	0.0468 (8)	0.0661 (9)	0.0608 (9)	0.0062 (7)	0.0188 (7)	0.0215 (8)
C19	0.0549 (10)	0.0988 (14)	0.1014 (14)	0.0199 (10)	0.0338 (10)	0.0461 (12)
C20	0.0447 (10)	0.131 (2)	0.146 (2)	0.0058 (13)	0.0237 (13)	0.0791 (18)
C21	0.0634 (14)	0.1087 (19)	0.136 (2)	-0.0285 (12)	-0.0142 (13)	0.0608 (17)
C22	0.0806 (13)	0.0796 (13)	0.0869 (14)	-0.0236 (10)	-0.0033 (10)	0.0119 (10)
C23	0.0568 (9)	0.0702 (10)	0.0652 (10)	-0.0108 (8)	0.0143 (8)	0.0057 (8)

Geometric parameters (Å, °)

01—C17	1.217 (2)	C20—C21	1.361 (4)
N1—C1	1.4243 (19)	C21—C22	1.373 (3)
N1—C10	1.2775 (19)	C22—C23	1.382 (3)
C1—C2	1.404 (2)	C4—H4	0.9300
C1—C6	1.389 (2)	С5—Н5	0.9300
C2—C3	1.399 (2)	С6—Н6	0.9300
C2—C7	1.503 (2)	С7—Н7А	0.9600
C3—C4	1.385 (2)	С7—Н7В	0.9600
C3—C8	1.500(2)	C7—H7C	0.9600
C4-C5	1.373(2)	C8—H8A	0.9600
C_{5}	1.375(2) 1 380(2)	C8—H8B	0.9600
C_{10} $-C_{11}$	1.300(2) 1 476(2)	C8—H8C	0.9600
C10-C17	1.470(2) 1.524(2)	C12H12	0.9300
C_{11} C_{12}	1.324(2) 1 388(2)	C13 H13	0.9300
C_{11} C_{16}	1.300(2)	C_{13} H_{14}	0.9300
$C_{11}^{-12} = C_{12}^{-13}$	1.390(2)	C_{14} H_{15} C_{15} H_{15} H_{15}	0.9300
C_{12} C_{13} C_{14}	1.360(2)	C16 H16	0.9300
C13 - C14	1.300(3)	C10_H10	0.9300
	1.372(3)	C19—H19 C20 H20	0.9300
C13-C10	1.379(2)	C20—H20	0.9300
C12 - C18	1.4/1(2)		0.9300
	1.392 (2)	C22—H22	0.9300
C18 = C23	1.381 (2)	C23—H23	0.9300
C19—C20	1.375 (3)		
O1…N1	3.2197 (19)	C11····H14 ^{iv}	2.8900
O1…C6	3.222 (2)	C11…H8B ^v	3.0500
O1…C19 ⁱ	3.359 (2)	C12···H14 ^{iv}	3.0800
O1…H6	2.7200	C14···H7A ^v	3.0800
O1…H19	2.5600	C14····H23 ^{vi}	3.0800
01…H19 ⁱ	2.9200	С17…Н6	2.9300
N1…O1	3.2197 (19)	C17…H12	2.5400
N1…C23	3.446 (2)	C18…H12	2.8900
N1···H7B	2.3800	C20···H5 ^{vii}	2.9000
N1…H16	2.5700	C21···H5 ^{vii}	3.1000
N1···H23	2.9000	H4···H8A	2.3000
C1C18	3.530 (2)	H5…C20 ^{viii}	2.9000
C3C20 ⁱⁱ	3 598 (3)	H5···C21 ^{viii}	3 1000
C6…C17	3,123(2)	H6…O1	2,7200
C6…O1	3.123(2) 3.222(2)	H6…C10	2.9500
$C7 \cdots C7^{iii}$	3.222(2) 3.559(3)	H6···C17	2.9300
C12…C18	3 480 (2)	H7A····C8	3 0400
C17C6	3 123 (2)	$H7A \cdots C14^{ix}$	3 0800
C18C12	3.123(2) 3.480(2)	H7BN1	2 3800
C18···C1	3 530 (2)	H7C····C8	2.3000
$C18C21^{ii}$	3 596 (3)	H7CH8C	2.7300
	3.390(3)		2.7200
019.021	5.547 (5)	11/C C/	5.1000

supporting information

C19…C22 ⁱⁱ	3.589 (3)	H8A…H4	2.3000
C19…O1 ⁱ	3.359 (2)	H8B…C7	2.8300
C20…C3 ⁱⁱ	3.598 (3)	H8B····C11 ^{ix}	3.0500
C20…C21 ⁱⁱ	3.540 (4)	H8C…C7	2.9400
C20…C22 ⁱⁱ	3.522 (3)	H8C···H7C	2.4200
C21…C19 ⁱⁱ	3.347 (3)	H8C…H16 ⁱⁱⁱ	2.4600
C21…C20 ⁱⁱ	3.540 (4)	H12…C17	2.5400
C21…C18 ⁱⁱ	3.596 (3)	H12…C18	2.8900
C22…C19 ⁱⁱ	3.589 (3)	$H14$ ····C 11^{vi}	2.8900
C22…C20 ⁱⁱ	3.522 (3)	H14…C12 ^{vi}	3.0800
C23…N1	3.446(2)	H16…N1	2.5700
C2…H20 ⁱⁱ	3.0200	H16···H8C ⁱⁱⁱ	2.4600
C3…H20 ⁱⁱ	2.8200	H16H16 ^x	2 5200
C5…H21 ⁱⁱ	2.9900	H19O1	2.5600
C7H8B	2.8300	$H19\cdots O1^{i}$	2.9200
C7···H8C	2.0500	$H20\cdots C2^{ii}$	3 0200
C7···H7C ⁱⁱⁱ	3 1000	H_{20} C_{3}	2 8200
С7…Н23	3.1000	H21····C5 ⁱⁱ	2.0200
C8H7A	3.0400	H23···N1	2.9900
C8···H7C	2 7300	H23····C7	3 1000
C10H6	2.7500	H23···C10	2 5600
C10H23	2.5500	$H23 \cdots C14^{iv}$	3 0800
010 1125	2.3000	1125 014	5.0000
C1-N1-C10	121 79 (13)	C4—C5—H5	120.00
N1 - C1 - C2	118 62 (13)	C6-C5-H5	120.00
N1 - C1 - C6	120.55(13)	C1 - C6 - H6	120.00
$C^2 - C^1 - C^6$	120.55(15) 120.57(14)	C5 - C6 - H6	120.00
C1 - C2 - C3	118 56 (14)	$C^2 - C^7 - H^7 A$	109.00
C1 - C2 - C7	120.39 (14)	C2 = C7 = H7B	109.00
$C_1 C_2 C_7$ $C_3 - C_2 - C_7$	120.39(14) 121.03(14)	C2 = C7 = H7C	109.00
$C_{2} - C_{3} - C_{4}$	119 84 (15)	H7A - C7 - H7B	109.00
$C_2 = C_3 = C_8$	120.93 (15)	H7A - C7 - H7C	109.00
$C_2 = C_3 = C_8$	119 23 (15)	H7B - C7 - H7C	109.00
$C_{3} - C_{4} - C_{5}$	121.08 (15)	C3 - C8 - H8A	109.00
$C_{4} - C_{5} - C_{6}$	121.00 (15)	C3 - C8 - H8B	109.00
$C_{1} - C_{6} - C_{5}$	119 89 (15)	C3 - C8 - H8C	109.00
N1 - C10 - C11	120.34(14)	H8A - C8 - H8B	109.00
N1 - C10 - C17	123.48 (13)	H8A - C8 - H8C	109.00
C11 - C10 - C17	116 18 (13)	H8B-C8-H8C	109.00
C10-C11-C12	121.24(14)	C11_C12_H12	120.00
C10-C11-C12	121.24(14) 120.57(14)	C13 - C12 - H12	120.00
C12-C11-C16	120.37(14) 118 19(14)	C12—C12—H12 C12—C13—H13	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.19(14) 120.71(17)	C12 - C13 - H13	120.00
C12 - C12 - C13	120.71(17) 120.38(18)	C13 - C13 - H14	120.00
C12 - C13 - C14 C13 - C14 - C15	110 70 (18)	C15-C14 H14	120.00
C13-C14-C15	119.79(10) 120.5(2)	C13 - C14 - 1114 C14 - C15 - H15	120.00
$C_{14} - C_{15} - C_{10}$	120.3(2) 120.48(17)	$C_{14} - C_{15} - 1115$ $C_{16} - C_{15} - 1115$	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.40(17) 118.21(17)	C10-C13-H13	120.00
$U_1 - U_1 / - U_1 U$	110.21(14)	СП-С10-П10	120.00

O1—C17—C18	123.39 (15)	C15—C16—H16	120.00
C10—C17—C18	118.35 (13)	C18—C19—H19	120.00
C17—C18—C19	119.27 (14)	С20—С19—Н19	120.00
C17—C18—C23	121.58 (14)	С19—С20—Н20	120.00
C19—C18—C23	119.13 (15)	С21—С20—Н20	120.00
C18—C19—C20	119.46 (18)	C20—C21—H21	120.00
C19—C20—C21	120.9 (2)	C22—C21—H21	120.00
C20—C21—C22	120.4 (2)	C21—C22—H22	120.00
C21—C22—C23	119.4 (2)	С23—С22—Н22	120.00
C18—C23—C22	120.62 (16)	C18—C23—H23	120.00
С3—С4—Н4	119.00	С22—С23—Н23	120.00
С5—С4—Н4	119.00		
C10—N1—C1—C2	-121.60 (15)	N1-C10-C17-C18	86.93 (18)
C10—N1—C1—C6	64.3 (2)	C11—C10—C17—O1	84.26 (17)
C1-N1-C10-C11	-177.78 (13)	C11—C10—C17—C18	-93.34 (16)
C1—N1—C10—C17	2.0 (2)	C10-C11-C12-C13	179.05 (15)
N1—C1—C2—C3	-175.88 (13)	C16—C11—C12—C13	-0.1 (2)
N1—C1—C2—C7	6.1 (2)	C10-C11-C16-C15	179.87 (15)
C6-C1-C2-C3	-1.7 (2)	C12-C11-C16-C15	-1.0 (2)
C6—C1—C2—C7	-179.80 (15)	C11—C12—C13—C14	1.0 (3)
N1—C1—C6—C5	174.71 (15)	C12—C13—C14—C15	-0.7 (3)
C2-C1-C6-C5	0.7 (2)	C13—C14—C15—C16	-0.4 (3)
C1—C2—C3—C4	1.6 (2)	C14-C15-C16-C11	1.2 (3)
C1—C2—C3—C8	-177.99 (15)	O1—C17—C18—C19	-3.6 (2)
C7—C2—C3—C4	179.68 (16)	O1—C17—C18—C23	178.28 (16)
C7—C2—C3—C8	0.1 (2)	C10-C17-C18-C19	173.91 (15)
C2—C3—C4—C5	-0.5 (3)	C10—C17—C18—C23	-4.3 (2)
C8—C3—C4—C5	179.14 (18)	C17—C18—C19—C20	-178.35 (19)
C3—C4—C5—C6	-0.6 (3)	C23-C18-C19-C20	-0.1 (3)
C4—C5—C6—C1	0.5 (3)	C17—C18—C23—C22	178.62 (16)
N1-C10-C11-C12	-163.48 (14)	C19—C18—C23—C22	0.5 (3)
N1-C10-C11-C16	15.6 (2)	C18—C19—C20—C21	-0.3 (4)
C17—C10—C11—C12	16.8 (2)	C19—C20—C21—C22	0.4 (4)
C17—C10—C11—C16	-164.10 (14)	C20—C21—C22—C23	-0.1 (4)
N1-C10-C17-O1	-95.47 (19)	C21—C22—C23—C18	-0.3 (3)

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*, -*y*+1, -*z*; (iv) -*x*+1/2, *y*+1/2, -*z*+1/2; (v) *x*, *y*-1, *z*; (vi) -*x*+1/2, *y*-1/2, -*z*+1/2; (vii) *x*+1/2, -*y*+1/2, -*z*+1/2; (viii) *x*-1/2, -*y*+1/2, *z*-1/2; (ix) *x*, *y*+1, *z*; (x) -*x*, -*y*, -*z*.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C18–C23 ring.

D—H···A	D—H	H···A	D····A	D—H··· A
C7—H7 <i>B</i> …N1	0.96	2.38	2.849 (2)	109
C5—H5···· <i>Cg</i> 1 ^{viii}	0.93	2.99	3.6636 (19)	130

Symmetry code: (viii) x-1/2, -y+1/2, z-1/2.