

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl (2,5-dioxo-1-phenyl-2,3-dihydro-1*H*,5*H*-1-benzofuro[3,2-*d*]imidazo-[1,2-a]pyrimidin-3-yl)acetate

Shou-Heng Deng, Feng-Jun Cao, Xiao-Jun Cai, Fang Li and Ping Chen*

Center of Oncology, People's Hospital of Hubei Medical University, Shiyan Hubei 442000, People's Republic of China Correspondence e-mail: pchen6686@yahoo.com.cn

Received 21 July 2010; accepted 24 July 2010

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.129; data-to-parameter ratio = 13.5.

In the title compound, $C_{22}H_{17}N_3O_5$, synthesized *via* the aza-Wittig reaction of ethyl 3-(phenyliminomethyleneamino)benzofuran-2-carboxylate, benzene isocyanate and diethyl 2-aminosuccinate, the imidazo[1,2-*a*]benzo[4,5]furo[2,3-*d*]pyrimidine ring system is essentially planar (r.m.s. deviation for all 16 non-H atoms = 0.020 Å). The phenyl ring is twisted with respect to this ring system, making a dihedral angle of 54.23 (4)°. The crystal packing is stabilized by weak intermolecular C-H···O interactions.

Related literature

The title compound may be used as a precursor for obtaining bioactive molecules, see: Bellarosa *et al.* (1996). For the biological activity of benzofuropyrimidine derivatives, see: Moneam *et al.* (2004); Bodke *et al.* (2003); Palacios *et al.* (2007); Duval *et al.* (2005); Teimouria *et al.* (2006). For the crystal structures of other fused pyrimidinone derivatives, see: Hu *et al.* (2005, 2006, 2007, 2008).

Experimental

b = 8.6553 (12)Å
c = 14.519 (2) Å
$\alpha = 86.642 \ (2)^{\circ}$
$\beta = 82.873 \ (2)^{\circ}$

Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\rm min} = 0.970, T_{\rm max} = 0.990$

Refinement

Tah

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.045 & 272 \text{ parameters} \\ wR(F^2) &= 0.129 & H\text{-atom parameters constrained} \\ S &= 1.06 & \Delta\rho_{\text{max}} = 0.25 \text{ e } \text{\AA}^{-3} \\ 3663 \text{ reflections} & \Delta\rho_{\text{min}} = -0.35 \text{ e } \text{\AA}^{-3} \end{split}$$

le 1					
	1	1	/ °	\sim	

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	D	$\cdots A$	D-H	$\cdot \cdot A$
$C2-H2\cdots O5^{i}$	0.93	2.56	3.4	442 (2)	159	
C3−H3···O4 ⁱⁱ	0.93	2.58	3.	305 (2)	135	
C5−H5···O2 ⁱⁱⁱ	0.93	2.46	3.	132 (2)	129	
$C15-H15\cdots O3^{iv}$	0.93	2.53	3.	434 (2)	163	
C19−H19A···O2	0.97	2.52	3.	137 (2)	122	
Symmetry codes: (i)	-x + 1, -y +	1, -z + 1;	(ii)	-x + 2, -y, -	-z + 1;	(iii)

x + 1, y - 1, z; (iv) -x + 1, -y, -z + 2.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors are grateful to Dr Y. G. Hu (Institute of Medicinal Chemistry, Hubei Medical University, Shiyan, China) and Dr X. G. Meng (Key Laboratory of Pesticides & Chemical Biology of the Ministry of Education, Central China Normal University, Wuhan, Hubei, China) for the synthesis, data collection and analysis. This work were supported by the Education Commission of Hubei Province of China (grant No. B200624004), Shiyan Municipal Science and Technology Bureau (grant No. 20061835) and Yunyang Medical College (grant No. 2008QDJ1).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5306).

References

- Bellarosa, D., Antonelli, G., Bambacioni, F., Giannotti, D., Viti, G., Nannicini, R., Giachetti, A., Dianzani, F., Witvrouw, M., Pauwels, R., Desmyter, J. & De Clercq, E. (1996). *Antiviral Res.* **30**, 109–124.
- Bodke, Y. & Sangapure, S. S. (2003). J. Indian Chem. Soc. 80, 187-189.
- Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duval, E., Case, A., Stein, R. L. & Cuny, G. D. (2005). Bioorg. Med. Chem. Lett. 15, 1885–1889.
- Hu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, 03266–03268.
- Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836-o1838.

 $\mu = 0.10 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

5574 measured reflections

3663 independent reflections

2844 reflections with $I > 2\sigma(I)$

T = 292 K

 $R_{\rm int} = 0.084$

- Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457–o1459. Hu, Y.-G., Zhu, Z.-R. & Chen, Y.-L. (2008). Acta Cryst. E64, o321–o322.
- Moneam, M., Geies, A., El-Naggar, G. & Mousa, S. (2004). J. Chin. Chem. Soc.
- **51**, 1357–1366. Palacios, F., Alonso, C., Aparicio, D., Rubiales, G. & Santos, J. M. (2007).
- Tetrahedron, 63, 523-575.
- Sheldrick, G. M. (2003). SADABS. Bruker AXS, inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Teimouria, M. B. & Bazhrang, R. (2006). Bioorg. Med. Chem. Lett. 16, 3697-3701.

supporting information

Acta Cryst. (2010). E66, o2173–o2174 [https://doi.org/10.1107/S1600536810029521] Ethyl (2,5-dioxo-1-phenyl-2,3-dihydro-1*H*,5*H*-1-benzofuro[3,2-*d*]imidazo[1,2*a*]pyrimidin-3-yl)acetate

Shou-Heng Deng, Feng-Jun Cao, Xiao-Jun Cai, Fang Li and Ping Chen

S1. Comment

The derivatives of benzofuropyrimidine are of great importance because of their remarkable biological properties. Some of them have shown good analgesic, anti-inflammatory and antimicrobial activities (Moneam *et al.*, 2004 and Bodke *et al.*, 2003). On the other hand, heterocycles containing an imidazolone nucleus also exhibit various biological activities. Several of them have shown good antibacterial, antifungal activities or are used as leukotriene B4 receptor antagonist and potassium channel openers (Palacios *et al.*, 2007 and Duval *et al.*, 2005, Teimouria *et al.*, 2006). The introduction of an imidazolone ring to the benzofuro[3,2-*d*]pyrimidin-4(3*H*)-one system is expected to influence the biological activities significantly. As a part of our ongoing investigations on the preparation of derivatives of heterocyclic compounds (Hu *et al.*, 2005, 2006, 2007, 2008), we have synthesized and structurally characterized the title compound, and here we report its crystal structure (Fig. 1).

In the crystal structure of the title compound, all ring atoms of imidazo[1,2-*a*]benzo[4,5]furo [2,3-*d*]pyrimidine system are essentially coplanar, with maximum deviations -0.039 (3)Å and 0.057 (1)Å for O3 and N2, respectively. The phenyl (C11—C16) ring is twisted with respect to it, making dihedral angles of 54.23 (4)°. The structure is mainly stabilized by weak C—H…O interactions.

S2. Experimental

The title compound was obtained in excellent yield *via* aza-Wittig reaction. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:2 v/v) at room temperature.

S3. Refinement

All H-atoms were found in a difference map but positioned with idealized geometry and refined with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H atoms using a riding model with C—H ranging from 0.93Å to 0.97Å.

Figure 1

The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are at the 50% probability level.

Ethyl (2,5-dioxo-1-phenyl-2,3-dihydro-1H,5H-1- benzofuro[3,2-d]imidazo[1,2-a]pyrimidin-3-yl)acetate

Crystal data

 $C_{22}H_{17}N_{3}O_{5}$ $M_{r} = 403.39$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.5418 (12) Å b = 8.6553 (12) Å c = 14.519 (2) Å $a = 86.642 (2)^{\circ}$ $\beta = 82.873 (2)^{\circ}$ $\gamma = 62.619 (2)^{\circ}$ $V = 945.8 (2) \text{ Å}^{3}$

Data collection

Bruker SMART 4K CCD area-detector	5574 measured reflections
diffractometer	3663 independent reflections
Radiation source: fine-focus sealed tube	2844 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.084$
φ and ω scans	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.7^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 2003)	$k = -5 \rightarrow 10$
$T_{\min} = 0.970, \ T_{\max} = 0.990$	$l = -17 \rightarrow 17$

Z = 2 F(000) = 420 $D_x = 1.416 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2477 reflections $\theta = 6.0-25.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 292 K Block, colourless $0.30 \times 0.20 \times 0.10 \text{ mm}$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.129$	neighbouring sites
S = 1.06	H-atom parameters constrained
3663 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0729P)^2 + 0.002P]$
272 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.003$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.25 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.35 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.8363 (2)	0.04672 (19)	0.37332 (10)	0.0385 (4)
C2	0.9489 (2)	0.0189 (2)	0.29234 (11)	0.0477 (4)
H2	0.9210	0.0987	0.2437	0.057*
C3	1.1056 (2)	-0.1346 (2)	0.28769 (11)	0.0492 (4)
Н3	1.1857	-0.1587	0.2345	0.059*
C4	1.1467 (2)	-0.2539 (2)	0.36064 (11)	0.0461 (4)
H4	1.2535	-0.3556	0.3551	0.055*
C5	1.0323 (2)	-0.2243 (2)	0.44088 (11)	0.0414 (4)
Н5	1.0602	-0.3045	0.4893	0.050*
C6	0.8732 (2)	-0.07023 (19)	0.44725 (10)	0.0361 (3)
C7	0.72423 (19)	0.00914 (18)	0.51685 (10)	0.0352 (3)
C8	0.6108 (2)	0.16444 (19)	0.48043 (10)	0.0382 (4)
С9	0.4462 (2)	0.2830 (2)	0.52864 (11)	0.0422 (4)
C10	0.5479 (2)	0.05584 (19)	0.64773 (10)	0.0366 (4)
C11	0.5896 (2)	-0.1152 (2)	0.79340 (10)	0.0411 (4)
C12	0.6649 (2)	-0.2842 (2)	0.76226 (12)	0.0493 (4)
H12	0.6413	-0.3092	0.7056	0.059*
C13	0.7760 (2)	-0.4161 (2)	0.81653 (13)	0.0547 (5)
H13	0.8279	-0.5307	0.7962	0.066*
C14	0.8108 (2)	-0.3794 (3)	0.90068 (13)	0.0580 (5)
H14	0.8876	-0.4687	0.9362	0.070*
C15	0.7316 (2)	-0.2107 (3)	0.93184 (13)	0.0609 (5)
H15	0.7522	-0.1864	0.9894	0.073*
C16	0.6215 (2)	-0.0769 (2)	0.87790 (11)	0.0530 (4)
H16	0.5696	0.0376	0.8984	0.064*

C17	0.3210 (2)	0.1644 (2)	0.76449 (11)	0.0430 (4)
C18	0.2735 (2)	0.2986 (2)	0.68624 (10)	0.0422 (4)
H18	0.1697	0.3053	0.6606	0.051*
C19	0.2319 (2)	0.4798 (2)	0.71761 (11)	0.0473 (4)
H19A	0.2548	0.5430	0.6646	0.057*
H19B	0.1068	0.5419	0.7397	0.057*
C20	0.3383 (2)	0.4779 (2)	0.79307 (11)	0.0424 (4)
C21	0.3358 (2)	0.6322 (2)	0.92299 (12)	0.0550 (5)
H21A	0.4454	0.6372	0.9012	0.066*
H21B	0.3634	0.5308	0.9626	0.066*
C22	0.2109 (3)	0.7929 (3)	0.97571 (15)	0.0814 (7)
H22A	0.1900	0.8929	0.9371	0.122*
H22B	0.2614	0.8000	1.0298	0.122*
H22C	0.1007	0.7893	0.9943	0.122*
N1	0.69428 (17)	-0.05275 (16)	0.60320 (8)	0.0381 (3)
N2	0.42881 (16)	0.21602 (16)	0.61779 (8)	0.0392 (3)
N3	0.48245 (17)	0.02592 (16)	0.73590 (8)	0.0413 (3)
O1	0.67400 (14)	0.19234 (13)	0.39205 (7)	0.0442 (3)
O2	0.33196 (16)	0.42088 (15)	0.50277 (8)	0.0599 (4)
O3	0.23141 (16)	0.17923 (16)	0.83798 (8)	0.0561 (3)
O4	0.48112 (15)	0.36241 (16)	0.80601 (10)	0.0646 (4)
05	0.25135 (14)	0.62047 (14)	0.84498 (8)	0.0501 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0384 (8)	0.0302 (8)	0.0392 (8)	-0.0076 (7)	-0.0086 (6)	-0.0031 (6)
C2	0.0559 (10)	0.0411 (9)	0.0391 (9)	-0.0164 (8)	-0.0047 (7)	0.0019 (7)
C3	0.0470 (10)	0.0478 (10)	0.0451 (9)	-0.0156 (8)	0.0005 (8)	-0.0065 (8)
C4	0.0367 (8)	0.0387 (9)	0.0510 (10)	-0.0056 (7)	-0.0073 (7)	-0.0087 (8)
C5	0.0429 (9)	0.0336 (8)	0.0421 (9)	-0.0105 (7)	-0.0132 (7)	-0.0004(7)
C6	0.0400 (8)	0.0310 (8)	0.0349 (8)	-0.0122 (7)	-0.0112 (6)	-0.0021 (6)
C7	0.0397 (8)	0.0298 (8)	0.0336 (8)	-0.0118 (7)	-0.0115 (6)	-0.0002 (6)
C8	0.0434 (9)	0.0325 (8)	0.0328 (8)	-0.0113 (7)	-0.0088 (6)	0.0006 (6)
C9	0.0455 (9)	0.0336 (8)	0.0394 (9)	-0.0096 (7)	-0.0123 (7)	0.0011 (7)
C10	0.0425 (8)	0.0290 (8)	0.0364 (8)	-0.0131 (7)	-0.0097 (6)	-0.0016 (6)
C11	0.0463 (9)	0.0405 (9)	0.0369 (8)	-0.0206 (8)	-0.0052 (7)	0.0044 (7)
C12	0.0645 (11)	0.0440 (10)	0.0416 (9)	-0.0260 (9)	-0.0097 (8)	0.0034 (7)
C13	0.0581 (11)	0.0401 (10)	0.0590 (11)	-0.0171 (9)	-0.0069 (9)	0.0066 (8)
C14	0.0498 (10)	0.0613 (12)	0.0549 (11)	-0.0191 (9)	-0.0122 (8)	0.0176 (9)
C15	0.0632 (12)	0.0756 (14)	0.0420 (10)	-0.0287 (11)	-0.0136 (8)	0.0033 (9)
C16	0.0632 (11)	0.0542 (11)	0.0425 (9)	-0.0266 (9)	-0.0082 (8)	-0.0031 (8)
C17	0.0439 (9)	0.0425 (9)	0.0425 (9)	-0.0188 (8)	-0.0050 (7)	-0.0072 (7)
C18	0.0379 (8)	0.0406 (9)	0.0421 (9)	-0.0119 (7)	-0.0051 (7)	-0.0076 (7)
C19	0.0458 (9)	0.0385 (9)	0.0464 (9)	-0.0088(8)	-0.0058 (7)	-0.0060(7)
C20	0.0364 (9)	0.0330 (8)	0.0502 (9)	-0.0098 (7)	-0.0004 (7)	-0.0049 (7)
C21	0.0577 (11)	0.0603 (12)	0.0495 (10)	-0.0277 (10)	-0.0094 (8)	-0.0048 (9)
C22	0.0964 (17)	0.0683 (14)	0.0747 (15)	-0.0303 (13)	-0.0108 (12)	-0.0264 (12)

supporting information

N1	0.0424 (7)	0.0304 (7)	0.0353 (7)	-0.0105 (6)	-0.0085 (6)	0.0006 (5)
N2	0.0403 (7)	0.0319 (7)	0.0368 (7)	-0.0083 (6)	-0.0064 (6)	-0.0020 (5)
N3	0.0468 (8)	0.0347 (7)	0.0371 (7)	-0.0143 (6)	-0.0036 (6)	-0.0006 (5)
01	0.0457 (6)	0.0329 (6)	0.0374 (6)	-0.0038 (5)	-0.0062 (5)	0.0032 (5)
O2	0.0555 (7)	0.0413 (7)	0.0512 (7)	0.0054 (6)	-0.0110 (6)	0.0065 (6)
03	0.0540 (7)	0.0614 (8)	0.0462 (7)	-0.0224 (6)	0.0045 (6)	-0.0055 (6)
O4	0.0422 (7)	0.0484 (8)	0.0882 (10)	-0.0036 (6)	-0.0173 (6)	-0.0173 (7)
05	0.0492 (7)	0.0386 (7)	0.0494 (7)	-0.0065 (5)	-0.0104 (5)	-0.0098 (5)

Geometric parameters (Å, °)

C1—C2	1.380 (2)	C13—C14	1.380 (2)	
C101	1.3871 (17)	C13—H13	0.9300	
C1—C6	1.393 (2)	C14—C15	1.374 (3)	
C2—C3	1.384 (2)	C14—H14	0.9300	
С2—Н2	0.9300	C15—C16	1.383 (2)	
C3—C4	1.394 (2)	C15—H15	0.9300	
С3—Н3	0.9300	C16—H16	0.9300	
C4—C5	1.378 (2)	C17—O3	1.2096 (18)	
C4—H4	0.9300	C17—N3	1.381 (2)	
C5—C6	1.396 (2)	C17—C18	1.527 (2)	
С5—Н5	0.9300	C18—N2	1.4638 (18)	
C6—C7	1.439 (2)	C18—C19	1.524 (2)	
С7—С8	1.368 (2)	C18—H18	0.9800	
C7—N1	1.3756 (18)	C19—C20	1.502 (2)	
C8—O1	1.3811 (18)	C19—H19A	0.9700	
С8—С9	1.426 (2)	C19—H19B	0.9700	
С9—О2	1.2183 (18)	C20—O4	1.1984 (18)	
C9—N2	1.406 (2)	C20—O5	1.3303 (18)	
C10—N1	1.2863 (19)	C21—O5	1.4482 (19)	
C10—N2	1.3738 (19)	C21—C22	1.488 (2)	
C10—N3	1.3910 (19)	C21—H21A	0.9700	
C11—C12	1.378 (2)	C21—H21B	0.9700	
C11—C16	1.380 (2)	C22—H22A	0.9600	
C11—N3	1.438 (2)	C22—H22B	0.9600	
C12—C13	1.381 (2)	C22—H22C	0.9600	
C12—H12	0.9300			
C2—C1—O1	125.12 (14)	C16—C15—H15	119.9	
C2—C1—C6	123.52 (15)	C11—C16—C15	119.29 (17)	
01—C1—C6	111.37 (13)	C11—C16—H16	120.4	
C1—C2—C3	116.09 (16)	C15—C16—H16	120.4	
C1—C2—H2	122.0	O3—C17—N3	127.00 (16)	
С3—С2—Н2	122.0	O3—C17—C18	125.28 (15)	
C2—C3—C4	121.75 (15)	N3—C17—C18	107.72 (13)	
С2—С3—Н3	119.1	N2-C18-C19	115.56 (13)	
С4—С3—Н3	119.1	N2-C18-C17	101.49 (12)	
C5—C4—C3	121.36 (15)	C19—C18—C17	113.30 (12)	

С5—С4—Н4	119.3	N2—C18—H18	108.7
C3—C4—H4	119.3	C19—C18—H18	108.7
C4—C5—C6	117.96 (15)	C17—C18—H18	108.7
C4—C5—H5	121.0	C20—C19—C18	113.46 (13)
С6—С5—Н5	121.0	С20—С19—Н19А	108.9
C1—C6—C5	119.32 (14)	С18—С19—Н19А	108.9
C1—C6—C7	105.44 (13)	С20—С19—Н19В	108.9
C5—C6—C7	135.23 (14)	C18—C19—H19B	108.9
C8—C7—N1	124.78 (14)	H19A—C19—H19B	107.7
C8—C7—C6	106.21 (13)	O4—C20—O5	124.28 (15)
N1—C7—C6	129.01 (13)	O4—C20—C19	124.77 (14)
C7—C8—O1	112.30 (13)	O5—C20—C19	110.94 (13)
C7—C8—C9	123.50 (14)	O5-C21-C22	107.98 (15)
01	124.20 (13)	05—C21—H21A	110.1
02—C9—N2	121.73 (15)	C22—C21—H21A	110.1
02	129.66 (16)	05—C21—H21B	110.1
N2-C9-C8	108.61 (13)	C22—C21—H21B	110.1
N1-C10-N2	127 32 (14)	$H_{21}A - C_{21} - H_{21}B$	108.4
N1-C10-N3	124 27 (14)	C_{21} C_{22} H_{22A}	109.5
N2-C10-N3	10840(13)	$C_{21} = C_{22} = H_{22}B$	109.5
C12-C11-C16	121.05 (16)	H22A-C22-H22B	109.5
C12 - C11 - N3	120.22(13)	C_{21} C_{22} H_{22}	109.5
C16-C11-N3	118 67 (15)	$H_{22}A - C_{22} - H_{22}C$	109.5
$C_{11} - C_{12} - C_{13}$	118.91 (15)	H22R = C22 = H22C	109.5
$C_{11} = C_{12} = H_{12}$	120.5	$11220 \ 022 \ 11220 \ 022 \ $	111 84 (13)
C13 - C12 - H12	120.5	C10-N2-C9	111.04(13) 123.79(13)
$C_{13} - C_{12} - C_{12}$	120.5	C10 - N2 - C18	123.79(13) 111.50(12)
C14 - C13 - C12	110.7	C9 N2 C18	111.30(12) 124.39(13)
$C_{12} = C_{13} = H_{13}$	110.7	$C_{17} N_{3} C_{10}$	124.37(13) 110.86(13)
$C_{12} - C_{13} - M_{13}$	119.7	C17 = N3 = C10	110.80(13) 125.99(13)
$C_{15} = C_{14} = C_{15}$	119.84 (17)	C10 N3 C11	123.99(13) 122.06(13)
$C_{13} = C_{14} = H_{14}$	120.1	$C_{10} = 10 = 10$	122.00(13)
$C_{13} - C_{14} - 1114$	120.1 120.26(17)	$C_{3} = 01 = C_{1}$	104.09(11) 116.76(13)
C14 - C15 - C10	120.20 (17)	C20-05-C21	110.70 (13)
С14—С15—Н15	119.9		
$O_1 C_1 C_2 C_3$	170.50(14)	C18 C10 C20 O4	262(2)
$C_{1} = C_{1} = C_{2} = C_{3}$	-0.4(2)	$C_{18} = C_{19} = C_{20} = 04$	20.2(2)
$C_0 = C_1 = C_2 = C_3$	-0.4(2)	10 - 19 - 20 - 03	-132.07(14)
$C_1 = C_2 = C_3 = C_4$	0.1(2) 0.1(3)	$N_2 = C_{10} = N_1 = C_7$	0.0(2)
$C_2 = C_3 = C_4 = C_5$	-0.2(2)	$\frac{10}{10} \frac{10}{10} \frac{10}{10}$	-20(2)
$C_{3} - C_{4} - C_{5} - C_{6}$	-0.2(2)	C6 = C7 = N1 = C10	-2.0(2)
$C_2 - C_1 - C_0 - C_3$	0.4(2)	$C_0 - C_1 - N_1 - C_1 O$	1/8.43(14)
01 - 01 - 00 - 03	-1/9.55(15) 170.20(14)	N1 - C10 - N2 - C9	3.0(2)
$C_2 - C_1 - C_0 - C_7$	1/9.39(14) -0.51(16)	$N_{1} = C_{10} = N_{2} = C_{19}$	-1/3.22(13)
$C_1 = C_2 = C_1$	-0.31(10)	$\frac{1}{10} - \frac{1}{10} - \frac{1}{10} - \frac{1}{10} - \frac{1}{10} = \frac{1}{10}$	1 / / . 37 (14)
	-0.1(2)	$N_{2} = C_{10} = N_{2} = C_{10}$	-1.42(10)
$C_4 - C_5 - C_6 - C_7$	-1/8./4(15)	02 - 09 - N2 - 010	1/5.24 (15)
	0.13 (16)	lagram = l	-4.5 (2)
C5—C6—C7—C8	178.92 (17)	O2—C9—N2—C18	2.2 (2)

C1-C6-C7-N1	179.78 (14)	C8—C9—N2—C18	-177.54 (13)
C5—C6—C7—N1	-1.4 (3)	C19—C18—N2—C10	124.87 (14)
N1—C7—C8—O1	-179.38 (12)	C17—C18—N2—C10	1.87 (15)
C6-C7-C8-O1	0.29 (17)	C19—C18—N2—C9	-61.38 (19)
N1—C7—C8—C9	0.5 (2)	C17—C18—N2—C9	175.62 (13)
C6—C7—C8—C9	-179.86 (14)	O3—C17—N3—C10	-178.92 (15)
C7—C8—C9—O2	-177.07 (16)	C18—C17—N3—C10	0.95 (16)
O1—C8—C9—O2	2.8 (3)	O3—C17—N3—C11	-10.7 (3)
C7—C8—C9—N2	2.7 (2)	C18—C17—N3—C11	169.13 (13)
O1—C8—C9—N2	-177.49 (13)	N1—C10—N3—C17	-178.61 (14)
C16—C11—C12—C13	-1.0 (3)	N2-C10-N3-C17	0.25 (17)
N3—C11—C12—C13	176.04 (15)	N1-C10-N3-C11	12.7 (2)
C11—C12—C13—C14	0.2 (3)	N2-C10-N3-C11	-168.47 (13)
C12—C13—C14—C15	1.3 (3)	C12—C11—N3—C17	134.92 (17)
C13—C14—C15—C16	-2.0 (3)	C16—C11—N3—C17	-48.0 (2)
C12—C11—C16—C15	0.3 (3)	C12-C11-N3-C10	-58.1 (2)
N3—C11—C16—C15	-176.76 (15)	C16—C11—N3—C10	118.95 (17)
C14—C15—C16—C11	1.2 (3)	C7—C8—O1—C1	-0.59 (16)
O3—C17—C18—N2	178.21 (15)	C9—C8—O1—C1	179.56 (14)
N3—C17—C18—N2	-1.66 (15)	C2-C1-O1-C8	-179.22 (14)
O3—C17—C18—C19	53.7 (2)	C6-C1-O1-C8	0.68 (16)
N3—C17—C18—C19	-126.20 (14)	O4—C20—O5—C21	-1.4 (2)
N2-C18-C19-C20	-83.04 (17)	C19—C20—O5—C21	177.50 (14)
C17—C18—C19—C20	33.47 (19)	C22—C21—O5—C20	-175.36 (16)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.93	2.56	3.442 (2)	159
0.93	2.58	3.305 (2)	135
0.93	2.46	3.132 (2)	129
0.93	2.53	3.434 (2)	163
0.97	2.52	3.137 (2)	122
	<i>D</i> —H 0.93 0.93 0.93 0.93 0.93 0.97	D—H H···A 0.93 2.56 0.93 2.58 0.93 2.46 0.93 2.53 0.97 2.52	D—HH…AD…A0.932.563.442 (2)0.932.583.305 (2)0.932.463.132 (2)0.932.533.434 (2)0.972.523.137 (2)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) x+1, y-1, z; (iv) -x+1, -y, -z+2.