

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Benzyl-N-methyl-1H-pyrrole-2carboxamide

Xiang Chao Zeng,* Kai Ping Li, Fang Hu and Le Zheng

Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China Correspondence e-mail: xczeng@126.com

Received 2 July 2010; accepted 13 July 2010

Key indicators: single-crystal X-ray study; T = 110 K; mean σ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.157; data-to-parameter ratio = 16.3.

The asymmetric unit of the title compound, C₁₃H₁₄N₂O, contains two independent molecules, which differ in the twist of the phenyl ring: the $N_{pyrrole} - C(H_2) - C - C$ torsion angles are -73.0(3) and $17.1(3)^{\circ}$. In the crystal structure, molecules are linked through N-H···O hydrogen bonds into chains extending along the a axis.

Related literature

For the bioactivity of pyrrole derivatives, see: Fabio et al. (2007); Banwell et al. (2006). For related structures, see: Zeng et al. (2007); Li et al. (2009).

Experimental

Crystal data C13H14N2O $M_r = 214.26$

Monoclinic, $P2_1/c$ a = 9.8285 (18) Å

b = 23.588 (4) Å	
c = 9.9230 (17) Å	
$\beta = 90.107 (3)^{\circ}$	
V = 2300.5 (7) Å ³	
Z - 8	

Data collection

Bruker SMART IK CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.965, T_{\max} = 0.968$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	H atoms treated by a mixture of
$wR(F^2) = 0.157$	independent and constrained
S = 1.03	refinement
4879 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
300 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N4-H4\cdotsO1^{i}$ $N2-H2A\cdotsO3^{ii}$	0.87 (3) 0.86 (4)	2.04 (3) 2.10 (4)	2.869 (2) 2.902 (2)	161 (3) 154 (3)

Symmetry codes: (i) x, y, z + 1; (ii) x + 1, y, z - 1.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the Natural Science Foundation of Guangdong Province, China (grant No. 06300581) for generous support of this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2741).

References

- Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627-4638.
- Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fabio, R. D., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254-2259.
- Li, D. D., Tang, G. H., Zeng, X. C., Huang, G. & Xu, X. Y. (2009). Acta Cryst. E65, 01865.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zeng, X.-C., Zeng, J., Li, X. & Ling, X. (2007). Acta Cryst. E63, 03424.

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.45 \times 0.43 \times 0.41 \text{ mm}$

10728 measured reflections 4879 independent reflections

4388 reflections with $I > 2\sigma(I)$

T = 110 K

 $R_{\rm int} = 0.033$

supporting information

Acta Cryst. (2010). E66, o2051 [https://doi.org/10.1107/S160053681002787X]

1-Benzyl-N-methyl-1H-pyrrole-2-carboxamide

Xiang Chao Zeng, Kai Ping Li, Fang Hu and Le Zheng

S1. Comment

Many pyrrole derivatives show important bioactivities, such as metabotropic receptor antagonists (Fabio *et al.*, 2007) and antitumor activity (Banwell *et al.*, 2006). This is the reason they have attracted our interest. This study is related to our previous structural investigations of methyl 2-(4,5-dibromo-1*H*-pyrrole-2-carboxamido)propionate (Zeng *et al.*, 2007) and 3-(1-ethyl-1*H*-pyrrole-2-carboxamido) propionic acid monohydrate (Li *et al.*, 2009).

In the molecule of the title compound(Fig.1), bond lengths and angles are unexceptional. In the crystal structure, molecules are linked through N—H···O hydrogen bonds, forming chains extending to the *a* axis (Fig. 2).

S2. Experimental

A suspension of potassium carbonate (4.21 g, 30 mmol), chloromethylbenzene (1.7 ml, 15 mmol), Pyrrole-2-carboxylic acid methylamide (1.24 g, 10 mmol) and Tetrabutylammoniumbromide (0.1 g) in acetonitrile (25 ml) magnetically stirred at 353 K for 18 h. After filtration, the filtrate was evaporated *in vacuo*, and the crude compound (I) was obtained. The impure product was dissolved in EtOH, colourless crystals suitable for X-ray analysis, m.p. 365 K, 92.1%, were obtained over a period of one week by slow evaporation at room temperature of the solution.

S3. Refinement

The H atoms bonded to N2 and N4 were found on a difference Fourier map and refined isotropically with N—H = 0.86 (4)Å and 0.87 (3)Å respectively. Remaining H atoms were positioned geometrically [C—H = 0.99Å for CH₂, 0.98Å for CH₃ and 0.95Å for CH(aromatic)] and refined using a riding model, with $U_{iso} = 1.2U_{eq}$ (1.5 U_{eq} for the methyl group) of the parent atom.

Figure 1

Two independent molecules of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Crystal packing of (I) showing the chains formed by hydrogen bonds (dashed lines).

1-Benzyl-N-methyl-1H-pyrrole-2-carboxamide

Crystal data

 $C_{13}H_{14}N_{2}O$ $M_{r} = 214.26$ Monoclinic, $P2_{1}/c$ a = 9.8285 (18) Å b = 23.588 (4) Å c = 9.9230 (17) Å $\beta = 90.107 (3)^{\circ}$ $V = 2300.5 (7) \text{ Å}^{3}$ Z = 8 F(000) = 912

Data collection

Bruker SMART 1K CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.965, T_{\max} = 0.968$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.157$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
4879 reflections	and constrained refinement
300 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1044P)^2 + 0.2726P]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

 $D_{\rm x} = 1.237 {\rm ~Mg} {\rm ~m}^{-3}$

 $\theta = 2.2 - 27.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

Prism. colourless

 $0.45 \times 0.43 \times 0.41 \text{ mm}$

 $\theta_{\rm max} = 27.0^\circ, \, \theta_{\rm min} = 1.7^\circ$

10728 measured reflections 4879 independent reflections

4388 reflections with $I > 2\sigma(I)$

T = 110 K

 $R_{\rm int} = 0.033$

 $h = -12 \rightarrow 12$

 $k = -30 \rightarrow 18$

 $l = -8 \rightarrow 12$

Melting point: 365 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7113 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
03	0.26038 (14)	0.34460 (7)	1.12858 (15)	0.0345 (4)	
N4	0.46989 (19)	0.36072 (8)	1.21438 (18)	0.0298 (4)	
01	0.75946 (15)	0.35421 (7)	0.24801 (16)	0.0351 (4)	

C18	0.38669 (19)	0.34269 (8)	1.11684 (19)	0.0248 (4)
N3	0.38660 (18)	0.31280 (7)	0.87447 (16)	0.0278 (4)
C5	0.8847 (2)	0.34954 (8)	0.2623 (2)	0.0261 (4)
C4	0.94580 (19)	0.32331 (7)	0.3830 (2)	0.0251 (4)
N1	0.87834 (18)	0.31770 (7)	0.50486 (17)	0.0284 (4)
C3	1.0677 (2)	0.29404 (8)	0.3945 (2)	0.0299 (4)
H3	1.1347	0.2903	0.3262	0.036*
C21	0.2777(2)	0 39956 (8)	0.7816(2)	0.0276 (4)
C17	0.2777(2) 0.4525(2)	0.31943 (8)	0.9961(2)	0.0270(1) 0.0254(4)
N2	0.97245(19)	0.36613 (8)	0.3901(2) 0.16790(19)	0.0231(1) 0.0325(4)
C7	0.77243(17) 0.7549(2)	0.34689 (0)	0.10790(19)	0.0323(4) 0.0318(4)
U7A	0.7549(2) 0.7010	0.34089 (9)	0.5492 (2)	0.0318 (4)
II/A II7D	0.7010	0.3207	0.0038	0.038*
П/Б	0.0994	0.3304	0.4090	0.038
	0.5796(2)	0.29413 (8)	0.9852 (2)	0.0305 (4)
HI6	0.6469	0.2920	1.0539	0.03/*
C25	0.3206 (3)	0.49865 (10)	0.8254 (3)	0.0427 (5)
H25	0.3390	0.5284	0.8873	0.051*
C15	0.5903 (3)	0.27231 (9)	0.8536 (2)	0.0378 (5)
H15	0.6659	0.2525	0.8170	0.045*
C8	0.7817 (2)	0.40061 (8)	0.6283 (2)	0.0289 (4)
C20	0.2580 (2)	0.33927 (9)	0.8305 (2)	0.0305 (4)
H20A	0.1931	0.3393	0.9067	0.037*
H20B	0.2178	0.3163	0.7569	0.037*
C19	0.4191 (2)	0.37479 (11)	1.3473 (2)	0.0387 (5)
H19A	0.3238	0.3867	1.3404	0.058*
H19B	0.4735	0.4057	1.3855	0.058*
H19C	0.4256	0.3414	1.4058	0.058*
C11	0.8202(3)	0.50016 (11)	0.7752 (3)	0.0442(5)
H11	0.8334	0 5341	0.8251	0.053*
C1	0.0551 0.9583(3)	0.28673 (8)	0.5899(2)	0.0355 (5)
U1 Н1	0.9366	0.2775	0.6805	0.0555 (5)
C14	0.7500	0.2775	0.0005 0.7884 (2)	0.045
	0.4714(3)	0.28490 (8)	0.7884 (2)	0.0343(3)
П14 С22	0.4311	0.2737	0.0974	0.041
022	0.2082 (2)	0.41165 (9)	0.0434 (2)	0.0338 (3)
H22	0.2501	0.3822	0.5830	0.041*
C26	0.3042 (2)	0.44347 (9)	0.8/15(2)	0.03/1(5)
H26	0.3111	0.4357	0.9652	0.044*
C6	0.9276 (3)	0.38588 (13)	0.0361 (3)	0.0497 (6)
H6A	0.8989	0.3534	-0.0186	0.075*
H6B	1.0027	0.4055	-0.0090	0.075*
H6C	0.8510	0.4120	0.0470	0.075*
C9	0.6769 (2)	0.42377 (10)	0.7042 (2)	0.0379 (5)
H9	0.5909	0.4054	0.7066	0.045*
C2	1.0749 (2)	0.27108 (8)	0.5242 (2)	0.0347 (5)
H2	1.1469	0.2488	0.5601	0.042*
C13	0.9061 (2)	0.42821 (10)	0.6273 (2)	0.0378 (5)
H13	0.9790	0.4132	0.5756	0.045*
C23	0.2847 (3)	0.46671 (10)	0.5993 (2)	0.0423 (5)
	× /		· /	· · ·

supporting information

H23	0.2785	0.4746	0.5056	0.051*	
C10	0.6962 (3)	0.47337 (11)	0.7765 (3)	0.0447 (6)	
H10	0.6233	0.4889	0.8272	0.054*	
C12	0.9253 (3)	0.47759 (11)	0.7011 (3)	0.0469 (6)	
H12	1.0114	0.4959	0.7004	0.056*	
C24	0.3101 (3)	0.51017 (10)	0.6894 (3)	0.0426 (5)	
H24	0.3203	0.5479	0.6577	0.051*	
H2A	1.058 (4)	0.3631 (12)	0.183 (3)	0.051 (8)*	
H4	0.557 (3)	0.3597 (11)	1.204 (3)	0.044 (7)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
O3	0.0196 (6)	0.0549 (9)	0.0290 (7)	-0.0027 (6)	0.0040 (6)	-0.0056 (7)
N4	0.0200 (8)	0.0428 (9)	0.0267 (8)	0.0019 (7)	0.0021 (7)	-0.0066 (7)
01	0.0200 (7)	0.0510 (9)	0.0342 (7)	0.0021 (6)	-0.0005 (6)	0.0048 (7)
C18	0.0228 (8)	0.0286 (8)	0.0231 (8)	-0.0006 (7)	0.0033 (8)	0.0014 (7)
N3	0.0334 (9)	0.0271 (7)	0.0230 (7)	-0.0028 (6)	0.0040 (7)	-0.0011 (6)
C5	0.0221 (9)	0.0259 (8)	0.0301 (9)	0.0001 (7)	0.0010 (8)	-0.0020 (8)
C4	0.0235 (9)	0.0258 (8)	0.0261 (9)	-0.0012 (7)	0.0017 (8)	-0.0031 (7)
N1	0.0292 (8)	0.0297 (8)	0.0263 (8)	0.0001 (7)	0.0027 (7)	0.0007 (7)
C3	0.0288 (9)	0.0297 (9)	0.0311 (10)	0.0050 (7)	-0.0019 (9)	-0.0038 (8)
C21	0.0216 (8)	0.0337 (10)	0.0276 (9)	0.0015 (7)	0.0028 (8)	-0.0002 (8)
C17	0.0246 (9)	0.0269 (8)	0.0249 (9)	-0.0021 (7)	0.0063 (8)	0.0023 (7)
N2	0.0220 (8)	0.0439 (10)	0.0315 (9)	0.0032 (7)	0.0047 (7)	0.0066 (8)
C7	0.0251 (10)	0.0390 (11)	0.0313 (9)	-0.0027 (8)	0.0067 (9)	-0.0027 (8)
C16	0.0296 (10)	0.0313 (9)	0.0307 (10)	0.0058 (8)	0.0091 (9)	0.0047 (8)
C25	0.0439 (12)	0.0329 (10)	0.0512 (13)	0.0004 (9)	-0.0023 (12)	-0.0046 (10)
C15	0.0473 (13)	0.0321 (9)	0.0339 (11)	0.0097 (9)	0.0157 (10)	0.0006 (9)
C8	0.0275 (9)	0.0339 (9)	0.0251 (8)	0.0022 (8)	0.0007 (8)	0.0024 (8)
C20	0.0309 (10)	0.0345 (10)	0.0260 (8)	-0.0067 (8)	0.0001 (8)	-0.0001 (8)
C19	0.0307 (11)	0.0574 (13)	0.0280 (10)	0.0063 (10)	0.0003 (9)	-0.0112 (9)
C11	0.0467 (13)	0.0429 (12)	0.0431 (12)	0.0042 (10)	-0.0025 (11)	-0.0125 (10)
C1	0.0455 (13)	0.0323 (10)	0.0287 (10)	0.0005 (9)	-0.0043 (10)	0.0017 (8)
C14	0.0493 (13)	0.0276 (10)	0.0265 (9)	0.0036 (9)	0.0080 (10)	-0.0031 (8)
C22	0.0370 (11)	0.0386 (11)	0.0260 (9)	0.0064 (9)	0.0037 (8)	-0.0001 (9)
C26	0.0419 (12)	0.0367 (10)	0.0325 (10)	-0.0014 (9)	-0.0046 (10)	-0.0030 (9)
C6	0.0376 (12)	0.0753 (17)	0.0362 (11)	0.0101 (12)	0.0077 (11)	0.0211 (12)
C9	0.0288 (10)	0.0461 (12)	0.0387 (11)	0.0016 (9)	0.0055 (10)	-0.0029 (10)
C2	0.0395 (11)	0.0315 (10)	0.0329 (10)	0.0082 (9)	-0.0063 (9)	-0.0026 (8)
C13	0.0272 (10)	0.0441 (11)	0.0421 (11)	-0.0009 (9)	0.0057 (10)	-0.0089 (10)
C23	0.0497 (14)	0.0452 (12)	0.0320 (10)	0.0104 (10)	0.0063 (11)	0.0113 (10)
C10	0.0369 (12)	0.0518 (14)	0.0454 (13)	0.0097 (10)	0.0050 (11)	-0.0117 (11)
C12	0.0347 (12)	0.0497 (13)	0.0563 (15)	-0.0080 (10)	0.0001 (12)	-0.0131 (12)
C24	0.0402 (12)	0.0340 (11)	0.0536 (13)	0.0057 (9)	0.0065 (11)	0.0103 (10)

Geometric parameters (Å, °)

03—C18	1.248 (2)	C15—C14	1.367 (4)
N4—C18	1.335 (3)	C15—H15	0.9500
N4—C19	1.450 (3)	C8—C13	1.386 (3)
N4—H4	0.87 (3)	C8—C9	1.390 (3)
O1—C5	1.243 (2)	C20—H20A	0.9900
C18—C17	1.469 (3)	C20—H20B	0.9900
N3—C14	1.364 (3)	C19—H19A	0.9800
N3—C17	1.378 (3)	C19—H19B	0.9800
N3—C20	1.475 (3)	C19—H19C	0.9800
C5—N2	1.334 (3)	C11—C10	1.373 (4)
C5—C4	1.475 (3)	C11—C12	1.376 (4)
C4—N1	1.386 (3)	C11—H11	0.9500
C4—C3	1.388 (3)	C1—C2	1.369 (3)
N1—C1	1.364 (3)	C1—H1	0.9500
N1—C7	1.463 (3)	C14—H14	0.9500
C3—C2	1.398 (3)	C22—C23	1.383 (3)
С3—Н3	0.9500	С22—Н22	0.9500
C21—C22	1.385 (3)	С26—Н26	0.9500
C21—C26	1.391 (3)	С6—Н6А	0.9800
C21—C20	1.515 (3)	C6—H6B	0.9800
C17—C16	1.389 (3)	С6—Н6С	0.9800
N2—C6	1.456 (3)	C9—C10	1.385 (3)
N2—H2A	0.86 (4)	С9—Н9	0.9500
С7—С8	1.513 (3)	C2—H2	0.9500
С7—Н7А	0.9900	C13—C12	1.388 (3)
С7—Н7В	0.9900	C13—H13	0.9500
C16—C15	1.408 (3)	C23—C24	1.383 (4)
C16—H16	0.9500	С23—Н23	0.9500
C25—C24	1.381 (4)	C10—H10	0.9500
C25—C26	1.389 (3)	C12—H12	0.9500
C25—H25	0.9500	C24—H24	0.9500
C18—N4—C19	121.39 (18)	N3—C20—H20B	109.1
C18—N4—H4	120.7 (19)	C21—C20—H20B	109.1
C19—N4—H4	117.3 (19)	H20A—C20—H20B	107.8
O3—C18—N4	121.92 (18)	N4-C19-H19A	109.5
O3—C18—C17	121.96 (18)	N4—C19—H19B	109.5
N4—C18—C17	116.10 (17)	H19A—C19—H19B	109.5
C14—N3—C17	108.44 (18)	N4—C19—H19C	109.5
C14—N3—C20	122.93 (18)	H19A—C19—H19C	109.5
C17—N3—C20	127.76 (16)	H19B—C19—H19C	109.5
O1—C5—N2	122.4 (2)	C10-C11-C12	119.6 (2)
O1—C5—C4	122.11 (19)	C10—C11—H11	120.2
N2—C5—C4	115.51 (18)	C12—C11—H11	120.2
N1—C4—C3	107.17 (18)	N1—C1—C2	109.37 (19)
N1—C4—C5	123.61 (17)	N1—C1—H1	125.3

C3—C4—C5	128.74 (19)	C2—C1—H1	125.3
C1—N1—C4	108.33 (18)	N3—C14—C15	109.37 (19)
C1—N1—C7	122.91 (18)	N3—C14—H14	125.3
C4—N1—C7	127.97 (17)	C15—C14—H14	125.3
C4—C3—C2	108.07 (19)	C23—C22—C21	120.7 (2)
С4—С3—Н3	126.0	С23—С22—Н22	119.6
С2—С3—Н3	126.0	С21—С22—Н22	119.6
C22—C21—C26	118.8 (2)	C25—C26—C21	120.5 (2)
C22—C21—C20	120.01 (18)	С25—С26—Н26	119.7
C26—C21—C20	121.14 (18)	C21—C26—H26	119.7
N3-C17-C16	107.72 (18)	N2—C6—H6A	109.5
N3—C17—C18	123.36 (17)	N2—C6—H6B	109.5
C16—C17—C18	128.44 (19)	H6A—C6—H6B	109.5
C5—N2—C6	122.00 (19)	N2—C6—H6C	109.5
C5—N2—H2A	119 (2)	H6A—C6—H6C	109.5
C6—N2—H2A	118 (2)	H6B—C6—H6C	109.5
N1-C7-C8	113.97 (17)	C10-C9-C8	120.8 (2)
N1—C7—H7A	108.8	C10-C9-H9	119.6
C8—C7—H7A	108.8	С8—С9—Н9	119.6
N1-C7-H7B	108.8	C1-C2-C3	107.04 (19)
C8—C7—H7B	108.8	C1 - C2 - H2	126.5
H7A - C7 - H7B	107.7	C3—C2—H2	126.5
C17 - C16 - C15	107.3 (2)	C8-C13-C12	120.6 (2)
C17—C16—H16	126.3	C8-C13-H13	119 7
C_{15} C_{16} H_{16}	126.3	C12—C13—H13	119.7
C_{24} C_{25} C_{26}	1199(2)	C_{24} C_{23} C_{22}	120.1(2)
C_{24} C_{25} C_{20} C_{25} C_{20}	120.1	C_{24} C_{23} H_{23}	120.1 (2)
$C_{24} = C_{25} = H_{25}$	120.1	$C_{24} = C_{23} = H_{23}$	120.0
C_{14} C_{15} C_{16}	107 11 (19)	$C_{11} - C_{10} - C_{9}$	120.0 120.3(2)
C14 - C15 - H15	126.4	$C_{11} - C_{10} - H_{10}$	120.5 (2)
C16-C15-H15	126.4	C9-C10-H10	119.8
C_{13} C_{8} C_{9}	1183(2)	C_{11} C_{12} C_{13}	120.4(2)
$C_{13} = C_{8} = C_{7}$	$122 \ 84 \ (19)$	C11 - C12 - C13	120.4 (2)
$C_{13}^{0} = C_{3}^{0} = C_{7}^{0}$	122.04(1)) 118.81(10)	$C_{12} = C_{12} = H_{12}$	119.8
$N_{3} = C_{2} = C_{1}$	112.46 (16)	$C_{13} = C_{12} = M_{12}$	119.0 110.0(2)
$N_{3} = C_{20} = C_{21}$	100.1	$C_{25} = C_{24} = C_{25}$	119.9 (2)
$C_{20} = C_{20} = H_{20} A$	109.1	$C_{23} = C_{24} = H_{24}$	120.0
C21—C20—1120A	109.1	025-024-1124	120.0
C19 N4 C18 O3	10.3 (3)	N1	-163 65 (18)
C19 N4 C18 C17	-168.55(18)	11 - 27 - 28 - 29	-875(2)
$C_{1} = C_{1} = C_{1} = C_{1}$	-205(3)	C17 N3 C20 C21	80.6 (2)
$N_2 C_5 C_4 N_1$	-20.3(3)	$C_{17} = N_{5} = C_{20} = C_{21}$	80.0(2)
$N_2 = C_3 = C_4 = N_1$	101.07(17) 150.5(2)	$C_{22} = C_{21} = C_{20} = N_3$	-73.0(2)
$N_2 C_5 C_4 C_3$	-27.3(2)	$C_{20} = C_{21} = C_{20} = N_3$	-1.4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.3(3) 1 2 (2)	$C_{\tau} = 101 = C_{\tau} = C_{\tau}^{2}$	-171 05 (19)
C_{3} C_{4} C_{1} C_{1}	1.2(2) 172.00(17)	$C_1 = N_1 = C_1 = C_2$	1/1.93(18) 1/2(2)
$C_{3} = C_{4} = 1 \times 1 = C_{1}$	173.70(17) 171.15(19)	$C_{1} = 11 = 0.14 = 0.13$ $C_{20} = N_2 = 0.14 = 0.15$	1.3(2) 171 24 (17)
$C_{5} = C_{4} = N_{1} = C_{7}$	1/1.13(10) 16.2(2)	C_{20} N3 C_{14} C_{15} C_{14} N2	1/1.34(1/)
C3-C4-NI-C/	-10.2(3)	U10-U13-U14-N3	-0.9 (2)

N1—C4—C3—C2	-0.6 (2)	C26—C21—C22—C23	0.0 (3)
C5—C4—C3—C2	-172.77 (19)	C20—C21—C22—C23	179.4 (2)
C14—N3—C17—C16	-1.1 (2)	C24—C25—C26—C21	0.2 (4)
C20—N3—C17—C16	-170.53 (17)	C22—C21—C26—C25	0.1 (3)
C14—N3—C17—C18	-173.73 (17)	C20—C21—C26—C25	-179.3 (2)
C20—N3—C17—C18	16.8 (3)	C13—C8—C9—C10	0.3 (3)
O3—C18—C17—N3	18.7 (3)	C7—C8—C9—C10	-179.0 (2)
N4—C18—C17—N3	-162.52 (17)	N1—C1—C2—C3	1.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -173.73(17) \\ 16.8(3) \\ 18.7(3) \\ -162.52(17) \\ -152.4(2) \\ 26.4(3) \\ -6.0(3) \\ 171.8(2) \\ 75.4(2) \\ -93.1(2) \\ 0.5(2) \\ 172.66(19) \\ 0.3(2) \\ 171(3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -1.79.3 (2) \\ 0.3 (3) \\ -179.0 (2) \\ 1.0 (2) \\ -0.2 (2) \\ 0.4 (4) \\ 179.6 (2) \\ -0.4 (4) \\ 0.3 (4) \\ -0.6 (4) \\ 0.4 (4) \\ -0.7 (4) \\ -0.7 (4) \\ 0.8 (4) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
N4—H4···O1 ⁱ	0.87 (3)	2.04 (3)	2.869 (2)	161 (3)
N2—H2A···O3 ⁱⁱ	0.86 (4)	2.10 (4)	2.902 (2)	154 (3)

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) *x*+1, *y*, *z*-1.