Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N-Dimethyl-4-[(2-pyridyl)diazenyl]aniline

Nararak Leesakul,* Suthirat Yoopensuk, Chaveng Pakawatchai, Saowanit Saithong and Kanidtha Hansongnern

Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand Correspondence e-mail: nararak.le@psu.ac.th

Received 4 June 2010; accepted 30 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.108; data-to-parameter ratio = 13.5.

The title compound, $C_{13}H_{14}N_4$, adopts a *trans* configuration about the azo bond. There is a dihedral angle of $12.18(7)^{\circ}$ between the pyridine and benzene rings and the mean plane of the dimethylamino substituent is twisted by $6.1 (2)^\circ$ relative to the benzene ring. In the crystal, weak intermolecular C- $H \cdots N$ hydrogen bonds result in a zigzag arrangement along [010].

Related literature

For applications of azo compounds in textile coloring and photovoltaic frameworks, see: Millington et al. (2007). For the synthesis of similar compounds, see: Krause & Krause (1980). For the X-ray structures of protonated 2-(phenylazo)pyridine (azpy), a similar compound, and chelating complexes, see: Panneerselvam et al. (2000); Peacock et al. (2007); Ohashi et al. (2003). For the X-ray structures of complexes with the title compound, see: Dougan et al. (2006); Li et al. (2001);

Experimental

Crystal data

 $C_{13}H_{14}N_4$ $M_r = 226.28$ Monoclinic, $P2_1/n$ a = 6.2322 (4) Å b = 19.9353 (11) Å c = 9.6404 (6) Å $\beta = 96.003 \ (1)^{\circ}$

```
V = 1191.16 (13) \text{ Å}^3
Z = 4
Mo K\alpha radiation
\mu = 0.08 \text{ mm}^-
T = 293 \text{ K}
0.28\,\times\,0.26\,\times\,0.06 mm
```

organic compounds

12811 measured reflections

 $R_{\rm int} = 0.023$

2101 independent reflections

1754 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker SMART APEX CCD area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2003)
  T_{\min} = 0.918, T_{\max} = 1.000
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	156 parameters
$vR(F^2) = 0.108$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.12 \text{ e} \text{ Å}^{-3}$
2101 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

C1-H1···N3 ⁱ 0.93 2.58 3.4516 (18) 157	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$C1 - H1 \cdots N3^i$	0.93	2.58	3.4516 (18)	157

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury and SHELXTL.

We are grateful to the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, and the Thailand Graduate Institute of Science and Technology (TGIST) for financial support. Ms Sriwipha Onganusorn is acknowledged for supplying the ES-MS and CHN analysis data. We thank the Department of Chemistry, Wollongong University, Australia for the ES-MS measurements and the School of Chemistry, University of Bristol, England, for the elemental analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2313).

References

- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dougan, S. J., Melchart, M., Habtemariam, A., Pearsons, S. & Sadler, P. J. (2006). Inorg. Chem. 45, 10882-10894.
- Krause, R. A. & Krause, K. (1980). Inorg. Chem. 19, 2600-2603.
- Li, Y., Lin, Z. Y. & Wong, W. T. (2001). Eur. J. Inorg. Chem. pp. 3163-3173. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P.,
- Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Millington, K. R., Fincher, K. W. & King, A. L. (2007). Sol. Energ. Mater. Sol. Cells, 91, 1618-1630.
- Ohashi, A., Tsukuda, T. & Watari, H. (2003). Anal. Sci. 19, 1085-1086.
- Panneerselvam, K., Hansongnern, K., Rattanawit, N., Liao, F. & Lu, T. (2000). Anal. Sci. 16, 1107-1108.
- Peacock, A. F. A., Habtemariam, A., Moggach, S. A., Prescimone, A., Pearsons, S. & Sadler, P. J. (2007). Inorg. Chem. 46, 4049-4059.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o1923 [https://doi.org/10.1107/S1600536810025754]

N,N-Dimethyl-4-[(2-pyridyl)diazenyl]aniline

Nararak Leesakul, Suthirat Yoopensuk, Chaveng Pakawatchai, Saowanit Saithong and Kanidtha Hansongnern

S1. Comment

Compounds existing of azo-imine (-N—C—N=N-) moieties have been extensively used as the powerful ligands of transition metal complexes owing to their great σ -donor and π -acceptor properties. Applications of azo compounds are on textile coloring and photovoltaic frameworks (Millington *et al.*, 2007). As being a part of our studies on dye-sensitized solar cell, here we report the X-ray structure of the title compound synthesized by modified 2-phenylazopyridine (azpy) synthetic pathway (Krause *et al.*, 1980).

The molecule is almost coplanar as shown in Fig. 1. Torsion angle of pyridine-azo-phenyl atoms, C(5)—N(2)—N(3)— C(6), is -179.68 (10)°. The mean planes of pyridine and phenyl rings deviate for 12.18 (7)°. The N(py) atom exists in *trans*-form with respect to the N(azo) atom attached to the phenyl ring. It is different from that observed in protonated azpy (Panneerselvam *et al.*, 2000) and chelating complexes (Peacock *et al.*, 2007; Ohashi *et al.*, 2003) in which the *cis*configurations are observed. The N=N bond distance of free dmazpy [1.2566 (16) Å] is long in comparison with its chelating Os(II) complex [1.301 (4) Å] (Peacock *et al.*, 2007) because of π -backbonding interaction. The methylaniline substituent plane is slightly deviated from phenyl ring with dihedral angle of 6.1 (2)°. In the crystal structure, the weak hydrogen bonds are found at the N(azo) atom attached to the phenyl ring, C(1)—H(1)···N(3) [C···N = 3.4516 (18) Å]. Intermolecular π - π stacking interactions occur between adjacent phenyl rings. The centroid-centroid distances are found the alternated distances of 5.317 (3) Å and 4.629 (4) Å sequences parallel to the *c* axis. All these interactions link the molecules into a zigzag orientation parallel to [010]. The packing interactions are shown in Fig.2.

S2. Experimental

2-Aminopyridine (0.50 g, 5 mmol) was dissolved in 5 ml benzene. The solution was heated at 80 °C for 10 minutes. Then 6 ml of 25 *M* NaOH was slowly added into the 2-aminopyridine solution. *N*,*N*-dimethyl-1,4-nitrosoaniline (0.75 g, 5 mmol) was gradually added to the warm solution mixture. An additional 5 ml of benzene was put into the solution mixture which was then refluxed for 9 h. The reaction mixture was filtered and extracted with benzene. Red powder was purified by silica gel column chromatography using mixture of hexane and ethylacetate as an eluent. Recrystallization at room temperature in 3:2 hexane: methanol mixture yielded red crystals. The dmazpy melting point is 104–105 °C. Anal. Calcd for dmazpy: C, 69.00; H, 6.23; N, 24.76. Found: C, 69.85; H, 6.34; N, 23.81. ES—MS: m/z 227(MH⁺, 100%).

S3. Refinement

The structures were solved by direct methods refined by a full-matrix least-squares procedure based on F^2 . All Hydrogen atoms were placed in geometrically idealized positions and refined isotropically with a riding model for both of C-*sp*² and [C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$] and C-*sp*³ [C—H = 0.96 Å and with $U_{iso}(H) = 1.5U_{eq}(C)$].

Figure 1

The molecular structure of 4-(2-pyridylazo)-N,N-dimethylaniline. Thermal ellipsoids are shown at 50% probability level.

Figure 2

The packing interactions of 4-(2-pyridylazo)-*N*,*N*-dimethylaniline. Symmetry code: (i) x + 1/2, -y + 1/2, Z+1/2.

N,N-Dimethyl-4-[(2-pyridyl)diazenyl]aniline

Crystal data

 $\begin{array}{l} {\rm C}_{13}{\rm H}_{14}{\rm N}_4 \\ M_r = 226.28 \\ {\rm Monoclinic, $P2_1/n$} \\ {\rm Hall symbol: -P 2yn} \\ a = 6.2322 \ (4) \ {\rm \AA} \\ b = 19.9353 \ (11) \ {\rm \AA} \\ c = 9.6404 \ (6) \ {\rm \AA} \\ \beta = 96.003 \ (1)^{\circ} \\ V = 1191.16 \ (13) \ {\rm \AA}^3 \\ Z = 4 \end{array}$

F(000) = 480 $D_x = 1.262 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3335 reflections $\theta = 2.4-25.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.28 \times 0.26 \times 0.06 \text{ mm}$ Data collection

Bruker APEX CCD area-detector	12811 measured reflections
diffractometer	2101 independent reflections
Radiation source: fine-focus sealed tube	1754 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.023$
φ and ω scans	$\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(<i>SADABS</i> ; Bruker, 2003)	$k = -23 \rightarrow 23$
$T_{\min} = 0.918, T_{\max} = 1.000$	$l = -11 \rightarrow 11$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.108$	neighbouring sites
S = 1.04	H-atom parameters constrained
2101 reflections	$w = 1/[\sigma^2(F_o^2) + (0.057P)^2 + 0.1546P]$
156 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.12$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.19$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two *l.s.* planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving *l.s.* planes. **Refinement**. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.26625 (18)	0.22136 (6)	0.68133 (12)	0.0540 (3)	
C1	0.2173 (3)	0.27093 (7)	0.76510 (16)	0.0609 (4)	
H1	0.3306	0.2956	0.8102	0.073*	
C2	0.0116 (3)	0.28823 (7)	0.78947 (16)	0.0622 (4)	
H2	-0.0136	0.3234	0.8490	0.075*	
C3	-0.1564 (2)	0.25173 (8)	0.72277 (15)	0.0619 (4)	
Н3	-0.2983	0.2620	0.7363	0.074*	
C4	-0.1119 (2)	0.20013 (7)	0.63609 (15)	0.0547 (4)	
H4	-0.2227	0.1746	0.5906	0.066*	
C5	0.1016 (2)	0.18679 (6)	0.61771 (13)	0.0449 (3)	
N2	0.16987 (18)	0.13418 (5)	0.53090 (11)	0.0498 (3)	
N3	0.01419 (17)	0.10823 (5)	0.45640 (11)	0.0487 (3)	
C6	0.0660 (2)	0.05591 (6)	0.36836 (13)	0.0450 (3)	
C7	-0.1052 (2)	0.02897 (7)	0.28271 (15)	0.0516 (3)	
H7	-0.2431	0.0459	0.2879	0.062*	
C8	-0.0770 (2)	-0.02177 (7)	0.19098 (14)	0.0508 (3)	

supporting information

H8	-0.1955	-0.0386	0.1352	0.061*	
С9	0.1288 (2)	-0.04879 (6)	0.17993 (13)	0.0456 (3)	
C10	0.3025 (2)	-0.02146 (7)	0.26841 (15)	0.0530 (4)	
H10	0.4408	-0.0383	0.2644	0.064*	
C11	0.2711 (2)	0.02924 (7)	0.35976 (14)	0.0511 (3)	
H11	0.3881	0.0462	0.4169	0.061*	
N4	0.15861 (18)	-0.09932 (6)	0.08935 (12)	0.0542 (3)	
C12	-0.0229 (2)	-0.13009 (7)	0.00681 (16)	0.0597 (4)	
H12A	-0.1279	-0.1441	0.0670	0.090*	
H12B	0.0260	-0.1684	-0.0415	0.090*	
H12C	-0.0871	-0.0982	-0.0597	0.090*	
C13	0.3730 (2)	-0.12209 (9)	0.06728 (19)	0.0733 (5)	
H13A	0.4497	-0.0864	0.0272	0.110*	
H13B	0.3624	-0.1598	0.0051	0.110*	
H13C	0.4490	-0.1351	0.1549	0.110*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0499 (7)	0.0566 (7)	0.0556 (7)	-0.0048 (5)	0.0061 (5)	-0.0065 (6)
C1	0.0631 (9)	0.0583 (9)	0.0613 (9)	-0.0094 (7)	0.0064 (7)	-0.0099 (7)
C2	0.0747 (10)	0.0535 (8)	0.0597 (9)	0.0077 (8)	0.0127 (8)	-0.0043 (7)
C3	0.0532 (8)	0.0707 (10)	0.0621 (9)	0.0137 (7)	0.0086 (7)	0.0022 (8)
C4	0.0480 (8)	0.0636 (9)	0.0516 (8)	-0.0012 (6)	0.0009 (6)	0.0009 (7)
C5	0.0477 (7)	0.0448 (7)	0.0419 (7)	0.0004 (6)	0.0029 (6)	0.0048 (5)
N2	0.0488 (6)	0.0510 (6)	0.0492 (6)	-0.0023 (5)	0.0038 (5)	-0.0007 (5)
N3	0.0507 (7)	0.0462 (6)	0.0484 (6)	-0.0008 (5)	0.0017 (5)	0.0041 (5)
C6	0.0483 (7)	0.0421 (7)	0.0447 (7)	-0.0007 (5)	0.0049 (6)	0.0049 (5)
C7	0.0416 (7)	0.0521 (8)	0.0612 (8)	0.0003 (6)	0.0052 (6)	0.0004 (7)
C8	0.0420 (7)	0.0517 (8)	0.0574 (8)	-0.0063 (6)	-0.0003 (6)	-0.0019 (6)
C9	0.0453 (7)	0.0444 (7)	0.0473 (7)	-0.0048 (6)	0.0054 (6)	0.0034 (5)
C10	0.0408 (7)	0.0558 (8)	0.0619 (8)	0.0011 (6)	0.0028 (6)	-0.0051 (7)
C11	0.0464 (8)	0.0528 (8)	0.0524 (8)	-0.0038 (6)	-0.0032 (6)	-0.0016 (6)
N4	0.0472 (7)	0.0551 (7)	0.0601 (7)	-0.0034 (5)	0.0048 (5)	-0.0105 (6)
C12	0.0590 (9)	0.0583 (9)	0.0612 (9)	-0.0100 (7)	0.0036 (7)	-0.0086 (7)
C13	0.0571 (9)	0.0797 (11)	0.0834 (11)	0.0040 (8)	0.0089 (8)	-0.0265 (9)

Geometric parameters (Å, °)

N1—C5	1.3311 (16)	С7—Н7	0.9300
N1-C1	1.3316 (18)	C8—C9	1.4052 (18)
C1—C2	1.371 (2)	C8—H8	0.9300
C1—H1	0.9300	C9—N4	1.3586 (17)
С2—С3	1.378 (2)	C9—C10	1.4156 (18)
С2—Н2	0.9300	C10—C11	1.3678 (19)
C3—C4	1.372 (2)	C10—H10	0.9300
С3—Н3	0.9300	C11—H11	0.9300
C4—C5	1.3863 (19)	N4—C13	1.4477 (18)

C4—H4	0.9300	N4—C12	1.4494 (17)
C5—N2	1.4337 (16)	C12—H12A	0.9600
N2—N3	1.2566 (15)	C12—H12B	0.9600
N3—C6	1.4035 (16)	C12—H12C	0.9600
C6—C7	1.3870 (18)	С13—Н13А	0.9600
C6—C11	1.3951 (19)	С13—Н13В	0.9600
C7—C8	1.3668 (19)	C13—H13C	0.9600
C5—N1—C1	116.70 (12)	С9—С8—Н8	119.6
N1—C1—C2	124.61 (14)	N4C9C8	121.36 (12)
N1—C1—H1	117.7	N4—C9—C10	121.68 (12)
C2—C1—H1	117.7	C8—C9—C10	116.95 (12)
C1—C2—C3	117.76 (14)	C11—C10—C9	121.37 (12)
C1—C2—H2	121.1	C11—C10—H10	119.3
С3—С2—Н2	121.1	C9—C10—H10	119.3
C4—C3—C2	119.19 (14)	C10—C11—C6	120.90 (12)
С4—С3—Н3	120.4	C10—C11—H11	119.6
С2—С3—Н3	120.4	C6-C11-H11	119.6
$C_3 - C_4 - C_5$	118.67 (13)	C9—N4—C13	121.16(11)
C3—C4—H4	120.7	C9—N4—C12	121.01 (11)
C5—C4—H4	120.7	C13 - N4 - C12	117.77 (12)
N1-C5-C4	123.06 (12)	N4—C12—H12A	109 5
N1-C5-N2	112,300(12) 112,72(11)	N4—C12—H12B	109.5
C4-C5-N2	122.72(11) 124.21(12)	H12A - C12 - H12B	109.5
N_{3} N_{2} C_{5}	112 + .21 (12) 112 + .11 (11)	N4— $C12$ — $H12C$	109.5
$N_2 N_3 C_6$	112.11(11) 116.04(11)	$H_{12A} = C_{12} = H_{12C}$	109.5
112 - 113 - 20	110.04(11) 118.00(12)	$H_{12R} = C_{12} = H_{12C}$	109.5
C7 - C6 - N3	116.00(12) 115.80(12)	$\frac{1112D}{C12} + \frac{112C}{D12}$	109.5
$C_{1} = C_{0} = N_{3}$	115.09(12) 126.11(12)	N4 - C12 - H12D	109.5
C^{R} C^{R} C^{R} C^{R}	120.11(12) 121.02(12)	$\mathbf{M} = \mathbf{M} = $	109.5
C_{8} C_{7} U_{7}	121.95 (15)	NA C12 H12C	109.5
C_{0}	119.0		109.5
C_{0} C_{1} C_{1} C_{1} C_{2} C_{2} C_{2}	119.0	HI3A-CI3-HI3C	109.5
$C_{}C_{8}C_{9}$	120.85 (12)	H13B-C13-H13C	109.5
С/—С8—Н8	119.6		
C5—N1—C1—C2	0.0 (2)	N3—C6—C7—C8	179.35 (12)
N1—C1—C2—C3	0.1 (2)	C6—C7—C8—C9	0.0 (2)
C1-C2-C3-C4	0.2(2)	C7—C8—C9—N4	179.85 (12)
$C_2 - C_3 - C_4 - C_5$	-0.5(2)	C7-C8-C9-C10	0.5(2)
C1-N1-C5-C4	-0.41(19)	N4-C9-C10-C11	-179.74(12)
C1 - N1 - C5 - N2	-17947(11)	C8-C9-C10-C11	-0.4(2)
C_{3} C_{4} C_{5} N_{1}	0.7(2)	C9-C10-C11-C6	-0.2(2)
C_{3} C_{4} C_{5} N_{2}	179 60 (12)	C7 - C6 - C11 - C10	0.2(2)
N1 - C5 - N2 - N3	-17052(12)	N_{3} C6 C11 C10	-17924(12)
C4 - C5 - N2 - N3	10.32(11) 10.44(17)	$C_8 - C_9 - N_4 - C_{13}$	173 23 (14)
$C_{-} = C_{-} = 1_{12} = 1_{13}$	-17968(10)	$C_{10} - C_{9} - N_{4} - C_{13}$	-75(2)
$N_2 = N_3 = C_0$	-177.82(10)	$C_{10} = C_{2} = C_{13}$	(-3, 0, (2))
112 - 113 - 00 - 07	1/1.02(11)	$C_{0} = C_{2} = 104 = C_{12}$	3.7(2)
IN2-IN3-CO-CII	2.14 (10)	U10 - U9 - 104 - U12	1/3.44 (12)

<u>C11—C6—C7—C8</u>	-0.6 (2)				
Hydrogen-bond geometry (Å, °)					
D—H···A		D—H	H···A	D··· A	D—H···A
C1—H1···N3 ⁱ		0.93	2.58	3.4516 (18)	157
Symmetry code: (i) $x+1/2$, $-y+1/2$, $z+1/2$.					