Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Methylcyclohex-3-enyl)propan-2-yl *N*-phenylcarbamate

Raza Murad Ghalib,^a Othman Sulaiman,^a Sayed Hasan Mehdi,^a Jia Hao Goh^b‡ and Hoong-Kun Fun^b*§

^aSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 25 June 2010; accepted 25 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.050; wR factor = 0.154; data-to-parameter ratio = 11.8.

In the title carbamate compound, $C_{17}H_{23}NO_2$, one of the Csp³ atoms of the cyclohexene ring is disordered over two sites with refined occupancies of 0.55(2) and 0.45(2), both disorder components resulting in half-boat conformations. The mean plane through the carbamate unit is inclined at interplanar angles of 14.80 (13), 18.30 (17) and 24.0 (2)°, respectively, with respect to the phenyl ring, and the major and minor disorder component cyclohexene rings. In the crystal structure, adjacent molecules are linked into chains along [001] via intermolecular N-H···O hydrogen bonds. The crystal structure is further stabilized by weak intermolecular C- $H \cdot \cdot \cdot \pi$ interactions.

Related literature

For general background to and applications of the title compound, see: Banerjee et al. (1978); Graia et al. (2009); Ibuka et al. (1985); Lapidus et al. (1987); Loev & Kormendy (1963); Muradov et al. (1986); Niu et al. (2007); Ibuka et al. (1985). For related carbamate structures, see: Garden et al. (2007); Graia et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

[‡] Thomson Reuters ResearcherID: C-7576-2009. § Thomson Reuters ResearcherID: A-3561-2009.

8744 measured reflections

 $R_{\rm int} = 0.049$

2205 independent reflections

2053 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₁₇ H ₂₃ NO ₂	V = 1528.1 (3) Å ³
$M_r = 273.36$	Z = 4
Monoclinic, Cc	Mo $K\alpha$ radiation
a = 19.3067 (19) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 9.0058 (9) Å	$T = 100 { m K}$
c = 8.9521 (9) Å	$0.58 \times 0.20 \times 0.10 \text{ mm}$
$\beta = 100.964 \ (3)^{\circ}$	

Data collection

Bruker APEXII DUO CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.957, T_{\max} = 0.992$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ 4 restraints $wR(F^2) = 0.154$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.68 \text{ e} \text{ Å}^{-3}$ S = 1.15 $\Delta \rho_{\rm min} = -0.76 \text{ e} \text{ Å}^{-3}$ 2205 reflections 187 parameters

Table 1

2009).

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 phenyl ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N1 \cdots O2^{i}$ C13 - H13A \cdots Cg1^{ii}	0.86 0.97	2.12 2.62	2.969 (3) 3.566 (3)	170 166
Symmetry codes: (i) $x_1 - y_2$	$+2, z - \frac{1}{2}$ (ii)	$x + \frac{1}{2}, y - \frac{1}{2}, z$		

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek,

The authors would like to acknowledge Universiti Sains Malaysia (USM) for the University Grant (No. 1001/ PTEKIND/8140152). HKF and JHG thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/ 811012). JHG also thanks USM for the award of a USM fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5524).

References

- Banerjee, S., Dutta, S. & Chakraborti, S. K. (1978). J. Indian Chem. Soc. 55, 284-286.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Garden, S. J., Corrêa, M. B., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o234-o238.
- Graia, M., Raza Murad, G., Krimi Ammar, M., Mehdi, S. H. & Hashim, R. (2009). Acta Cryst. E65, o3231.
- Ibuka, T., Chu, G. N., Aoyagi, T., Kitada, K., Tsukida, T. & Yoneda, F. (1985). Chem. Pharm. Bull. 33, 451-453.

- Lapidus, A. L., Pirozhkov, S. D., Kapkin, V. D. & Krylova, A. Y. (1987). Org. Tech. 13, 160.
- Loev, B. & Kormendy, M. F. (1963). J. Org. Chem. 28, 3421-3426.
- Muradov, T. K., Amanov, E. A., Khaidarov, K. M. & Suleimanov, Sh. A. (1986). *Biol. Nauki*, **3**, 77–78.
- Niu, D. F., Zhang, L., Xiao, L. P., Luo, Y. W. & Lu, J. X. (2007). Appl. Organomet. Chem. 21, 941–944.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o1889–o1890 [https://doi.org/10.1107/S1600536810025080]
2-(4-Methylcyclohex-3-enyl)propan-2-yl N-phenylcarbamate
Raza Murad Ghalib, Othman Sulaiman, Sayed Hasan Mehdi, Jia Hao Goh and Hoong-Kun Fun

S1. Comment

Carbamates are well-known class of compounds with biological activity (Muradov *et al.*, 1986). They can be prepared by different methods, for example by nickel-catalyzed coupling of CO₂ and amines (Niu *et al.*, 2007), by stirring of alcohols including steroids as well as primary and secondary alcohols, polyols, phenols with sodium cynate, and trifluoroacetic acid (Loev & Kormendy, 1963), by carbonylation of aromatic nitro compounds (Lapidus *et al.*, 1987), by the reaction of isocynates with alcohols (Ibuka *et al.*, 1985) in the presence of lewis acid and by the reaction of an amine and an alcohol with phosgene. Phytosterol, β -Sitosterol, stigmasterol and cholesterol react with phenyl isocyanate to give carbamate (Banerjee *et al.*, 1978; Graia *et al.*, 2009). In this study the title compound has been synthesized by the reaction of α -terpineol with phenylisocyanate in the presence of catalytic amount of HCl in chloroform solvent.

In the title carbamate compound (Fig. 1), atom C10 of the cyclohexene ring (C9-C14) is disordered over two sites with a refined occupancy ratio of 0.55 (2):0.45 (2). The major (C9/C10A/C11-C14) and minor (C9/C10B/C11-C14) disordered cyclohexene rings adopt the same conformation, that is the half-boat conformation; puckering parameters Q = 0.427 (4) Å, $\theta = 57.4$ (5)°, $\varphi = 335.9$ (7)° for major disordered component and Q = 0.651 (6) Å, $\theta = 131.6$ (4)° and $\varphi = 161.7$ (7)° for minor disordered component. The mean plane through the carbamate moiety (N1/C7/O1/O2) is inclined at interplanar angles of 14.80 (13), 18.30 (17) and 24.0 (2)°, respectively, with respect to the C1-C6 phenyl ring, major and minor disordered cyclohexene rings. The bond lengths and angles are comparable to those related carbamate structures (Garden *et al.*, 2007; Graia *et al.*, 2009).

In the crystal structure, intermolecular N1—H1N1 \cdots O2 hydrogen bonds (Table 1) link adjacent molecules into onedimensional chains running along the [001] direction (Fig. 2). Further stabilization of the crystal structure is provided by weak intermolecular C13—H13A \cdots Cg1 interactions (Table 1) involving the centroid of the C1-C6 phenyl ring.

S2. Experimental

A mixture of α -terpineol (1.640 ml) and phenylisocyanate (1.087 ml) in 1:1 molar ratio were stirred in chloroform for 30 minutes in the presence of catalytic amount of HCl. The reaction mixture was dried on rota vapor at low pressure and then chromatographed over silica gel column loaded in light petroleum ether. The column was eluted only with light petroleum ether to give five fractions of the title compound. These fractions were mixed together on the basis of same TLC results and crystallized with chloroform:alcohol (1:1) to give the colourless needles of (I) (1.93 g, *M.p.* 378 K). The melting point was taken on Thermo Fisher digital melting point apparatus of IA9000 series and is uncorrected. Open column chromatography was performed on silica gel 60 (Merck, 0.040–0.063 mm, 230–400 mesh ASTM) and Sephadex LH-20 (Pharmacia). TLCs were taken on silica gel plates (silica gel 60 F₂₅₄ on aluminum foil, Merck).

S3. Refinement

Atom C10 is disordered over two sites with a refined occupancy ratio of 0.55 (2):0.45 (2). Atom C10B of the minor disordered component was refined isotropically. The C—C bond lengths in the minor disordered component were restrained with distance of 1.50 (1) Å. All H atoms were placed in their calculated positions, with N—H = 0.86 and C—H = 0.93 or 0.96 Å, and refined using a riding model, with $U_{iso} = 1.2 U_{eq}(N)$ and $U_{iso} = 1.2 \text{ or } 1.5 U_{eq}(C)$. The rotating group model was applied to the methyl groups. In the absence of significant anomalous dispersion, 1491 Friedel pairs were merged in the final refinement.

Figure 1

The molecular structure of (I), showing 30 % probability displacement ellipsoids. Open bonds indicate the minor disordered component.

Figure 2

The crystal structure of (I), viewed down the b axis, showing molecules being linked into one-dimensional chains along the c axis. Minor disordered component and H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.

2-(4-Methylcyclohex-3-enyl)propan-2-yl N-phenylcarbamate

Crystal data

-	
C ₁₇ H ₂₃ NO ₂	F(000) = 592
$M_r = 273.36$	$D_{\rm x} = 1.188 {\rm Mg} {\rm m}^{-3}$
Monoclinic, Cc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 2414 reflections
a = 19.3067 (19) Å	$\theta = 3.3 - 32.4^{\circ}$
b = 9.0058 (9) Å	$\mu=0.08~\mathrm{mm^{-1}}$
c = 8.9521 (9) Å	T = 100 K
$\beta = 100.964 \ (3)^{\circ}$	Needle, colourless
V = 1528.1 (3) Å ³	$0.58 \times 0.20 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII DUO CCD	8744 measured reflections
diffractometer	2205 independent reflections
Radiation source: fine-focus sealed tube	2053 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.049$
φ and ω scans	$\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -26 \rightarrow 27$
(<i>SADABS</i> ; Bruker, 2009)	$k = -12 \rightarrow 11$
$T_{\min} = 0.957, T_{\max} = 0.992$	$l = -12 \rightarrow 12$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.154$	$w = 1/[\sigma^2(F_o^2) + (0.0981P)^2 + 0.223P]$
S = 1.15	where $P = (F_o^2 + 2F_c^2)/3$
2205 reflections	$(\Delta/\sigma)_{max} < 0.001$
187 parameters	$\Delta\rho_{max} = 0.68 \text{ e } \text{Å}^{-3}$
4 restraints	$\Delta\rho_{min} = -0.76 \text{ e } \text{Å}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: <i>SHELXTL</i> (Sheldrick,
direct methods	2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.044 (6)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	r	11	7	II */II	O_{22} (<1)
	λ	У	2	$U_{\rm iso} / U_{\rm eq}$	000.(~1)
01	0.15396 (9)	0.88990 (19)	0.87624 (19)	0.0181 (4)	
O2	0.08897 (11)	0.8780 (2)	1.0641 (2)	0.0208 (4)	
N1	0.07470 (11)	1.0610(2)	0.8828 (2)	0.0164 (4)	
H1N1	0.0841	1.0796	0.7946	0.020*	
C1	-0.00477 (14)	1.1337 (3)	1.0559 (3)	0.0212 (5)	
H1A	-0.0006	1.0410	1.1025	0.025*	
C2	-0.04625 (16)	1.2429 (3)	1.1041 (3)	0.0272 (6)	
H2A	-0.0697	1.2221	1.1834	0.033*	
C3	-0.05361 (16)	1.3820 (3)	1.0371 (4)	0.0286 (6)	
H3A	-0.0810	1.4547	1.0716	0.034*	
C4	-0.01903 (15)	1.4106 (3)	0.9166 (3)	0.0264 (6)	
H4A	-0.0244	1.5025	0.8684	0.032*	
C5	0.02310 (14)	1.3035 (3)	0.8685 (3)	0.0224 (5)	
CJ	0.02310 (14)	1.3035 (3)	0.8085 (3)	0.0224(3)	

TT 7 A	0.0467	1 2246	0.7007	0.007*	
H5A	0.0467	1.3246	0.7897	0.027*	
C6	0.03042 (11)	1.1636 (3)	0.9376 (3)	0.0155 (4)	
C7	0.10429 (12)	0.9363 (3)	0.9525 (3)	0.0165 (4)	
C8	0.19360 (13)	0.7514 (3)	0.9145 (3)	0.0180 (5)	
C9	0.24506 (13)	0.7554 (3)	0.8015 (3)	0.0161 (4)	
H9A	0.2783	0.8351	0.8398	0.019*	0.55 (2)
H9B	0.2736	0.8434	0.8163	0.019*	0.45 (2)
C10A	0.2126 (3)	0.8036 (10)	0.6393 (5)	0.0169 (17)	0.55 (2)
H10A	0.1711	0.7435	0.6029	0.020*	0.55 (2)
H10B	0.1974	0.9062	0.6412	0.020*	0.55 (2)
C10B	0.2058 (3)	0.7435 (16)	0.6365 (7)	0.025 (2)*	0.45 (2)
H10C	0.1653	0.8094	0.6189	0.030*	0.45 (2)
H10D	0.1895	0.6426	0.6136	0.030*	0.45 (2)
C11	0.26080 (18)	0.7903 (4)	0.5329 (3)	0.0338 (7)	
H11A	0.2476	0.8317	0.4365	0.041*	0.55 (2)
H11B	0.2506	0.8616	0.4521	0.041*	0.45 (2)
C12	0.32574 (14)	0.7183 (3)	0.5690 (3)	0.0205 (5)	
C13	0.34562 (13)	0.6355 (3)	0.7083 (3)	0.0227 (5)	
H13A	0.3867	0.6828	0.7687	0.027*	
H13B	0.3598	0.5369	0.6825	0.027*	
C14	0.2908 (2)	0.6188 (4)	0.8067 (4)	0.0392 (9)	
H14A	0.3141	0.6005	0.9110	0.047*	
H14B	0.2612	0.5336	0.7724	0.047*	
C15	0.14268 (18)	0.6215 (3)	0.8893 (5)	0.0355 (7)	
H15A	0.1125	0.6249	0.9629	0.053*	
H15B	0.1688	0.5301	0.9002	0.053*	
H15C	0.1146	0.6272	0.7887	0.053*	
C16	0.23442 (17)	0.7591 (4)	1.0772 (3)	0.0316 (7)	
H16A	0.2020	0.7563	1.1463	0.047*	
H16B	0.2610	0.8497	1.0915	0.047*	
H16C	0.2660	0.6760	1.0966	0.047*	
C17	0.37752 (17)	0.7262 (3)	0.4634 (3)	0.0271 (5)	
H17A	0.3578	0.7843	0.3757	0.041*	
H17B	0 3874	0.6278	0.4321	0.041*	
H17C	0 4204	0.7716	0 5151	0.041*	
11170	0. f20T	0.7710	0.0101	0.071	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0224 (8)	0.0176 (8)	0.0163 (8)	0.0042 (6)	0.0091 (6)	0.0011 (6)
O2	0.0282 (9)	0.0201 (9)	0.0167 (8)	0.0026 (7)	0.0113 (7)	0.0013 (6)
N1	0.0198 (9)	0.0193 (10)	0.0116 (8)	0.0022 (7)	0.0069 (7)	-0.0003 (7)
C1	0.0232 (11)	0.0244 (13)	0.0184 (11)	0.0048 (9)	0.0095 (9)	0.0040 (9)
C2	0.0319 (14)	0.0304 (15)	0.0241 (12)	0.0080 (10)	0.0172 (11)	0.0051 (10)
C3	0.0343 (14)	0.0255 (14)	0.0302 (14)	0.0102 (11)	0.0166 (12)	0.0004 (10)
C4	0.0309 (13)	0.0208 (12)	0.0306 (14)	0.0034 (10)	0.0137 (11)	0.0018 (10)
C5	0.0237 (11)	0.0207 (13)	0.0258 (12)	0.0019 (9)	0.0126 (9)	0.0028 (9)
C6	0.0141 (9)	0.0177 (11)	0.0152 (9)	-0.0004 (8)	0.0042 (7)	-0.0019 (8)

supporting information

0.0176 (10)	0.0186 (11)	0.0140 (10)	-0.0009 (8)	0.0051 (8)	-0.0041 (8)
0.0220 (11)	0.0145 (11)	0.0191 (11)	0.0041 (8)	0.0081 (8)	0.0015 (8)
0.0184 (9)	0.0163 (11)	0.0147 (10)	0.0013 (8)	0.0057 (8)	-0.0006 (8)
0.020(2)	0.018 (4)	0.014 (2)	0.0052 (19)	0.0056 (14)	0.0028 (15)
0.0466 (17)	0.0417 (17)	0.0160 (12)	0.0201 (14)	0.0135 (12)	0.0090 (11)
0.0223 (11)	0.0227 (12)	0.0180 (10)	0.0001 (9)	0.0079 (9)	-0.0042 (9)
0.0210 (11)	0.0260 (13)	0.0227 (12)	0.0058 (9)	0.0079 (9)	-0.0001 (9)
0.0482 (17)	0.0328 (16)	0.0466 (19)	0.0244 (14)	0.0343 (16)	0.0214 (14)
0.0387 (15)	0.0185 (13)	0.057 (2)	-0.0059 (11)	0.0284 (15)	-0.0076 (12)
0.0340 (14)	0.0489 (18)	0.0134 (11)	0.0186 (13)	0.0082 (10)	0.0086 (11)
0.0346 (13)	0.0235 (13)	0.0273 (13)	-0.0006(10)	0.0163 (11)	-0.0031(10)
	0.0176 (10) 0.0220 (11) 0.0184 (9) 0.020 (2) 0.0466 (17) 0.0223 (11) 0.0210 (11) 0.0482 (17) 0.0387 (15) 0.0340 (14) 0.0346 (13)	$\begin{array}{ccccc} 0.0176 (10) & 0.0186 (11) \\ 0.0220 (11) & 0.0145 (11) \\ 0.0184 (9) & 0.0163 (11) \\ 0.020 (2) & 0.018 (4) \\ 0.0466 (17) & 0.0417 (17) \\ 0.0223 (11) & 0.0227 (12) \\ 0.0210 (11) & 0.0260 (13) \\ 0.0482 (17) & 0.0328 (16) \\ 0.0387 (15) & 0.0185 (13) \\ 0.0340 (14) & 0.0489 (18) \\ 0.0346 (13) & 0.0235 (13) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

O1—C7	1.345 (3)	C10A—C11	1.458 (5)	
01—C8	1.470 (3)	C10A—H10A	0.9700	
O2—C7	1.214 (3)	C10A—H10B	0.9700	
N1—C7	1.356 (3)	C10B—C11	1.594 (7)	
N1—C6	1.409 (3)	C10B—H10C	0.9700	
N1—H1N1	0.8600	C10B—H10D	0.9700	
C1—C2	1.388 (4)	C11—C12	1.393 (4)	
C1—C6	1.389 (3)	C11—H11A	0.9300	
C1—H1A	0.9300	C11—H11B	0.9600	
С2—С3	1.385 (4)	C12—C13	1.441 (4)	
C2—H2A	0.9300	C12—C17	1.502 (3)	
C3—C4	1.396 (4)	C13—C14	1.509 (4)	
С3—НЗА	0.9300	C13—H13A	0.9700	
C4—C5	1.383 (4)	C13—H13B	0.9700	
C4—H4A	0.9300	C14—H14A	0.9700	
С5—С6	1.399 (4)	C14—H14B	0.9700	
С5—Н5А	0.9300	C15—H15A	0.9600	
C8—C15	1.517 (4)	C15—H15B	0.9600	
C8—C16	1.520 (4)	C15—H15C	0.9600	
С8—С9	1.547 (3)	C16—H16A	0.9600	
C9—C14	1.510 (4)	C16—H16B	0.9600	
C9—C10B	1.531 (6)	C16—H16C	0.9600	
C9—C10A	1.531 (5)	C17—H17A	0.9600	
С9—Н9А	0.9800	C17—H17B	0.9600	
С9—Н9В	0.9600	С17—Н17С	0.9600	
C7—O1—C8	122.38 (19)	H10A—C10A—H10B	107.7	
C7—N1—C6	127.81 (19)	C9-C10B-C11	106.2 (5)	
C7—N1—H1N1	116.1	C9-C10B-H10C	110.5	
C6—N1—H1N1	116.1	C11—C10B—H10C	110.5	
C2—C1—C6	119.6 (2)	C9-C10B-H10D	110.5	
C2C1H1A	120.2	C11—C10B—H10D	110.5	
C6—C1—H1A	120.2	H10C—C10B—H10D	108.7	
C3—C2—C1	121.6 (3)	C12-C11-C10A	123.1 (3)	

C2 C2 U2A	110.2	C12 C11 C10P	1144(4)
$C_3 - C_2 - H_2 A$	119.2	C_{12} C_{11} H_{11A}	114.4 (4)
C1 - C2 - H2A	119.2		118.5
$C_2 = C_3 = C_4$	118.5 (3)	CIOA—CII—HIIA	118.5
$C_2 = C_3 = H_3 A$	120.8	CIOB—CII—HIIA	123.4
C4—C3—H3A	120.8	С12—С11—НПВ	122.2
C5—C4—C3	120.5 (3)	C10A—C11—H11B	111.8
C5—C4—H4A	119.7	C10B—C11—H11B	123.4
C3—C4—H4A	119.7	C11—C12—C13	121.4 (2)
C4—C5—C6	120.4 (2)	C11—C12—C17	120.6 (2)
C4—C5—H5A	119.8	C13—C12—C17	118.0 (2)
C6—C5—H5A	119.8	C12—C13—C14	117.1 (2)
C1—C6—C5	119.3 (2)	С12—С13—Н13А	108.0
C1—C6—N1	123.8 (2)	C14—C13—H13A	108.0
C5—C6—N1	117.0 (2)	C12—C13—H13B	108.0
O2—C7—O1	126.3 (2)	C14—C13—H13B	108.0
O2—C7—N1	126.1 (2)	H13A—C13—H13B	107.3
O1—C7—N1	107.62 (19)	C13—C14—C9	111.8 (2)
O1—C8—C15	109.0 (2)	C13—C14—H14A	109.3
O1—C8—C16	109.7 (2)	C9—C14—H14A	109.3
C15—C8—C16	112.4 (3)	C13—C14—H14B	109.3
01	101.42 (18)	C9-C14-H14B	109.3
C15—C8—C9	113 5 (2)	H14A—C14—H14B	107.9
C16 - C8 - C9	110.2(2)	C8-C15-H15A	109.5
C14-C9-C10B	98.7 (5)	C8-C15-H15B	109.5
C14-C9-C10A	113 1 (3)	H_{15A} C_{15} H_{15B}	109.5
C14 - C9 - C8	113.1(3) 113.9(2)	C_{2}	109.5
C10B = C9 = C8	113.9(2) 111.6(3)	$H_{15A} = C_{15} = H_{15C}$	109.5
$C_{100} = C_{9} = C_{8}$	111.0(3) 115.4(2)	H15R C15 H15C	109.5
C_{10} C_{20} C_{10} C_{20} C	113.4 (2)	$\frac{1115}{100} = \frac{115}{100} = \frac{115}{100}$	109.5
C_{14} C_{9} H_{9} C_{10} H_{9} C_{10} C_{10} H_{10} H_{1	104.5	C_{0} C_{10} H_{10} C_{10} H_{10}	109.5
C10B - C9 - H9A	124.1		109.5
C10A - C9 - H9A	104.3	H16A - C16 - H16B	109.5
C8—C9—H9A	104.3		109.5
С14—С9—Н9В	110.6	H16A—C16—H16C	109.5
C10B—C9—H9B	111.0	H16B—C16—H16C	109.5
C10A—C9—H9B	91.0	С12—С17—Н17А	109.5
С8—С9—Н9В	110.7	С12—С17—Н17В	109.5
C11—C10A—C9	113.5 (3)	H17A—C17—H17B	109.5
C11—C10A—H10A	108.9	С12—С17—Н17С	109.5
C9—C10A—H10A	108.9	H17A—C17—H17C	109.5
C11—C10A—H10B	108.9	H17B—C17—H17C	109.5
C9—C10A—H10B	108.9		
C6—C1—C2—C3	0.0 (5)	O1-C8-C9-C10A	-43.0 (5)
C1—C2—C3—C4	1.0 (5)	C15—C8—C9—C10A	73.8 (5)
C2—C3—C4—C5	-1.7 (5)	C16—C8—C9—C10A	-159.1 (4)
C3—C4—C5—C6	1.4 (5)	C14—C9—C10A—C11	-40.1 (8)
C2-C1-C6-C5	-0.3 (4)	C10B—C9—C10A—C11	-89.5 (9)
C2-C1-C6-N1	178.8 (2)	C8—C9—C10A—C11	-173.6 (5)

C4—C5—C6—C1	-0.4 (4)	C14—C9—C10B—C11	-74.1 (7)
C4—C5—C6—N1	-179.5 (2)	C10A—C9—C10B—C11	60.9 (8)
C7—N1—C6—C1	-17.3 (4)	C8-C9-C10B-C11	165.8 (5)
C7—N1—C6—C5	161.8 (2)	C9-C10A-C11-C12	9.9 (9)
C8—O1—C7—O2	4.6 (4)	C9-C10A-C11-C10B	80.2 (9)
C8—O1—C7—N1	-175.8 (2)	C9-C10B-C11-C12	49.7 (9)
C6—N1—C7—O2	12.6 (4)	C9-C10B-C11-C10A	-70.3 (9)
C6—N1—C7—O1	-166.9 (2)	C10A—C11—C12—C13	8.1 (7)
C7—O1—C8—C15	62.9 (3)	C10B—C11—C12—C13	-13.0 (6)
C7—O1—C8—C16	-60.6 (3)	C10A—C11—C12—C17	-171.4 (5)
C7—O1—C8—C9	-177.0 (2)	C10B-C11-C12-C17	167.5 (5)
O1—C8—C9—C14	-176.2 (3)	C11—C12—C13—C14	5.2 (4)
C15—C8—C9—C14	-59.4 (3)	C17—C12—C13—C14	-175.3 (3)
C16—C8—C9—C14	67.7 (3)	C12—C13—C14—C9	-35.1 (4)
O1-C8-C9-C10B	-65.4 (6)	C10B-C9-C14-C13	68.3 (5)
C15—C8—C9—C10B	51.3 (6)	C10A—C9—C14—C13	52.4 (5)
C16—C8—C9—C10B	178.4 (6)	C8—C9—C14—C13	-173.4 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C1–C6 phenyl ring.

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
N1—H1N1···O2 ⁱ	0.86	2.12	2.969 (3)	170
C13—H13 A ···Cg1 ⁱⁱ	0.97	2.62	3.566 (3)	166

Symmetry codes: (i) *x*, –*y*+2, *z*–1/2; (ii) *x*+1/2, *y*–1/2, *z*.