Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 2-Amino-5-bromopyridine-4-hydroxybenzoic acid (1/1)

#### Ching Kheng Quah,‡ Madhukar Hemamalini and Hoong-Kun Fun\*§

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 30 June 2010; accepted 1 July 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.013 Å; R factor = 0.057; wR factor = 0.148; data-to-parameter ratio = 12.7.

The title 1:1 adduct,  $C_5H_5BrN_2 \cdot C_7H_6O_3$ , contains two molecules of each species in the asymmetric unit, with similar geometries. In the crystal, molecules are linked to form extended chains along [100] by N-H···O, O-H···O, O-H···N and C-H···O hydrogen bonds. Adjacent chains are crosslinked *via* further N-H···O interactions into sheets lying parallel to (001). The crystal studied was an inversion twin with a 0.54 (2):0.46 (2) domain ratio.

#### **Related literature**

For substituted pyridines, see: Pozharski *et al.* (1997); Katritzky *et al.* (1996). For details of hydrogen bonding, see: Scheiner (1997); Jeffrey & Saenger (1991); Jeffrey (1997). For 4-hydroxybenzoic acid, see: Vishweshwar *et al.* (2003). For related structures, see: Hemamalini & Fun (2010*a*,*b*,*c*); Quah *et al.* (2008*a*,*b*, 2010). For reference bond lengths, see: Allen *et al.* (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).



**Experimental** 

Crystal data

| $C_5H_5BrN_2 \cdot C_7H_6O_3$           | b = 3.990 (2) Å            |
|-----------------------------------------|----------------------------|
| $M_r = 311.14$                          | c = 28.939 (15) Å          |
| Orthorhombic, <i>Pna</i> 2 <sub>1</sub> | $V = 2467 (2) \text{ Å}^3$ |
| a = 21.370 (12)  Å                      | Z = 8                      |

‡ Thomson Reuters ResearcherID: A-5525-2009. § Thomson Reuters ResearcherID: A-3561-2009. Mo  $K\alpha$  radiation  $\mu = 3.33 \text{ mm}^{-1}$ 

#### Data collection

Bruker SMART APEXII DUO CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009)  $T_{min} = 0.449, T_{max} = 0.763$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$  $wR(F^2) = 0.148$ S = 1.103770 reflections 296 parameters 1 restraint

 $0.29 \times 0.12 \times 0.09 \text{ mm}$ 

T = 100 K

6994 measured reflections 3770 independent reflections 2994 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.051$ 

 $\begin{array}{l} H\mbox{-}atom\ parameters\ constrained} \\ \Delta \rho_{max} = 0.72\ e\ {\mbox{\AA}^{-3}} \\ \Delta \rho_{min} = -0.99\ e\ {\mbox{\AA}^{-3}} \\ Absolute\ structure:\ Flack\ (1983), \\ 1554\ Friedel\ pairs \\ Flack\ parameter:\ 0.54\ (2) \end{array}$ 

| Та | ble | 1 |   |   |  |
|----|-----|---|---|---|--|
| тт | 1   |   | 1 | 1 |  |

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$              | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------------|------|-------------------------|-------------------------|--------------------------------------|
| $N2A - H2AA \cdots O3A^{i}$              | 0.86 | 2.19                    | 2.996 (11)              | 155                                  |
| $N2A - H2AB \cdots O1A^{ii}$             | 0.86 | 2.13                    | 2.969 (11)              | 166                                  |
| $N2B - H2BA \cdots O3B^{iii}$            | 0.86 | 2.19                    | 3.020 (11)              | 163                                  |
| $O1A - H1AB \cdots O3B^{iv}$             | 0.82 | 1.87                    | 2.688 (8)               | 175                                  |
| $O2A - H2AC \cdot \cdot \cdot N1A^{v}$   | 0.82 | 1.80                    | 2.605 (10)              | 168                                  |
| $O1B-H1BB\cdots O3A^{vi}$                | 0.82 | 1.94                    | 2.762 (8)               | 177                                  |
| $O2B - H2BC \cdot \cdot \cdot N1B^{vii}$ | 0.82 | 1.85                    | 2.663 (11)              | 170                                  |
| $C6B - H6B \cdots O1A^{viii}$            | 0.93 | 2.52                    | 3.416 (11)              | 161                                  |
| $C7B - H7B \cdots O3A^{vi}$              | 0.93 | 2.58                    | 3.262 (12)              | 131                                  |
| $C9A - H9A \cdots O3B^{iv}$              | 0.93 | 2.48                    | 3.182 (11)              | 132                                  |
| $C10A - H10A \cdots O1B^{ix}$            | 0.93 | 2.53                    | 3.416 (11)              | 158                                  |

Symmetry codes: (i) x - 1, y - 1, z; (ii)  $x - \frac{1}{2}, -y + \frac{1}{2}, z$ ; (iii) x, y - 1, z; (iv)  $-x + 1, -y + 1, z + \frac{1}{2}, (v) x + 1, y + 1, z$ ; (vi)  $-x + \frac{3}{2}, y - \frac{3}{2}, z - \frac{1}{2}$ ; (vii) x, y + 1, z; (viii)  $-x + 1, -y + 1, z - \frac{1}{2}$ ; (ix)  $-x + \frac{3}{2}, y + \frac{3}{2}, z + \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/ 811012). CKQ thanks USM for the award of a USM fellow-ship. MH thanks USM for the award of a postdoctoral fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5539).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, 0663.
- Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, 0664.
- Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, 0689-0690.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.

Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.

Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.

Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). *Heterocycles in Life and Society*. New York: Wiley.

Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, 01932.

Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008a). Acta Cryst. E64, o1878–o1879.

Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008b). Acta Cryst. E64, o2230.

Scheiner, S. (1997). *Hydrogen Bonding: a Theoretical Perspective*. New York: Oxford University Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164–168.

Acta Cryst. (2010). E66, o1935–o1936 [https://doi.org/10.1107/S1600536810025924]

## 2-Amino-5-bromopyridine–4-hydroxybenzoic acid (1/1)

### Ching Kheng Quah, Madhukar Hemamalini and Hoong-Kun Fun

#### S1. Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski *et al.*, 1997; Katritzky *et al.*, 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 4-Hydroxybenzoic acid is a good hydrogen-bond donor and can form co-crystals with other organic molecules (Vishweshwar *et al.*, 2003). We have recently reported the crystal structures of 2-amino-5-bromopyridine-benzoic acid (Hemamalini & Fun, 2010*a*), 2-amino-5-bromopyridinium 3-aminobenzoate (Hemamalini & Fun, 2010*b*) and 2-amino-5-bromopyridinium hydrogen succinate (Hemamalini & Fun, 2010*c*) from our laboratory. In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-bromopyridine molecules (*A* and *B*) and two 4-hydroxybenzoic acid (*A* and *B*) with comparable geometries. The bond lengths (Allen *et al.*, 1987) and angles in the title compound (Fig. 1) are within normal ranges and comparable with the related structures (Quah *et al.*, 2010, 2008*a*, b). Each 2-amino-5-bromopyridine molecule is approximately planar, with a maximum deviation of 0.020 (8) Å for atom C4A in molecule *A* and 0.021 (8) Å for atom C1B in molecule *B*. In molecule *A*, the 2-amino-5-bromopyridine molecule is inclined at dihedral angle of 28.8 (3) and 55.7 (3)° with the C6A—C11A and C6B—C11B phenyl rings, respectively. The correspondence angles for molecule *B* are 45.6 (3) and 27.2 (3)°.

In the crystal packing, the molecules are linked to form extended chains along [100] by intermolecular N2A– H2AA···O3A, N2B–H2BA···O3B, O–H···O, O–H···N and C–H···O hydrogen bonds (Table 1). The adjacent chains are cross-linked *via* N2A–H2AB···O1A interactions into two-dimensional networks (Fig. 2) parallel to the (001).

### **S2. Experimental**

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (43 mg, Aldrich) and 4-hydroxybenzoic acid (34 mg, Merck) were mixed and warmed over a heating hotplate magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly to room temperature and brown needles of (I) appeared after a few days.

#### **S3. Refinement**

All H atoms were positioned geometrically and refined using a riding model with O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93 Å; and  $U_{iso}(H) = 1.5 U_{eq}(O)$ , 1.2  $U_{eq}(N)$  and 1.2 or 1.5  $U_{eq}(C)$ . The highest residual electron density peak is located at 1.06 Å from BR1B and the deepest hole is located at 0.90 Å from BR1B. The same U<sup>ij</sup> parameters were used for atom pairs C1A/C1B, C2A/C3A, C2B/C3B, C8A/C8B and C9A/C9B. The reported Flack parameter was obtained by TWIN/BASF procedure in *SHELXL* (Sheldrick, 2008).





The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms.



### Figure 2

The crystal structure of (I) viewed along the b axis. H atoms not involved in intermolecular hydrogen bond interactions (dashed lines) have been omitted for clarity.

2-Amino-5-bromopyridine-4-hydroxybenzoic acid (1/1)

#### Crystal data

C<sub>5</sub>H<sub>5</sub>BrN<sub>2</sub>·C<sub>7</sub>H<sub>6</sub>O<sub>3</sub>  $M_r = 311.14$ Orthorhombic, *Pna*2<sub>1</sub> Hall symbol: P 2c -2n a = 21.370 (12) Å b = 3.990 (2) Å c = 28.939 (15) Å V = 2467 (2) Å<sup>3</sup> Z = 8

#### Data collection

Bruker SMART APEXII DUO CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009)  $T_{\min} = 0.449, T_{\max} = 0.763$ 

#### Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from                    |
|----------------------------------------------------------------|----------------------------------------------------------|
| Least-squares matrix: full                                     | neighbouring sites                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.057$                                | H-atom parameters constrained                            |
| $wR(F^2) = 0.148$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0538P)^2 + 9.0399P]$        |
| <i>S</i> = 1.10                                                | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                   |
| 3770 reflections                                               | $(\Delta/\sigma)_{\rm max} < 0.001$                      |
| 296 parameters                                                 | $\Delta \rho_{\rm max} = 0.72 \text{ e} \text{ Å}^{-3}$  |
| 1 restraint                                                    | $\Delta \rho_{\rm min} = -0.99 \text{ e} \text{ Å}^{-3}$ |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1554 Friedel<br>pairs  |
| Secondary atom site location: difference Fourier map           | Absolute structure parameter: 0.54 (2)                   |

#### Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

F(000) = 1248

 $\theta = 2.4 - 25.0^{\circ}$ 

 $\mu = 3.33 \text{ mm}^{-1}$ 

Needle, brown

 $0.29 \times 0.12 \times 0.09 \text{ mm}$ 

6994 measured reflections

 $\theta_{\rm max} = 25.0^\circ, \, \theta_{\rm min} = 1.9^\circ$ 

3770 independent reflections 2994 reflections with  $I > 2\sigma(I)$ 

T = 100 K

 $R_{\rm int} = 0.051$ 

 $h = -25 \rightarrow 19$ 

 $k = -4 \rightarrow 4$ 

 $l = -30 \rightarrow 34$ 

 $D_{\rm x} = 1.675 {\rm Mg} {\rm m}^{-3}$ 

Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 1665 reflections

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|      | x           | у          | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|-------------|------------|-------------|-----------------------------|
| Br1A | 0.00906 (6) | 0.7888 (2) | 0.30916 (3) | 0.0442 (3)                  |

| N1A  | -0.0212(3)  | 0.348 (2)    | 0.4357 (3)  | 0.0213 (18) |
|------|-------------|--------------|-------------|-------------|
| N2A  | 0.0361 (4)  | 0.2594 (19)  | 0.5015 (3)  | 0.0281 (18) |
| H2AA | 0.0040      | 0.1584       | 0.5127      | 0.034*      |
| H2AB | 0.0697      | 0.2776       | 0.5177      | 0.034*      |
| C1A  | -0.0273 (5) | 0.469 (2)    | 0.3934 (3)  | 0.0262 (14) |
| H1AA | -0.0657     | 0.4460       | 0.3787      | 0.031*      |
| C2A  | 0.0212 (5)  | 0.628 (2)    | 0.3699 (3)  | 0.0265 (15) |
| C3A  | 0.0794 (5)  | 0.672 (2)    | 0.3928 (3)  | 0.0265 (15) |
| H3AA | 0.1132      | 0.7740       | 0.3782      | 0.032*      |
| C4A  | 0.0836 (4)  | 0.556 (2)    | 0.4369 (3)  | 0.021 (2)   |
| H4AA | 0.1206      | 0.5890       | 0.4532      | 0.026*      |
| C5A  | 0.0338 (4)  | 0.389 (2)    | 0.4585 (3)  | 0.020 (2)   |
| Br1B | 0.25717 (6) | 0.3515 (2)   | 0.37657 (4) | 0.0456 (3)  |
| N1B  | 0.2861 (4)  | -0.067 (2)   | 0.2491 (3)  | 0.0265 (19) |
| N2B  | 0.2263 (4)  | -0.178 (2)   | 0.1857 (3)  | 0.030 (2)   |
| H2BA | 0.2591      | -0.2604      | 0.1728      | 0.036*      |
| H2BB | 0.1912      | -0.1760      | 0.1711      | 0.036*      |
| C1B  | 0.2925 (5)  | 0.049 (2)    | 0.2930 (3)  | 0.0262 (14) |
| H1BA | 0.3312      | 0.0346       | 0.3075      | 0.031*      |
| C2B  | 0.2442 (5)  | 0.183 (2)    | 0.3155 (4)  | 0.0276 (16) |
| C3B  | 0.1851 (5)  | 0.196 (2)    | 0.2964 (3)  | 0.0276 (16) |
| H3BA | 0.1514      | 0.2832       | 0.3129      | 0.033*      |
| C4B  | 0.1773 (4)  | 0.076 (2)    | 0.2513 (3)  | 0.022 (2)   |
| H4BA | 0.1383      | 0.0822       | 0.2370      | 0.027*      |
| C5B  | 0.2297 (4)  | -0.056(2)    | 0.2280 (3)  | 0.021 (2)   |
| O1A  | 0.6515 (3)  | 0.3077 (15)  | 0.5579 (2)  | 0.0242 (15) |
| H1AB | 0.6471      | 0.3109       | 0.5860      | 0.036*      |
| O2A  | 0.8817 (3)  | 1.0048 (16)  | 0.4626 (2)  | 0.0225 (14) |
| H2AC | 0.9144      | 1.1065       | 0.4579      | 0.034*      |
| O3A  | 0.9066 (3)  | 1.1204 (15)  | 0.5362 (2)  | 0.0234 (14) |
| C6A  | 0.7754 (4)  | 0.662 (2)    | 0.4870 (3)  | 0.018 (2)   |
| H6A  | 0.7868      | 0.6712       | 0.4561      | 0.022*      |
| C7A  | 0.7202 (4)  | 0.498 (2)    | 0.5000 (3)  | 0.023 (2)   |
| H7A  | 0.6947      | 0.3996       | 0.4777      | 0.027*      |
| C8A  | 0.7043 (4)  | 0.483 (2)    | 0.5461 (3)  | 0.0195 (13) |
| C9A  | 0.7426 (4)  | 0.634 (2)    | 0.5785 (3)  | 0.0179 (14) |
| H9A  | 0.7311      | 0.6283       | 0.6094      | 0.022*      |
| C10A | 0.7957 (4)  | 0.789 (2)    | 0.5664 (3)  | 0.017 (2)   |
| H10A | 0.8212      | 0.8811       | 0.5892      | 0.020*      |
| C11A | 0.8133 (4)  | 0.813 (2)    | 0.5202 (3)  | 0.0180 (19) |
| C12A | 0.8711 (4)  | 0.990 (2)    | 0.5070 (3)  | 0.020 (2)   |
| O1B  | 0.6068 (3)  | -0.1993 (15) | 0.1278 (2)  | 0.0235 (14) |
| H1BB | 0.6039      | -0.2558      | 0.1006      | 0.035*      |
| O2B  | 0.3859 (3)  | 0.5786 (15)  | 0.2236 (2)  | 0.0235 (14) |
| H2BC | 0.3541      | 0.6888       | 0.2282      | 0.035*      |
| O3B  | 0.3558 (3)  | 0.6584 (16)  | 0.1505 (2)  | 0.0215 (14) |
| C6B  | 0.4619 (4)  | 0.286 (2)    | 0.1194 (3)  | 0.023 (2)   |
| H6B  | 0.4350      | 0.3680       | 0.0968      | 0.027*      |

| C7B  | 0.5150 (4) | 0.105 (2)    | 0.1061 (4) | 0.023 (2)   |  |
|------|------------|--------------|------------|-------------|--|
| H7B  | 0.5234     | 0.0653       | 0.0750     | 0.028*      |  |
| C8B  | 0.5547 (4) | -0.0131 (19) | 0.1401 (3) | 0.0195 (13) |  |
| C9B  | 0.5417 (4) | 0.031 (2)    | 0.1864 (3) | 0.0179 (14) |  |
| H8B  | 0.5680     | -0.0607      | 0.2086     | 0.022*      |  |
| C10B | 0.4906 (4) | 0.210 (2)    | 0.1995 (3) | 0.022 (2)   |  |
| H10B | 0.4828     | 0.2442       | 0.2307     | 0.026*      |  |
| C11B | 0.4487 (4) | 0.345 (2)    | 0.1661 (3) | 0.0134 (18) |  |
| C12B | 0.3937 (4) | 0.539 (2)    | 0.1789 (3) | 0.017 (2)   |  |
|      |            |              |            |             |  |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|------|-------------|------------|------------|-------------|------------|-------------|
| Br1A | 0.0924 (9)  | 0.0243 (4) | 0.0159 (5) | -0.0036 (5) | 0.0007 (7) | 0.0058 (6)  |
| N1A  | 0.023 (4)   | 0.025 (4)  | 0.016 (4)  | -0.004 (3)  | -0.001 (3) | 0.001 (4)   |
| N2A  | 0.040 (5)   | 0.029 (4)  | 0.016 (4)  | -0.003 (4)  | -0.001 (4) | -0.003 (3)  |
| C1A  | 0.037 (4)   | 0.029 (3)  | 0.013 (3)  | 0.003 (3)   | -0.002 (3) | 0.002 (3)   |
| C2A  | 0.051 (4)   | 0.014 (3)  | 0.014 (4)  | 0.002 (3)   | 0.008 (3)  | 0.007 (3)   |
| C3A  | 0.051 (4)   | 0.014 (3)  | 0.014 (4)  | 0.002 (3)   | 0.008 (3)  | 0.007 (3)   |
| C4A  | 0.030 (5)   | 0.013 (4)  | 0.021 (5)  | 0.000 (4)   | 0.009 (4)  | 0.003 (4)   |
| C5A  | 0.027 (6)   | 0.012 (4)  | 0.020 (5)  | -0.003 (4)  | -0.002 (4) | 0.000 (4)   |
| Br1B | 0.0919 (10) | 0.0266 (5) | 0.0183 (5) | 0.0062 (5)  | 0.0027 (6) | -0.0037 (5) |
| N1B  | 0.022 (5)   | 0.028 (4)  | 0.030 (5)  | -0.003 (4)  | -0.006 (4) | 0.000 (4)   |
| N2B  | 0.010 (4)   | 0.040 (5)  | 0.041 (6)  | 0.001 (4)   | 0.005 (3)  | 0.003 (4)   |
| C1B  | 0.037 (4)   | 0.029 (3)  | 0.013 (3)  | 0.003 (3)   | -0.002 (3) | 0.002 (3)   |
| C2B  | 0.052 (4)   | 0.012 (3)  | 0.018 (4)  | -0.005 (3)  | 0.008 (3)  | 0.000 (3)   |
| C3B  | 0.052 (4)   | 0.012 (3)  | 0.018 (4)  | -0.005 (3)  | 0.008 (3)  | 0.000 (3)   |
| C4B  | 0.032 (6)   | 0.013 (4)  | 0.023 (5)  | 0.005 (4)   | 0.007 (4)  | -0.004 (4)  |
| C5B  | 0.029 (5)   | 0.013 (4)  | 0.020 (5)  | 0.002 (4)   | 0.001 (4)  | 0.013 (4)   |
| O1A  | 0.026 (3)   | 0.029 (3)  | 0.018 (4)  | -0.003 (3)  | 0.001 (3)  | 0.001 (3)   |
| O2A  | 0.018 (3)   | 0.036 (4)  | 0.014 (4)  | -0.005 (3)  | 0.002 (3)  | 0.003 (3)   |
| O3A  | 0.031 (4)   | 0.025 (3)  | 0.014 (3)  | -0.006 (3)  | -0.003 (3) | -0.001 (3)  |
| C6A  | 0.029 (5)   | 0.012 (4)  | 0.014 (5)  | 0.004 (4)   | -0.007 (4) | 0.003 (4)   |
| C7A  | 0.020 (5)   | 0.020 (5)  | 0.029 (6)  | 0.000 (4)   | -0.008 (4) | -0.006 (4)  |
| C8A  | 0.024 (3)   | 0.007 (3)  | 0.027 (3)  | -0.005 (3)  | -0.002 (3) | 0.000 (3)   |
| C9A  | 0.021 (4)   | 0.020 (3)  | 0.013 (3)  | 0.000 (3)   | -0.003 (3) | 0.007 (3)   |
| C10A | 0.027 (5)   | 0.007 (4)  | 0.017 (5)  | -0.001 (4)  | -0.003 (4) | 0.001 (3)   |
| C11A | 0.024 (5)   | 0.017 (4)  | 0.013 (5)  | -0.004 (4)  | 0.000 (4)  | -0.003 (4)  |
| C12A | 0.024 (5)   | 0.023 (4)  | 0.013 (5)  | 0.010 (4)   | -0.001 (4) | -0.004 (4)  |
| O1B  | 0.028 (4)   | 0.025 (3)  | 0.018 (4)  | 0.000 (3)   | -0.001 (3) | -0.006 (3)  |
| O2B  | 0.024 (3)   | 0.033 (3)  | 0.014 (4)  | 0.005 (3)   | 0.003 (3)  | 0.003 (3)   |
| O3B  | 0.021 (3)   | 0.027 (3)  | 0.017 (3)  | -0.002 (3)  | -0.003 (3) | 0.005 (3)   |
| C6B  | 0.029 (5)   | 0.019 (5)  | 0.020 (5)  | -0.008(4)   | 0.002 (4)  | 0.004 (4)   |
| C7B  | 0.028 (5)   | 0.020 (5)  | 0.021 (5)  | 0.001 (4)   | -0.001 (4) | -0.012 (4)  |
| C8B  | 0.024 (3)   | 0.007 (3)  | 0.027 (3)  | -0.005 (3)  | -0.002 (3) | 0.000 (3)   |
| C9B  | 0.021 (4)   | 0.020 (3)  | 0.013 (3)  | 0.000 (3)   | -0.003 (3) | 0.007 (3)   |
| C10B | 0.027 (5)   | 0.029 (5)  | 0.009 (5)  | -0.007 (4)  | 0.002 (4)  | -0.004 (4)  |
| C11B | 0.020 (5)   | 0.011 (4)  | 0.009 (4)  | -0.004 (4)  | -0.002 (3) | -0.001 (3)  |

| C12B     | 0.019 (5)                   | 0.019 (4)              | 0.014 (5) | -0.011 (4)         | 0.001 (4) | -0.004 (4)             |  |  |
|----------|-----------------------------|------------------------|-----------|--------------------|-----------|------------------------|--|--|
| Geometri | Geometric parameters (Å, °) |                        |           |                    |           |                        |  |  |
| Br1A—C   | C2A                         | 1.889 (10)             |           | O2A—H2AC           |           | 0.8200                 |  |  |
| N1A—C    | 1A                          | 1.322 (11)             |           | O3A—C12A           |           | 1.249 (10)             |  |  |
| N1A—C    | 5A                          | 1.359 (11)             |           | C6A—C11A           |           | 1.391 (12)             |  |  |
| N2A—C    | 5A                          | 1.349 (12)             |           | C6A—C7A            |           | 1.400 (13)             |  |  |
| N2A—H    | 2AA                         | 0.8600                 |           | C6A—H6A            |           | 0.9300                 |  |  |
| N2A—H    | 2AB                         | 0.8600                 |           | C7A—C8A            |           | 1.378 (14)             |  |  |
| C1A—C    | 2A                          | 1.394 (13)             |           | C7A—H7A            |           | 0.9300                 |  |  |
| С1А—Н    | 1AA                         | 0.9300                 |           | C8A—C9A            |           | 1.383 (13)             |  |  |
| C2A—C    | 3A                          | 1.418 (14)             |           | C9A-C10A           |           | 1.338 (13)             |  |  |
| C3A—C    | 4A                          | 1.360 (12)             |           | С9А—Н9А            |           | 0.9300                 |  |  |
| СЗА—Н    | 3AA                         | 0.9300                 |           | C10A—C11A          |           | 1.393 (12)             |  |  |
| C4A—C    | 5A                          | 1.402 (12)             |           | C10A—H10A          |           | 0.9300                 |  |  |
| C4A—H    | 4AA                         | 0.9300                 |           | C11A—C12A          |           | 1.474 (13)             |  |  |
| Br1B—C   | C2B                         | 1.912 (10)             |           | 01B—C8B            |           | 1.384 (11)             |  |  |
| N1B—C    | 5B                          | 1.351 (11)             |           | O1B—H1BB           |           | 0.8200                 |  |  |
| N1B—C    | 1B                          | 1.359 (12)             |           | O2B-C12B           |           | 1.312 (10)             |  |  |
| N2B—C    | 5B                          | 1.318 (13)             |           | O2B - H2BC         |           | 0.8200                 |  |  |
| N2B—H    | 2BA                         | 0.8600                 |           | O3B-C12B           |           | 1.250 (11)             |  |  |
| N2B—H    | 2BB                         | 0.8600                 |           | C6B-C7B            |           | 1 396 (13)             |  |  |
| C1B—C    | 2BB                         | 1,332 (13)             |           | C6B-C11B           |           | 1.401 (12)             |  |  |
| C1B—H    | 1BA                         | 0.9300                 |           | C6B—H6B            |           | 0.9300                 |  |  |
| C2B-C    | 3B                          | 1 381 (14)             |           | C7B-C8B            |           | 1 383 (14)             |  |  |
| C3B-C4   | 4B                          | 1.301(11)<br>1.400(12) |           | C7B—H7B            |           | 0.9300                 |  |  |
| C3B—H    | 3BA                         | 0.9300                 |           | C8B-C9B            |           | 1 379 (13)             |  |  |
| C4B-C'   | 5B                          | 1410(12)               |           | C9B-C10B           |           | 1.379(13)<br>1 358(13) |  |  |
| C4B—H    | 4RA                         | 0.9300                 |           | C9B—H8B            |           | 0.9300                 |  |  |
| 01A - C  | 8A                          | 1,370(10)              |           | C10B-C11B          |           | 1423(13)               |  |  |
| 01A—H    | 1AR                         | 0.8200                 |           | C10B—H10B          |           | 0.9300                 |  |  |
| $0^{2}$  | 124                         | 1.307(11)              |           | C10B $C10B$ $C12B$ |           | 1.456(12)              |  |  |
| 0211 0   | 12/1                        | 1.507 (11)             |           |                    |           | 1.450 (12)             |  |  |
| C1A—N    | 1A—C5A                      | 119.3 (8)              |           | С7А—С6А—Н6А        |           | 119.7                  |  |  |
| C5A—N    | 2A—H2AA                     | 120.0                  |           | C8A—C7A—C6A        |           | 119.1 (8)              |  |  |
| C5A—N    | 2A—H2AB                     | 120.0                  |           | С8А—С7А—Н7А        |           | 120.4                  |  |  |
| H2AA—    | N2A—H2AB                    | 120.0                  |           | С6А—С7А—Н7А        |           | 120.4                  |  |  |
| N1A—C    | 1A—C2A                      | 123.1 (9)              |           | O1A—C8A—C7A        |           | 117.9 (8)              |  |  |
| N1A—C    | 1A—H1AA                     | 118.5                  |           | O1A—C8A—C9A        |           | 122.7 (9)              |  |  |
| C2A—C    | 1A—H1AA                     | 118.5                  |           | C7A—C8A—C9A        |           | 119.4 (8)              |  |  |
| C1A—C    | 2A—C3A                      | 118.7 (9)              |           | C10A—C9A—C8A       |           | 121.8 (9)              |  |  |
| C1A—C    | 2A—Br1A                     | 120.5 (8)              |           | С10А—С9А—Н9А       |           | 119.1                  |  |  |
| C3A—C    | 2A—Br1A                     | 120.8 (7)              |           | С8А—С9А—Н9А        |           | 119.1                  |  |  |
| C4A—C    | 3A—C2A                      | 117.0 (9)              |           | C9A—C10A—C11A      |           | 120.7 (8)              |  |  |
| C4A—C    | ЗА—НЗАА                     | 121.5                  |           | C9A—C10A—H10A      |           | 119.7                  |  |  |
| C2A—C    | ЗА—НЗАА                     | 121.5                  |           | C11A—C10A—H10A     |           | 119.7                  |  |  |
| C3A—C4   | 4A—C5A                      | 122.0 (9)              |           | C6A—C11A—C10A      |           | 118.4 (8)              |  |  |

| СЗА—С4А—Н4АА                                                            | 119.0                | C6A—C11A—C12A                                 | 121.1 (8)           |
|-------------------------------------------------------------------------|----------------------|-----------------------------------------------|---------------------|
| C5A—C4A—H4AA                                                            | 119.0                | C10A—C11A—C12A                                | 120.5 (8)           |
| N2A—C5A—N1A                                                             | 115.5 (8)            | O3A—C12A—O2A                                  | 122.8 (8)           |
| N2A—C5A—C4A                                                             | 124.6 (8)            | O3A—C12A—C11A                                 | 122.3 (8)           |
| N1A—C5A—C4A                                                             | 119.9 (8)            | O2A—C12A—C11A                                 | 114.9 (7)           |
| C5B—N1B—C1B                                                             | 120.1 (9)            | C8B—O1B—H1BB                                  | 109.5               |
| C5B—N2B—H2BA                                                            | 120.0                | C12B—O2B—H2BC                                 | 109.5               |
| C5B—N2B—H2BB                                                            | 120.0                | C7B—C6B—C11B                                  | 121.1 (9)           |
| H2BA—N2B—H2BB                                                           | 120.0                | С7В—С6В—Н6В                                   | 119.5               |
| C2B—C1B—N1B                                                             | 121.0 (9)            | C11B—C6B—H6B                                  | 119.5               |
| C2B—C1B—H1BA                                                            | 119.5                | C8B—C7B—C6B                                   | 118.6 (9)           |
| N1B—C1B—H1BA                                                            | 119.5                | C8B—C7B—H7B                                   | 120.7               |
| C1B-C2B-C3B                                                             | 121.9 (10)           | C6B - C7B - H7B                               | 120.7               |
| C1B $C2B$ $Br1B$                                                        | 118 8 (8)            | C9B - C8B - C7B                               | 121.6 (8)           |
| $C_{3B}$ $C_{2B}$ $Br_{1B}$                                             | 110.0(0)<br>119.3(7) | C9B = C8B = O1B                               | 121.0(0)<br>1187(8) |
| $C_{2B}$ $C_{2B}$ $C_{4B}$                                              | 117.3(7)<br>117.9(9) | C7B - C8B - 01B                               | 110.7(0)            |
| $C_{2B} = C_{3B} = C_{4B}$                                              | 117.5 (5)            | $C_{10}^{10} = C_{00}^{0} = C_{10}^{0}$       | 119.0(9)            |
| $C_{2D}$ $C_{3D}$ $H_{3DA}$                                             | 121.0                | C10D - C9D - C0D                              | 120.0 (8)           |
| $C_{4}D_{-}C_{3}D_{-}D_{3}D_{4}D_{5}D_{5}D_{5}D_{5}D_{5}D_{5}D_{5}D_{5$ | 121.0<br>118.7 (0)   | $C_{10}D_{-}C_{9}D_{-}H_{0}D_{-}$             | 120.0               |
| $C_{3}D = C_{4}D = U_{4}D_{4}$                                          | 118.7 (9)            |                                               | 120.0               |
| C5D C4D H4DA                                                            | 120.7                | C9B = C10B = C11B                             | 121.0 (9)           |
| C3B—C4B—H4BA                                                            | 120.7                | C9B—C10B—H10B                                 | 119.5               |
| N2B-C5B-NIB                                                             | 117.2 (8)            | CIIB—CI0B—HI0B                                | 119.5               |
| N2B—C5B—C4B                                                             | 122.5 (9)            | C6B—C11B—C10B                                 | 117.7 (8)           |
| N1B—C5B—C4B                                                             | 120.3 (9)            | C6B—C11B—C12B                                 | 119.9 (8)           |
| C8A—O1A—H1AB                                                            | 109.5                | C10B—C11B—C12B                                | 122.4 (8)           |
| C12A—O2A—H2AC                                                           | 109.5                | O3B—C12B—O2B                                  | 121.2 (8)           |
| C11A—C6A—C7A                                                            | 120.6 (9)            | O3B—C12B—C11B                                 | 124.0 (8)           |
| С11А—С6А—Н6А                                                            | 119.7                | O2B—C12B—C11B                                 | 114.8 (8)           |
|                                                                         |                      |                                               |                     |
| C5A—N1A—C1A—C2A                                                         | 2.4 (14)             | C7A—C8A—C9A—C10A                              | -1.6 (13)           |
| N1A—C1A—C2A—C3A                                                         | -1.6 (14)            | C8A—C9A—C10A—C11A                             | 2.3 (13)            |
| N1A—C1A—C2A—Br1A                                                        | 179.1 (7)            | C7A—C6A—C11A—C10A                             | 1.4 (13)            |
| C1A—C2A—C3A—C4A                                                         | -0.9 (13)            | C7A—C6A—C11A—C12A                             | -179.2 (8)          |
| Br1A—C2A—C3A—C4A                                                        | 178.4 (6)            | C9A—C10A—C11A—C6A                             | -2.1 (13)           |
| C2A—C3A—C4A—C5A                                                         | 2.6 (13)             | C9A—C10A—C11A—C12A                            | 178.5 (8)           |
| C1A—N1A—C5A—N2A                                                         | 179.8 (8)            | C6A—C11A—C12A—O3A                             | -178.3 (8)          |
| C1A—N1A—C5A—C4A                                                         | -0.6 (13)            | C10A—C11A—C12A—O3A                            | 1.1 (13)            |
| C3A—C4A—C5A—N2A                                                         | 177.5 (9)            | C6A—C11A—C12A—O2A                             | 2.6 (12)            |
| C3A—C4A—C5A—N1A                                                         | -1.9 (13)            | C10A—C11A—C12A—O2A                            | -178.1(8)           |
| C5B—N1B—C1B—C2B                                                         | -1.8(14)             | C11B—C6B—C7B—C8B                              | -0.5(13)            |
| N1B-C1B-C2B-C3B                                                         | 3.1 (14)             | C6B-C7B-C8B-C9B                               | 2.7 (13)            |
| N1B-C1B-C2B-Br1B                                                        | -178.4 (7)           | C6B-C7B-C8B-O1B                               | 178.5 (7)           |
| C1B - C2B - C3B - C4B                                                   | -2.4(13)             | C7B— $C8B$ — $C9B$ — $C10B$                   | -34(13)             |
| Br1B— $C2B$ — $C3B$ — $C4B$                                             | 179.1 (6)            | 01B - C8B - C9B - C10B                        | -1793(8)            |
| $C^{2B}$ $C^{2B}$ $C^{2B}$ $C^{2B}$ $C^{2B}$                            | 0.6(12)              | C8B - C9B - C10B - C11B                       | 19(13)              |
| C1B = M1B = C5B = M2B                                                   | -1787(8)             | C7B $C6B$ $C11B$ $C10B$                       | -10(13)             |
| C1B  N1B  C5B  C4B                                                      | 0.1(13)              | C7B $C6B$ $C11B$ $C12B$                       | 1.0(12)<br>1780(8)  |
| $C_{1D} = N_{1D} = C_{3D} = C_{4D}$                                     | 170.2(8)             | $C_{1D}$ $C_{1D}$ $C_{1D}$ $C_{12D}$ $C_{2D}$ | 1/0.7(0)            |
| UJD—U4D—UJD—INZD                                                        | 1/9.2 (0)            |                                               | 0.3(12)             |

| C3B—C4B—C5B—N1B  | 0.5 (12)   | C9B—C10B—C11B—C12B | -179.5 (8) |
|------------------|------------|--------------------|------------|
| C11A—C6A—C7A—C8A | -0.8 (13)  | C6B—C11B—C12B—O3B  | 0.8 (12)   |
| C6A—C7A—C8A—O1A  | -177.2 (7) | C10B—C11B—C12B—O3B | -179.4 (8) |
| C6A—C7A—C8A—C9A  | 0.8 (13)   | C6B—C11B—C12B—O2B  | -180.0 (7) |
| O1A—C8A—C9A—C10A | 176.3 (8)  | C10B—C11B—C12B—O2B | -0.2 (11)  |

### Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i>                                 | D—H  | H···A | D····A     | D—H···A |
|---------------------------------------------------------|------|-------|------------|---------|
| N2A—H2AA····O3A <sup>i</sup>                            | 0.86 | 2.19  | 2.996 (11) | 155     |
| $N2A$ — $H2AB$ ····O1 $A^{ii}$                          | 0.86 | 2.13  | 2.969 (11) | 166     |
| $N2B$ — $H2BA$ ···O $3B^{iii}$                          | 0.86 | 2.19  | 3.020 (11) | 163     |
| $O1A$ — $H1AB$ ···O $3B^{iv}$                           | 0.82 | 1.87  | 2.688 (8)  | 175     |
| $O2A$ — $H2AC$ ···N $1A^{v}$                            | 0.82 | 1.80  | 2.605 (10) | 168     |
| O1 <i>B</i> —H1 <i>BB</i> ····O3 <i>A</i> <sup>vi</sup> | 0.82 | 1.94  | 2.762 (8)  | 177     |
| $O2B$ — $H2BC$ ···N $1B^{vii}$                          | 0.82 | 1.85  | 2.663 (11) | 170     |
| C6B—H6B····O1A <sup>viii</sup>                          | 0.93 | 2.52  | 3.416 (11) | 161     |
| $C7B$ — $H7B$ ···· $O3A^{vi}$                           | 0.93 | 2.58  | 3.262 (12) | 131     |
| C9 <i>A</i> —H9 <i>A</i> ···O3 <i>B</i> <sup>iv</sup>   | 0.93 | 2.48  | 3.182 (11) | 132     |
| C10 <i>A</i> —H10 <i>A</i> ···O1 <i>B</i> <sup>ix</sup> | 0.93 | 2.53  | 3.416 (11) | 158     |
|                                                         |      |       |            |         |

Symmetry codes: (i) *x*-1, *y*-1, *z*; (ii) *x*-1/2, -*y*+1/2, *z*; (iii) *x*, *y*-1, *z*; (iv) -*x*+1, -*y*+1, *z*+1/2; (v) *x*+1, *y*+1, *z*; (vi) -*x*+3/2, *y*-3/2, *z*-1/2; (vii) *x*, *y*+1, *z*; (viii) -*x*+1, -*y*+1, *z*-1/2; (ix) -*x*+3/2, *y*+3/2, *z*+1/2.