

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(3-tert-Butyl-4-hydroxyphenyl)ethanone

Hua-Ming Miao,^a Gui-Long Zhao,^b Hua Shao^b and Jian-Wu Wang^a*

^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and ^bTianiin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China

Correspondence e-mail: yugp2005@yahoo.com.cn

Received 7 July 2010; accepted 9 July 2010

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.110; data-to-parameter ratio = 14.7.

The title compound, $C_{12}H_{16}O_2$, is approximately planar (r.m.s. deviation = 0.030 Å), apart from two methyl groups of the *tert*butyl unit [deviations of the C atoms = 1.140(2) and -1.367 (1) Å]. In the crystal, intermolecular O-H···O hydrogen bonds link the molecules into hexameric rings with $R_6^6(48)$ graph-set motifs.

Related literature

For details of the biological activity of the PAR-1 antagonist, see: Chackalamannil (2006); Shimomura et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

C12H16O2 Z = 18 $M_r = 192.25$ Mo $K\alpha$ radiation Trigonal, $R\overline{3}$ $\mu = 0.08 \text{ mm}^{-1}$ a = 24.019 (3) Å T = 113 Kc = 9.999 (2) Å $0.20 \times 0.18 \times 0.14 \text{ mm}$ V = 4995.8 (14) Å³

Data collection

Rigaku Saturn CCD diffractometer	12180 measured reflections
Absorption correction: multi-scan	1950 independent reflections
(CrystalClear; Rigaku, 2005)	1733 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.985, T_{\max} = 0.989$	$R_{\rm int} = 0.034$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ wR(F²) = 0.110 133 parameters H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.18$ e Å⁻³ 1950 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$		
$O1 - H1 \cdots O2^i$	0.84	1.83	2.6624 (12)	171		
Symmetry code: (i) $y, -x + y + 1, -z + 2$.						

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5546).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor,
- R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19. Chackalamannil, S. (2006). J. Med. Chem. 49, 5389-5403.
- Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shimomura, N., Sasho, M., Kayano, A., Yoshizawa, K., Tsujii, M., Kuroda, H. & Furukawa, K. (2006). US Patent 20060058370.

supporting information

Acta Cryst. (2010). E66, o2037 [https://doi.org/10.1107/S1600536810027339]

1-(3-tert-Butyl-4-hydroxyphenyl)ethanone

Hua-Ming Miao, Gui-Long Zhao, Hua Shao and Jian-Wu Wang

S1. Comment

PAR-1 antagonist is a kind of new anti-platelet agents in the antithrombotic area for the treat of artery coronary syndrome (Chackalamannil, 2006). The title compound is prepared when the well established PAR-1 antagonist E-5555 was synthesized as positive control during the development of our own PAR-1 antagonists (Shimomura *et al.*, 2006).

In title compound, $C_{12}H_{16}O_2$, bond lengths are normal ((Allen *et al.*, 1987)). Intermolecular interactions O—H···O hydrogen bonds link the moleculars into hexamer.

S2. Experimental

A dried 500-ml round-bottomed flask was charged with 21.33 g (0.160 mol, 1.2 eq) of anhydrous aluminium chloride and 400 ml of dried toluene, and the resulting yellow slurry was stirred and cooled to -35° C followed by dropwise addition of 20.0 g (0.133 mol, 1.0 eq) of 2-(*tert*-butyl)phenol dissolved in 20 ml of dried toluene. To the yellow clear solution obtained above was added dropwise 12.56 g (0.160 mol, 1.2 eq) of acetyl chloride dissolved in 20 ml of dried toluene, and after addition the resulting mixture (a yellow clear solution) was stirred at this temperature until all the starting material was consumed almost completely as indicated by TLC analysis (typical 2–3 h). The reaction mixture was slowly poured into 500 ml of stirred ice-water with great care, and the resulting mixture was stirred. The organic phase was separated and the aqueous phase was exacted with three 100-ml portions of ethyl acetate. The combined exacts were washed with brine to pH = 7, dried over sodium sulfate and evaporated on a rotary evaporator to afford the crude product as colorless crystals, which was triturated with ethyl acetate/petroleum ether (1/30) to afford the pure product as colorless crystals. Colourless blocks of (I) were obtained *via* slow evaporation at room temperature of a solution of the pure title compound in ethyl acetate/petroleum ether (1/30).

S3. Refinement

All H atoms were found on difference maps, with C—H = 0.95 or 0.98 and O—H = 0.84 Å and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ for aryl H atoms and $1.5U_{eq}(C, O)$ for the methyl and hydroxy H atoms.

1-(3-tert-Butyl-4-hydroxyphenyl)ethanone

Crystal data

 $C_{12}H_{16}O_2$ $M_r = 192.25$ Trigonal, $R\overline{3}$ Hall symbol: -R 3 a = 24.019 (3) Å c = 9.999 (2) Å V = 4995.8 (14) Å³ Z = 18F(000) = 1872

Data collection

Rigaku Saturn CCD	12180 measured reflections
diffractometer	1950 independent reflections
Radiation source: rotating anode	1733 reflections with $I > 2\sigma(I)$
Confocal monochromator	$R_{\rm int} = 0.034$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 1.7^\circ$
ω and φ scans	$h = -21 \rightarrow 28$
Absorption correction: multi-scan	$k = -28 \rightarrow 28$
(CrystalClear; Rigaku, 2005)	$l = -11 \rightarrow 11$
$T_{\min} = 0.985, \ T_{\max} = 0.989$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.110$	$w = 1/[\sigma^2(F_o^2) + (0.0723P)^2 + 1.6812P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
1950 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
133 parameters	$\Delta ho_{ m max} = 0.24 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0080 (7)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , convertices and the second second

 $D_{\rm x} = 1.150 {\rm ~Mg} {\rm ~m}^{-3}$

 $\theta = 2.3 - 27.9^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Block, colorless

 $0.20 \times 0.18 \times 0.14 \text{ mm}$

T = 113 K

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 5019 reflections

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.57494 (4)	0.80946 (4)	0.95585 (9)	0.0304 (3)
H1	0.6049	0.8470	0.9716	0.046*
O2	0.72860 (4)	0.66048 (4)	0.99295 (9)	0.0296 (3)

C1	0.59747 (6)	0.76811 (5)	0.96507 (12)	0.0230 (3)
C2	0.66314 (6)	0.79128 (5)	0.98477 (12)	0.0248 (3)
H2	0.6918	0.8362	0.9924	0.030*
C3	0.68665 (6)	0.74960 (6)	0.99315 (11)	0.0241 (3)
H3	0.7315	0.7658	1.0036	0.029*
C4	0.64445 (5)	0.68348 (5)	0.98621 (11)	0.0215 (3)
C5	0.57896 (5)	0.66128 (5)	0.96739 (11)	0.0214 (3)
Н5	0.5504	0.6162	0.9639	0.026*
C6	0.55354 (5)	0.70158 (5)	0.95352 (11)	0.0213 (3)
C7	0.48199 (6)	0.67589 (6)	0.92360 (13)	0.0272 (3)
C8	0.45154 (6)	0.69730 (7)	1.03216 (15)	0.0386 (4)
H8A	0.4588	0.6840	1.1201	0.058*
H8B	0.4052	0.6773	1.0159	0.058*
H8C	0.4711	0.7442	1.0299	0.058*
C9	0.47547 (7)	0.70091 (7)	0.78650 (14)	0.0395 (4)
H9A	0.4980	0.7480	0.7879	0.059*
H9B	0.4299	0.6843	0.7666	0.059*
H9C	0.4943	0.6864	0.7175	0.059*
C10	0.44439 (6)	0.60217 (6)	0.91906 (15)	0.0373 (4)
H10A	0.4622	0.5871	0.8489	0.056*
H10B	0.3991	0.5872	0.8997	0.056*
H10C	0.4479	0.5851	1.0057	0.056*
C11	0.67018 (6)	0.63918 (6)	0.99456 (11)	0.0236 (3)
C12	0.62460 (6)	0.56802 (6)	1.00527 (13)	0.0297 (3)
H12A	0.6491	0.5459	1.0191	0.045*
H12B	0.5995	0.5524	0.9227	0.045*
H12C	0.5955	0.5593	1.0811	0.045*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0294 (5)	0.0171 (4)	0.0472 (6)	0.0134 (4)	-0.0021 (4)	0.0000 (4)
O2	0.0260 (5)	0.0321 (5)	0.0356 (5)	0.0182 (4)	-0.0016 (4)	0.0001 (4)
C1	0.0287 (7)	0.0206 (6)	0.0224 (6)	0.0144 (5)	0.0003 (5)	0.0014 (5)
C2	0.0263 (6)	0.0177 (6)	0.0270 (6)	0.0083 (5)	-0.0023 (5)	-0.0010 (5)
C3	0.0223 (6)	0.0261 (6)	0.0230 (6)	0.0113 (5)	-0.0026 (5)	-0.0003(5)
C4	0.0251 (6)	0.0224 (6)	0.0186 (6)	0.0131 (5)	-0.0005 (4)	0.0003 (4)
C5	0.0249 (6)	0.0184 (6)	0.0210 (6)	0.0109 (5)	0.0003 (5)	0.0004 (4)
C6	0.0240 (6)	0.0200 (6)	0.0204 (6)	0.0115 (5)	0.0008 (5)	0.0002 (4)
C7	0.0230 (6)	0.0218 (6)	0.0385 (7)	0.0126 (5)	-0.0013 (5)	-0.0007(5)
C8	0.0294 (7)	0.0303 (7)	0.0577 (9)	0.0163 (6)	0.0115 (6)	0.0026 (6)
C9	0.0362 (8)	0.0395 (8)	0.0461 (8)	0.0215 (7)	-0.0152 (6)	-0.0038 (6)
C10	0.0220 (7)	0.0252 (7)	0.0626 (9)	0.0102 (6)	-0.0031 (6)	-0.0050 (6)
C11	0.0271 (7)	0.0288 (7)	0.0188 (6)	0.0169 (5)	-0.0015 (5)	-0.0003 (5)
C12	0.0310 (7)	0.0257 (7)	0.0385 (7)	0.0188 (6)	-0.0017 (5)	0.0013 (5)

Geometric parameters (Å, °)

01—C1	1.3512 (14)	C7—C10	1.5343 (17)
O1—H1	0.8400	С7—С9	1.5359 (19)
O2—C11	1.2299 (14)	C8—H8A	0.9800
C1—C2	1.3995 (17)	C8—H8B	0.9800
C1—C6	1.4121 (16)	C8—H8C	0.9800
C2—C3	1.3761 (17)	С9—Н9А	0.9800
С2—Н2	0.9500	С9—Н9В	0.9800
C3—C4	1.3944 (17)	С9—Н9С	0.9800
С3—Н3	0.9500	C10—H10A	0.9800
C4—C5	1.3983 (16)	C10—H10B	0.9800
C4—C11	1.4762 (16)	C10—H10C	0.9800
C5—C6	1.3857 (16)	C11—C12	1.5034 (17)
С5—Н5	0.9500	C12—H12A	0.9800
C6—C7	1.5372 (16)	C12—H12B	0.9800
С7—С8	1.5342 (18)	C12—H12C	0.9800
C1—O1—H1	109.5	C7—C8—H8B	109.5
01—C1—C2	120.22 (10)	H8A—C8—H8B	109.5
O1—C1—C6	118.61 (10)	C7—C8—H8C	109.5
C2—C1—C6	121.16 (10)	H8A—C8—H8C	109.5
C3—C2—C1	120.68 (10)	H8B—C8—H8C	109.5
С3—С2—Н2	119.7	С7—С9—Н9А	109.5
С1—С2—Н2	119.7	С7—С9—Н9В	109.5
C2—C3—C4	119.76 (10)	H9A—C9—H9B	109.5
С2—С3—Н3	120.1	С7—С9—Н9С	109.5
С4—С3—Н3	120.1	Н9А—С9—Н9С	109.5
C3—C4—C5	118.66 (10)	H9B—C9—H9C	109.5
C3—C4—C11	119.35 (10)	C7—C10—H10A	109.5
C5—C4—C11	121.96 (10)	C7—C10—H10B	109.5
C6—C5—C4	123.49 (10)	H10A-C10-H10B	109.5
С6—С5—Н5	118.3	C7—C10—H10C	109.5
C4—C5—H5	118.3	H10A-C10-H10C	109.5
C5—C6—C1	116.18 (10)	H10B-C10-H10C	109.5
C5—C6—C7	122.26 (10)	O2—C11—C4	120.07 (11)
C1—C6—C7	121.54 (10)	O2—C11—C12	120.31 (10)
C8—C7—C10	107.67 (10)	C4—C11—C12	119.62 (10)
C8—C7—C9	109.96 (11)	C11—C12—H12A	109.5
С10—С7—С9	107.98 (11)	C11—C12—H12B	109.5
C8—C7—C6	110.64 (10)	H12A—C12—H12B	109.5
C10—C7—C6	111.33 (10)	C11—C12—H12C	109.5
C9—C7—C6	109.21 (10)	H12A—C12—H12C	109.5
С7—С8—Н8А	109.5	H12B—C12—H12C	109.5
O1—C1—C2—C3	-179.44 (11)	C2-C1-C6-C7	-176.33 (11)
C6—C1—C2—C3	0.13 (18)	C5—C6—C7—C8	122.54 (12)
C1—C2—C3—C4	-2.04 (18)	C1—C6—C7—C8	-59.10 (15)

supporting information

C2-C3-C4-C5 1.59	9 (17)	C5—C6—C7—C10	2.85 (16)
C2—C3—C4—C11 179	9.67 (10)	C1—C6—C7—C10	-178.79 (11)
C3—C4—C5—C6 0.82	2 (18)	С5—С6—С7—С9	-116.30 (12)
C11—C4—C5—C6 –17	7.21 (10)	C1—C6—C7—C9	62.07 (14)
C4—C5—C6—C1 –2.0	62 (17)	C3—C4—C11—O2	-7.86 (17)
C4—C5—C6—C7 175	.82 (11)	C5—C4—C11—O2	170.15 (11)
O1—C1—C6—C5 –17	/8.30 (10)	C3—C4—C11—C12	172.03 (10)
C2—C1—C6—C5 2.13	3 (17)	C5—C4—C11—C12	-9.95 (17)
O1—C1—C6—C7 3.25	5 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
O1—H1···O2 ⁱ	0.84	1.83	2.6624 (12)	171

Symmetry code: (i) y, -x+y+1, -z+2.