organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2,4-Dinitrophenyl)-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazine

M. Danish,^a Masood Hamid,^a M. Nawaz Tahir,^b* Nazir Ahmad^a and Sabiha Ghafoor^a

^aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 17 July 2010; accepted 18 July 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.143; data-to-parameter ratio = 17.0.

In the title compound, $C_{14}H_{14}N_4O_4$, the dihedral angle between the benzene rings is 10.42 (8)°. The nitro groups make dihedral angles of 5.3 (2) and 6.47 (15)° with their parent ring and are oriented at 11.2 (3)° with respect to each other. An intramolecular N-H···O hydrogen bond completes an *S*(6) ring motif. In the crystal, molecules are linked by C-H···O interactions, thus forming (010) chains in which $R_2^2(13)$ ring motifs are present. There also exist aromatic π - π stacking interactions [centroid–centroid separation = 3.7046 (9) Å].

Related literature

For a related structure, see: Girgisa *et al.* (2003). For graph-set notation, see: Bernstein *et al.* (1995).

a = 14.8627 (8) Å

b = 13.8704 (7) Å

c = 7.3493 (4) Å

Experimental

Crystal data $C_{16}H_{14}N_4O_4$ $M_r = 326.31$ Monoclinic, $P2_1/c$ $\beta = 99.211 (3)^{\circ}$ $V = 1495.53 (14) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\rm min} = 0.966, T_{\rm max} = 0.975$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.052 & 217 \text{ parameters} \\ wR(F^2) &= 0.143 & H\text{-atom parameters constrained} \\ S &= 1.03 & \Delta\rho_{\text{max}} = 0.38 \text{ e } \text{\AA}^{-3} \\ 3684 \text{ reflections} & \Delta\rho_{\text{min}} = -0.19 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdotsO1$ $C2-H2\cdotsO2^{i}$ $C15-H15\cdotsO1^{i}$	0.86	1.99	2.5976 (19)	127
	0.93	2.57	3.426 (2)	153
	0.93	2.52	3.235 (2)	134

 $\mu = 0.11 \text{ mm}^{-1}$

 $0.34 \times 0.25 \times 0.22$ mm

13873 measured reflections

3684 independent reflections 2275 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.036$

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5560).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Girgisa, A. S., Hosnia, H. M. & Ahmed-Faragb, I. S. (2003). Z. Naturforsch. Teil B, 58, 678–685.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o2100 [https://doi.org/10.1107/S1600536810028680]

1-(2,4-Dinitrophenyl)-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazine

M. Danish, Masood Hamid, M. Nawaz Tahir, Nazir Ahmad and Sabiha Ghafoor

S1. Comment

The title compound (I, Fig. 1) has been prepared for the chlorination and bromonition. Various properties of (I) as well as their derivatives will be undertaken.

The crystal structures of (II) *i.e.*, 6-amino-4-(4-chlorophenyl)-1,2-dihydro-1-[(2,3-dihydroindene- 1(1H)-yl-idene)amino]-2-oxo-3,5-pyridinedicarbonitrile (Girgisa *et al.*, 2003) has been published which contain 3,4-dihydro-naphthalen-1(2H)-ylidene moiety which is also present in (I). The other annilinic group i.e, (2,4-dinitrophenyl)hydrazine is very common.

In (I), the group A (C1—C7/C10) of 3,4-dihydronaphthalen-1(2*H*)-ylidene moiety is planar with r. m. s. deviation of 0.0051 Å. The C-atoms, C8 and C9 are at a distance of 0.8224 (33) and 0.2986 (27) Å from the mean square plane of A. Similarly nitrogen atom N1 is at a distance of -0.2603 (24) Å from the same. The phenyl ring B (C11—C16) is planar with r. m. s. deviation of 0.0053 Å and N2 is at 0.0189 (23) Å from it. The dihedral angle between A/B is 10.51 (6)°. The nitro groups C (O1/N3/O2) and D (O3/N4/O4) are of course planar. The dihedral angle between B/C, B/D and C/D is 5.26 (24), 6.47 (15) and 11.17 (25)°, respectively. There exist an intramolecular H-bonding of N—H…O type completing an S(6) (Fig. 2) ring motif (Bernstein *et al.*, 1995). The molecules are stabilized in the form of infinite one dimensional polymeric chains due to C—H…O type of intermolecular H-bondings (Table 1, Fig. 2) extending along the *b* axis and in these chains $R_2^2(13)$ ring motifs are present. There exist π — π interaction between the centroids of phenyl rings of annilinic group at a distance of 3.7046 (9) Å [symmetry: 1 - x, -y, -z]. The π -interaction is present (Table 1) between the nitro group not involved in the intramolecular H-bonding and the phenyl ring of (2,4-dinitrophenyl)hydrazine moiety.

S2. Experimental

2,4-Dinitrophenylhydrazine (1.518 g, 7.67 mmol) was added to 50 ml of distilled methanol with constant stirring at room temperature in a 100-ml round bottom flask. Then 1-tetralon 1 ml (1.098 g, 7.5 mmol) was added to it and 3–4 drops of conc. HCl were also added into the reaction mixture. The mixture was refluxed for 4 h, and then brought to room temperature. A dark red solid was obtained which purified by repeated crystallization from chloroform to obtain dark red prisms of (I). These crystals had sharp 532.6 K melting point.

S3. Refinement

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.2 for all H-atoms.

Figure 1

View of (I) with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The partial packing of (I), which shows that molecules form polymeric chains extending along b axis.

1-(2,4-Dinitrophenyl)-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazine

Crystal data

5	
$C_{16}H_{14}N_4O_4$	c = 7.3493 (4) Å
$M_r = 326.31$	$\beta = 99.211 \ (3)^{\circ}$
Monoclinic, $P2_1/c$	$V = 1495.53 (14) \text{ Å}^3$
Hall symbol: -P 2ybc	Z = 4
a = 14.8627 (8) Å	F(000) = 680
b = 13.8704 (7) Å	$D_{\rm x} = 1.449 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 2225 reflections $\theta = 2.1-25.2^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

Primary atom site location: structure-invariant

Data collection

Data collection	
Bruker Kappa APEXII CCD diffractometer	13873 measured reflections 3684 independent reflections
Radiation source: fine-focus sealed tube	2275 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.036$
Detector resolution: 7.50 pixels mm ⁻¹	$\theta_{\rm max} = 28.3^\circ, \ \theta_{\rm min} = 2.8^\circ$
ω scans	$h = -19 \rightarrow 18$
Absorption correction: multi-scan	$k = -18 \rightarrow 18$
(SADABS; Bruker, 2005)	$l = -9 \rightarrow 9$
$T_{\min} = 0.966, \ T_{\max} = 0.975$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.143$	neighbouring sites
S = 1.03	H-atom parameters constrained
3684 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0633P)^2 + 0.1946P]$
217 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$

T = 296 K

Prism, dark red

 $0.34 \times 0.25 \times 0.22$ mm

Special details

direct methods

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.43825 (10)	0.23381 (9)	0.0566 (2)	0.0651 (5)	
O2	0.57029 (10)	0.25445 (10)	-0.0177 (2)	0.0762 (6)	
03	0.81423 (10)	0.03761 (12)	0.1565 (2)	0.0771 (6)	
04	0.78682 (11)	-0.10369 (11)	0.2563 (2)	0.0819 (7)	
N1	0.34097 (9)	0.00794 (9)	0.26919 (19)	0.0434 (5)	
N2	0.39945 (9)	0.07682 (9)	0.2205 (2)	0.0442 (5)	
N3	0.51727 (11)	0.20674 (10)	0.0563 (2)	0.0491 (5)	
N4	0.76344 (11)	-0.02141 (13)	0.2090 (2)	0.0567 (6)	
C1	0.19535 (12)	-0.03794 (12)	0.3219 (2)	0.0458 (6)	
C2	0.22711 (13)	-0.12656 (13)	0.3948 (3)	0.0565 (7)	
C3	0.16793 (15)	-0.19545 (15)	0.4405 (3)	0.0679 (8)	
C4	0.07590 (15)	-0.17652 (17)	0.4138 (3)	0.0738 (9)	
C5	0.04314 (14)	-0.08992 (18)	0.3402 (3)	0.0733 (9)	

supporting information

C6	0.10145 (13)	-0.01864 (14)	0.2944 (3)	0.0572 (7)
C7	0.06687 (14)	0.07705 (17)	0.2168 (4)	0.0770 (9)
C8	0.13139 (15)	0.15586 (16)	0.2858 (4)	0.0773 (9)
C9	0.22538 (13)	0.13744 (13)	0.2358 (3)	0.0583 (7)
C10	0.25900 (12)	0.03616 (12)	0.2750 (2)	0.0448 (6)
C11	0.48721 (11)	0.05420 (10)	0.2161 (2)	0.0361 (5)
C12	0.54739 (11)	0.11646 (10)	0.1415 (2)	0.0380 (5)
C13	0.63792 (11)	0.09211 (11)	0.1416 (2)	0.0415 (5)
C14	0.66902 (11)	0.00529 (12)	0.2126 (2)	0.0421 (5)
C15	0.61171 (12)	-0.05889 (12)	0.2843 (2)	0.0441 (6)
C16	0.52342 (12)	-0.03497 (11)	0.2866 (2)	0.0407 (5)
H2	0.28932	-0.13939	0.41286	0.0677*
H2A	0.37998	0.13420	0.19292	0.0530*
H3	0.18999	-0.25435	0.48905	0.0815*
H4	0.03567	-0.22256	0.44564	0.0885*
H5	-0.01936	-0.07871	0.32068	0.0880*
H7A	0.05919	0.07480	0.08332	0.0924*
H7B	0.00786	0.09011	0.25190	0.0924*
H8A	0.13617	0.16063	0.41865	0.0928*
H8B	0.10803	0.21668	0.23270	0.0928*
H9A	0.22348	0.15075	0.10567	0.0699*
H9B	0.26846	0.18190	0.30438	0.0699*
H13	0.67680	0.13436	0.09391	0.0499*
H15	0.63399	-0.11814	0.33062	0.0529*
H16	0.48587	-0.07817	0.33571	0.0489*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0644 (10)	0.0433 (7)	0.0887 (11)	0.0134 (7)	0.0152 (8)	0.0104 (7)
O2	0.0709 (10)	0.0599 (9)	0.0990 (12)	-0.0085 (7)	0.0170 (9)	0.0319 (8)
O3	0.0478 (9)	0.0901 (11)	0.0970 (12)	-0.0040 (8)	0.0226 (8)	0.0040 (9)
O4	0.0619 (10)	0.0738 (10)	0.1095 (14)	0.0256 (8)	0.0125 (9)	0.0107 (9)
N1	0.0395 (8)	0.0434 (8)	0.0471 (8)	-0.0049 (6)	0.0066 (6)	-0.0047 (6)
N2	0.0424 (8)	0.0372 (7)	0.0531 (9)	0.0006 (6)	0.0079 (7)	-0.0007 (6)
N3	0.0559 (10)	0.0375 (7)	0.0533 (9)	-0.0033 (7)	0.0069 (7)	0.0010 (6)
N4	0.0457 (10)	0.0653 (10)	0.0588 (10)	0.0039 (8)	0.0071 (8)	-0.0069 (8)
C1	0.0393 (10)	0.0505 (10)	0.0474 (10)	-0.0031 (8)	0.0060 (8)	-0.0076 (8)
C2	0.0457 (11)	0.0504 (10)	0.0745 (14)	-0.0018 (9)	0.0132 (10)	-0.0057 (9)
C3	0.0658 (14)	0.0512 (11)	0.0893 (17)	-0.0065 (10)	0.0202 (12)	-0.0017 (11)
C4	0.0581 (14)	0.0675 (14)	0.0990 (18)	-0.0195 (11)	0.0224 (12)	-0.0061 (12)
C5	0.0400 (12)	0.0878 (16)	0.0923 (18)	-0.0107 (11)	0.0112 (11)	-0.0032 (13)
C6	0.0407 (11)	0.0678 (12)	0.0619 (13)	0.0001 (9)	0.0050 (9)	-0.0042 (10)
C7	0.0446 (12)	0.0881 (16)	0.0959 (19)	0.0085 (12)	0.0039 (12)	0.0159 (13)
C8	0.0580 (14)	0.0692 (14)	0.1048 (19)	0.0188 (12)	0.0134 (12)	0.0113 (13)
C9	0.0490 (12)	0.0518 (11)	0.0742 (14)	0.0067 (9)	0.0103 (10)	0.0042 (9)
C10	0.0406 (10)	0.0487 (9)	0.0440 (10)	0.0008 (8)	0.0039 (8)	-0.0066 (8)
C11	0.0393 (9)	0.0349 (8)	0.0335 (8)	-0.0029 (7)	0.0036 (7)	-0.0074 (6)

supporting information

C12	0.0443 (10)	0.0312 (7)	0.0372 (9)	-0.0027 (7)	0.0026 (7)	-0.0039 (6)
C13	0.0422 (10)	0.0414 (9)	0.0413 (9)	-0.0092 (7)	0.0075 (7)	-0.0052 (7)
C14	0.0374 (9)	0.0454 (9)	0.0426 (10)	-0.0001 (7)	0.0040 (7)	-0.0074 (7)
C15	0.0485 (11)	0.0374 (8)	0.0441 (10)	0.0009 (8)	0.0005 (8)	-0.0004 (7)
C16	0.0444 (10)	0.0365 (8)	0.0406 (9)	-0.0041 (7)	0.0047 (7)	-0.0008 (7)

Geometric parameters (Å, °)

01—N3	1.233 (2)	C9—C10	1.503 (2)
O2—N3	1.221 (2)	C11—C16	1.414 (2)
O3—N4	1.217 (2)	C11—C12	1.415 (2)
O4—N4	1.227 (2)	C12—C13	1.387 (2)
N1—N2	1.3769 (19)	C13—C14	1.363 (2)
N1-C10	1.287 (2)	C14—C15	1.393 (2)
N2—C11	1.347 (2)	C15—C16	1.356 (3)
N3—C12	1.439 (2)	C2—H2	0.9300
N4—C14	1.456 (2)	С3—Н3	0.9300
N2—H2A	0.8600	C4—H4	0.9300
C1—C2	1.393 (2)	С5—Н5	0.9300
C1—C6	1.404 (3)	C7—H7A	0.9700
C1C10	1.475 (2)	C7—H7B	0.9700
C2—C3	1.376 (3)	C8—H8A	0.9700
C3—C4	1.376 (3)	C8—H8B	0.9700
C4—C5	1.374 (3)	С9—Н9А	0.9700
C5—C6	1.391 (3)	С9—Н9В	0.9700
C6—C7	1.502 (3)	C13—H13	0.9300
C7—C8	1.489 (3)	C15—H15	0.9300
C8—C9	1.522 (3)	C16—H16	0.9300
N2-N1-C10	115.97 (13)	N4—C14—C13	119.11 (15)
N1—N2—C11	119.91 (12)	C13—C14—C15	121.27 (16)
O1—N3—O2	121.22 (15)	C14—C15—C16	120.00 (15)
O1—N3—C12	119.61 (14)	C11—C16—C15	121.45 (15)
O2—N3—C12	119.16 (15)	C1—C2—H2	119.00
O3—N4—O4	123.60 (17)	С3—С2—Н2	119.00
O3—N4—C14	118.89 (16)	С2—С3—Н3	120.00
O4—N4—C14	117.49 (16)	С4—С3—Н3	120.00
C11—N2—H2A	120.00	C3—C4—H4	120.00
N1—N2—H2A	120.00	C5—C4—H4	120.00
C2-C1-C10	120.96 (16)	С4—С5—Н5	119.00
C6-C1-C10	119.59 (15)	С6—С5—Н5	119.00
C2C1C6	119.45 (17)	С6—С7—Н7А	109.00
C1—C2—C3	121.07 (18)	С6—С7—Н7В	109.00
C2—C3—C4	119.5 (2)	С8—С7—Н7А	109.00
C3—C4—C5	120.3 (2)	C8—C7—H7B	109.00
C4—C5—C6	121.4 (2)	H7A—C7—H7B	108.00
C1—C6—C7	119.67 (17)	C7—C8—H8A	109.00
C5—C6—C7	122.09 (18)	C7—C8—H8B	109.00

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6—C5	118.24 (18)	С9—С8—Н8А	109.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7—C8	110.9 (2)	C9—C8—H8B	109.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C8—C9	111.14 (19)	H8A—C8—H8B	108.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C9—C10	113.60 (16)	С8—С9—Н9А	109.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C10—C9	119.35 (16)	С8—С9—Н9В	109.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C10—C9	124.42 (16)	С10—С9—Н9А	109.00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1-C10-C1	116.23 (15)	С10—С9—Н9В	109.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2-C11-C16	120.55 (14)	H9A—C9—H9B	108.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2-C11-C12	122.79 (13)	С12—С13—Н13	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C16	116.66 (15)	С14—С13—Н13	121.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C12—C13	116.51 (14)	C14—C15—H15	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C12—C11	121.84 (15)	С16—С15—Н15	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12—C13	121.62 (13)	C11—C16—H16	119.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C13—C14	118.99 (14)	C15—C16—H16	119.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—C14—C15	119.61 (15)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C10—N1—N2—C11	178.11 (14)	C2—C3—C4—C5	0.7 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N2—N1—C10—C9	-1.1 (2)	C3—C4—C5—C6	-1.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—N1—C10—C1	178.32 (13)	C4—C5—C6—C7	-179.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—N2—C11—C12	170.32 (14)	C4—C5—C6—C1	1.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—N2—C11—C16	-9.3 (2)	C1—C6—C7—C8	-36.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—N3—C12—C11	4.1 (2)	C5—C6—C7—C8	144.2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—N3—C12—C11	-174.74 (15)	C6—C7—C8—C9	58.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—N3—C12—C13	3.3 (2)	C7—C8—C9—C10	-46.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—N3—C12—C13	-177.87 (14)	C8—C9—C10—N1	-169.50 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—N4—C14—C15	5.9 (2)	C8—C9—C10—C1	11.2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—N4—C14—C13	-172.68 (15)	N2-C11-C16-C15	-179.66 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—N4—C14—C15	-175.53 (15)	C16-C11-C12-C13	-1.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—N4—C14—C13	5.9 (2)	C16-C11-C12-N3	176.45 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C1-C6-C7	0.3 (3)	C12-C11-C16-C15	0.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-C6-C7	179.7 (2)	N2-C11-C12-N3	-3.2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C1-C6-C5	-179.91 (17)	N2-C11-C12-C13	178.86 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-C10-C9	-166.92 (17)	C11—C12—C13—C14	1.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—C10—C9	12.5 (2)	N3—C12—C13—C14	-176.90 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-C10-N1	13.7 (2)	C12-C13-C14-N4	178.59 (14)
C6—C1—C2—C3 -0.1 (3) N4—C14—C15—C16 -179.38 (14) C10—C1—C2—C3 179.31 (18) C13—C14—C15—C16 -0.9 (2) C6—C1—C10—N1 -166.93 (16) C14—C15—C16—C11 0.5 (2) C1—C2—C3—C4 0.0 (3) 0.0 (3) 0.14—C15—C16—C11 0.5 (2)	C2-C1-C6-C5	-0.5 (3)	C12—C13—C14—C15	0.1 (2)
C10—C1—C2—C3 179.31 (18) C13—C14—C15—C16 -0.9 (2) C6—C1—C10—N1 -166.93 (16) C14—C15—C16—C11 0.5 (2) C1—C2—C3—C4 0.0 (3)	C6—C1—C2—C3	-0.1 (3)	N4—C14—C15—C16	-179.38 (14)
C6-C1-C10-N1 -166.93 (16) C14-C15-C16-C11 0.5 (2) C1-C2-C3-C4 0.0 (3)	C10—C1—C2—C3	179.31 (18)	C13—C14—C15—C16	-0.9 (2)
C1—C2—C3—C4 0.0 (3)	C6-C1-C10-N1	-166.93 (16)	C14—C15—C16—C11	0.5 (2)
	C1—C2—C3—C4	0.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A…O1	0.86	1.99	2.5976 (19)	127

			supporting information		
C2—H2···O2 ⁱ	0.93	2.57	3.426 (2)	153	
C15—H15…O1 ⁱ	0.93	2.52	3.235 (2)	134	

Symmetry code: (i) -x+1, y-1/2, -z+1/2.