

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-{1,8-Bis[(S)-1-phenylethyl]-1,3,6,8,10,13-hexaazacyclotetradecane}bis(thiocyanato- κN)copper(II)

Jong Won Shin,^a Sankara Rao Rowthu,^a Jae Jeong Ryoo^b and Kil Sik Min^b*

^aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and ^bDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea Correspondence e-mail: minks@knu.ac.kr

Received 25 June 2010; accepted 6 July 2010

Key indicators: single-crystal X-ray study; T = 195 K; mean σ (C–C) = 0.009 Å; R factor = 0.048; wR factor = 0.115; data-to-parameter ratio = 18.7.

thiocyanate-coordinated aza-macrocyclic In the title copper(II) complex, $[Cu(NCS)_2(C_{24}H_{38}N_6)]$, the Cu^{II} atom is coordinated by the four secondary N atoms of the azamacrocyclic ligand and by the two N atoms of the thiocyanate ions in a tetragonally distorted octahedral geometry. The average equatorial Cu-N bond length is shorter than the average axial Cu-N bond length [2.010 (2) and 2.528 (4) Å, respectively]. An N-H···N hydrogen-bonding interaction between the secondary amine N atom and the adjacent thiocyanate ion leads to a polymeric chain along the *a* axis.

Related literature

For the potential applications of chiral metal complexes in chiral recognition and chiral catalysis, see: Katsuki et al. (2000); Lehn (1995) and as chiral building blocks, see: Du et al. (2003); Gao et al. (2005). It has been reported that the enantiomers of $[Ru(1,10-phenanthroline)_3]^{2+}$ induce chiral aggregation of various achiral anionic porphyrins, see: Randazzo et al. (2008). For typical C-S bond lengths, see: Banerjee & Zubieta (2004); Stølevik & Postmyr (1997). For the preparation, see: Han et al. (2008).

V = 1466.13 (19) Å³

 $0.38 \times 0.26 \times 0.15~\text{mm}$

10954 measured reflections

6272 independent reflections

4364 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.92 \text{ mm}^-$

Z = 2

T = 195 K

 $R_{\rm int} = 0.034$

Experimental

Crystal data

[Cu(NCS)₂(C₂₄H₃₈N₆)] $M_r = 590.30$ Monoclinic, P2 a = 6.5976 (5) Å b = 14.7609 (11) Å c = 15.2847 (12) Å $\beta = 99.952 (2)^{\circ}$

Data collection

Siemens SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.751, T_{\max} = 0.871$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.115$ S = 1.11 6272 reflections 336 parameters	$\begin{array}{l} \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.69 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.68 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ \mbox{ 2485 Friedel pairs} \end{array}$
336 parameters	2485 Friedel pairs
1 restraint	Flack parameter: -0.01 (2)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdot \cdot \cdot N7^{i}$	0.93	2.54	3.258 (7)	135
$N4 - H4 \cdot \cdot \cdot N8^{ii}$	0.93	2.46	3.202 (7)	137
2	4 (2)	1		

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. R01-2008-000-20955-0). The authors acknowledge the Korea Basic Science Institute for the X-ray data collections.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2175).

References

- Banerjee, S. R. & Zubieta, J. (2004). Acta Cryst. C60, m208-m209.
- Du, G., Ellern, A. & Woo, L. K. (2003). Inorg. Chem. 42, 873-877.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gao, J., Reibenspies, J. H., Zingaro, R. A., Woolley, F. R., Martell, A. E. & Clearfield, A. (2005). Inorg. Chem. 44, 232-241.
- Han, J. H., Cha, M. J., Kim, B. G., Kim, S. K. & Min, K. S. (2008). Inorg. Chem. Commun. 11, 745-748.

Katsuki, I., Matsumoto, N. & Kojima, M. (2000). Inorg. Chem. 39, 3350-3354. Lehn, J.-M. (1995). Supramolecular Chemistry; Concepts and Perspectives. Weinheim: VCH.

Randazzo, R., Mammana, A., D'Urso, A., Lauceri, R. & Purrello, R. (2008). Angew. Chem. Int. Ed. 47, 9879–9882.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stølevik, R. & Postmyr, L. (1997). J. Mol. Struct. 403, 207-211.

supporting information

Acta Cryst. (2010). E66, m919–m920 [https://doi.org/10.1107/S1600536810026632]

trans-{1,8-Bis[(*S*)-1-phenylethyl]-1,3,6,8,10,13-hexaazacyclotetradecane}bis-(thiocyanato-*κN*)copper(II)

Jong Won Shin, Sankara Rao Rowthu, Jae Jeong Ryoo and Kil Sik Min

S1. Comment

Chiral metal complexes have attracted considerable attention in chemistry and material science because of their potential applications for chiral recognition and chiral catalysis (Lehn, 1995; Katsuki *et al.*, 2000). Very recently, it has reported the enantiomers of $[Ru(1,10-phenanthroline)_3]^{2+}$ induce chiral aggregation of various achiral anionic porphyrins and that the complexes can transfer molecular information, *i.e.* energy and chirality (Randazzo *et al.*, 2008). However, the study of chiral macrocyclic metal complexes has been limited due to the difficult of preparation, although these complexes are ve ry useful for chiral building blocks (Du *et al.*, 2003; Gao *et al.*, 2005). Here, we report the synthesis and crystal structure of copper(II) azamacrocyclic chiral complex, *trans*-Dithiocyanato(1,8-di(*S-a*-methylbenzyl)- 1,3,6,8,10,13-hexaazacyclo-tetradecane)copper(II), with two thiocyanate ions axially.

In the title compound, the coordination geometry around copper(II) ion is a tetragonally distorted octahedron in which copper(II) ion is coordinated to the four secondary N atoms of the azamacrocyclic ligand in the square-planar fashion and two N atoms from the thiocyanate ions at the axial positions as shown in Figure 1. The average Ni—N_{eq} and Ni—N_{ax} bond distances are 2.010 (2) and 2.528 (4) Å, respectively. The former is much less than the latter, which can be attributed to a rather large Jahn-Teller distortion of the copper(II) ion and/or the ring contraction of the azamacrocyclic ligand. In the coordinated thiocyanate ions, the average N—C and C—S bond distances are 1.160 (6) and 1.638 (5) Å, respectively. The former is very similar to CN triple bond length, while the latter is slightly shorter than the normal CS single bond distance (Stølevik & Postmyr, 1997; Banerjee & Zubieta, 2004). The pendant arms of azamacrocyclic ligand have chiral carbon atoms (S type). All thiocyanate ions binding copper(II) ions axially are involved in an N—H···N(of NCS) hydrogen bonding interactions (Table 1), which gives rise to a one-dimensional polymeric chain propagating along the *a* axis (Figure 2). The shortest Cu···Cu intrachain separation within the hydrogen-bonded one-dimensional polymer is 6.598 (1) Å and is about 37% shorter than the shortest interchain Cu···Cu distance of 10.448 (1) Å.

S2. Experimental

The title compound is prepared as follows. $[Cu(C_{24}H_{38}N_6)](ClO_4)_2$ was prepared by a slightly modified literature procedure: as CuCl₂.2H₂O and *S*-(-)-1-Phenylethylamine were used instead of NiCl₂.6H₂O and *R*-(+)-1-Phenylethylamine (Han *et al.*, 2008). To an MeCN solution (10 ml) of $[Cu(C_{24}H_{38}N_6)](ClO_4)_2$ (90 mg, 0.15 mmol) was added dropwise an aqueous solution (10 ml) containing NaSCN (24 mg, 0.30 mmol) at ambient temperature. The color of the solution changed to pale pink. The mixture was stirred for 30 min during which time a pink precipitate of formed which was collected by filtration, washed with MeCN and water, and dried in air. Single crystals of the title compound suitable for X-ray crystallography were grown by layering of the MeCN solution of $[Cu(C_{24}H_{38}N_6)](ClO_4)_2$ on the aqueous solution of NaSCN within one week.

S3. Refinement

All H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99–1.00 (open chain H atoms) Å and N—H distance of 0.93 Å, and with $U_{iso}(H)$ values of 1.2 times the equivalent anisotropic displacement parameters of the parent C and N atoms.

Figure 1

ORTEP drawing of the molecular title compound with atomic numbering scheme at 30% probability.

Perspective view of the title compound showing a one-dimensional chain formed by N—H…N (of NCS) hydrogen bonding interactions.

trans-{1,8-Bis[(*S*)-1-phenylethyl]- 1,3,6,8,10,13-hexaazacyclotetradecane}bis(thiocyanato-*κN*)copper(II)

F(000) = 622

 $\theta = 2.7 - 27.9^{\circ}$

 $\mu = 0.92 \text{ mm}^{-1}$ T = 195 K

Block, purple

 $0.38 \times 0.26 \times 0.15$ mm

 $D_{\rm x} = 1.337 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4491 reflections

Crystal data

 $[Cu(NCS)_2(C_{24}H_{38}N_6)]$ $M_r = 590.30$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 6.5976 (5) Å b = 14.7609 (11) Å c = 15.2847 (12) Å $\beta = 99.952$ (2)° V = 1466.13 (19) Å³ Z = 2

Data collection

Siemens SMART CCD	10954 measured reflections
diffractometer	6272 independent reflections
Radiation source: fine-focus sealed tube	4364 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.034$
φ and ω scans	$\theta_{\rm max} = 28.3^\circ, \ \theta_{\rm min} = 1.4^\circ$
Absorption correction: multi-scan	$h = -6 \rightarrow 8$
(SADABS; Sheldrick, 1996)	$k = -19 \rightarrow 19$
$T_{\min} = 0.751, \ T_{\max} = 0.871$	$l = -20 \longrightarrow 20$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.048$ H-atom parameters constrained $wR(F^2) = 0.115$ $w = 1/[\sigma^2(F_0^2) + (0.0195P)^2 + 1.3207P]$ S = 1.11where $P = (F_0^2 + 2F_c^2)/3$ 6272 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ 336 parameters $\Delta \rho_{\rm max} = 0.69 \ {\rm e} \ {\rm \AA}^{-3}$ 1 restraint $\Delta \rho_{\rm min} = -0.68 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant Absolute structure: Flack (1983), 2485 Friedel direct methods pairs Secondary atom site location: difference Fourier Absolute structure parameter: -0.01(2)map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cul	0.50430 (12)	0.54334 (8)	0.25843 (4)	0.03442 (15)
S1	0.7793 (3)	0.26210 (11)	0.15869 (12)	0.0543 (5)
S2	0.2363 (3)	0.82615 (11)	0.34351 (12)	0.0583 (5)

N1	0.2789 (7)	0.4510(3)	0.2305 (2)	0.0254 (9)
H1	0.1630	0.4766	0.2476	0.030*
N2	0.3528 (7)	0.3783 (3)	0.3734 (3)	0.0274 (10)
N3	0.5658 (7)	0.5102 (3)	0.3877 (2)	0.0303 (11)
H3	0.4650	0.5373	0.4146	0.036*
N4	0.7316 (7)	0.6346 (3)	0.2878 (2)	0.0273 (10)
H4	0.8493	0.6078	0.2736	0.033*
N5	0.6763 (8)	0.7003 (3)	0.1436 (3)	0.0342 (11)
N6	0.4452 (7)	0.5748 (3)	0.1283 (2)	0.0294 (11)
H6	0.5388	0.5424	0.1015	0.035*
N7	0.7810 (9)	0.4420 (4)	0.2165 (3)	0.0486 (14)
N8	0.2189 (8)	0.6434 (4)	0.2945 (3)	0.0484 (14)
C1	0.3104 (9)	0.3626 (4)	0.2767 (3)	0.0297 (12)
H1A	0.1858	0.3246	0.2609	0.036*
H1B	0.4275	0.3303	0.2582	0.036*
C2	0.5574 (9)	0.4111 (4)	0.4052 (3)	0.0339 (13)
H2A	0.6567	0.3789	0.3746	0.041*
H2B	0.5953	0.3994	0.4697	0.041*
C3	0.7627 (7)	0.5530 (5)	0.4258 (3)	0.0288 (12)
H3A	0.8787	0.5158	0.4127	0.035*
H3B	0.7747	0.5582	0.4910	0.035*
C4	0.7689 (9)	0.6463 (4)	0.3847 (3)	0.0359 (14)
H4A	0.6618	0.6857	0.4027	0.043*
H4B	0.9049	0.6748	0.4047	0.043*
C5	0.7015 (10)	0.7205 (4)	0.2374 (3)	0.0341 (13)
H5A	0.5780	0.7522	0.2505	0.041*
H5B	0.8222	0.7605	0.2549	0.041*
C6	0.4694 (9)	0.6717 (4)	0.1056 (3)	0.0345 (13)
H6A	0.4461	0.6794	0.0403	0.041*
H6B	0.3674	0.7091	0.1298	0.041*
C7	0.2393 (8)	0.5371 (5)	0.0934 (3)	0.0348 (12)
H7A	0.2174	0.5339	0.0278	0.042*
H7B	0.1307	0.5758	0.1111	0.042*
C8	0.2317 (9)	0.4425 (4)	0.1326 (3)	0.0311 (12)
H8A	0.0933	0.4158	0.1142	0.037*
H8B	0.3339	0.4027	0.1115	0.037*
C9	0.2883 (9)	0.3009 (4)	0.4249 (3)	0.0361 (13)
H9	0.3499	0.3132	0.4883	0.043*
C10	0.3729 (9)	0.2099 (3)	0.4034 (3)	0.0331 (13)
C11	0.2610 (11)	0.1501 (5)	0.3414 (4)	0.0534 (18)
H11	0.1285	0.1674	0.3112	0.064*
C12	0.3396 (14)	0.0674 (5)	0.3239 (4)	0.066 (2)
H12	0.2606	0.0278	0.2824	0.079*
C13	0.5321 (13)	0.0415 (7)	0.3659 (4)	0.0688 (19)
H13	0.5858	-0.0158	0.3530	0.083*
C14	0.6468 (11)	0.0979 (5)	0.4265 (4)	0.0541 (18)
H14	0.7794	0.0797	0.4558	0.065*
C15	0.5689 (9)	0.1810 (4)	0.4445 (4)	0.0402 (14)

H15	0.6501	0.2199	0.4860	0.048*	
C16	0.0579 (8)	0.3032 (4)	0.4214 (4)	0.0473 (15)	
H16A	-0.0116	0.3002	0.3594	0.071*	
H16B	0.0197	0.3595	0.4483	0.071*	
H16C	0.0163	0.2513	0.4542	0.071*	
C17	0.7789 (9)	0.7675 (4)	0.0932 (3)	0.0380 (14)	
H17	0.9250	0.7709	0.1244	0.046*	
C18	0.6930 (9)	0.8627 (4)	0.0969 (3)	0.0390 (14)	
C19	0.8066 (12)	0.9284 (5)	0.1483 (4)	0.059 (2)	
H19	0.9418	0.9143	0.1778	0.071*	
C20	0.7286 (15)	1.0139 (5)	0.1579 (4)	0.074 (3)	
H20	0.8100	1.0583	0.1928	0.089*	
C21	0.5318 (14)	1.0343 (6)	0.1165 (4)	0.070 (2)	
H21	0.4761	1.0925	0.1243	0.084*	
C22	0.4137 (12)	0.9710 (5)	0.0634 (4)	0.060(2)	
H22	0.2793	0.9855	0.0334	0.072*	
C23	0.4972 (10)	0.8857 (4)	0.0553 (4)	0.0453 (16)	
H23	0.4166	0.8415	0.0198	0.054*	
C24	0.7881 (9)	0.7340 (4)	0.0004 (3)	0.0456 (14)	
H24A	0.8273	0.6699	0.0028	0.068*	
H24B	0.8902	0.7693	-0.0246	0.068*	
H24C	0.6527	0.7411	-0.0371	0.068*	
C25	0.7772 (9)	0.3680 (5)	0.1908 (4)	0.0360 (14)	
C26	0.2274 (9)	0.7192 (4)	0.3148 (4)	0.0368 (14)	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0461 (3)	0.0263 (2)	0.0280 (3)	-0.0102 (3)	-0.0019 (2)	0.0032 (3)
0.0567 (12)	0.0369 (10)	0.0655 (11)	-0.0006 (9)	-0.0005 (9)	-0.0091 (8)
0.0683 (13)	0.0330 (10)	0.0674 (11)	-0.0024 (9)	-0.0058 (9)	-0.0068 (8)
0.029 (2)	0.020 (2)	0.028 (2)	-0.0074 (19)	0.0044 (17)	-0.0053 (16)
0.027 (2)	0.024 (2)	0.031 (2)	-0.0027 (19)	0.0019 (18)	0.0087 (17)
0.035 (3)	0.027 (2)	0.029 (2)	-0.004 (2)	0.0039 (18)	-0.0033 (16)
0.029 (2)	0.023 (2)	0.029 (2)	-0.008(2)	0.0031 (17)	-0.0032 (18)
0.041 (3)	0.033 (3)	0.028 (2)	-0.008 (2)	0.004 (2)	0.0076 (19)
0.040 (3)	0.023 (2)	0.0237 (19)	-0.003 (2)	0.0022 (18)	-0.0013 (15)
0.048 (4)	0.036 (3)	0.062 (3)	0.007 (3)	0.012 (3)	-0.007 (3)
0.047 (4)	0.034 (3)	0.063 (3)	0.001 (3)	0.009 (3)	-0.009 (3)
0.039 (3)	0.020 (3)	0.031 (3)	-0.008 (2)	0.008 (2)	0.002 (2)
0.041 (3)	0.023 (3)	0.033 (3)	0.003 (3)	-0.005 (2)	0.011 (2)
0.031 (3)	0.028 (3)	0.026 (2)	-0.001 (3)	-0.0013 (18)	-0.003 (2)
0.043 (4)	0.039 (3)	0.024 (2)	-0.004 (3)	0.002 (2)	-0.002 (2)
0.042 (4)	0.025 (3)	0.033 (3)	-0.006 (3)	0.002 (2)	0.004 (2)
0.039 (3)	0.033 (3)	0.031 (3)	-0.006 (3)	0.004 (2)	0.008 (2)
0.041 (3)	0.039 (3)	0.0217 (19)	-0.007 (3)	-0.0029 (18)	-0.001 (3)
0.040 (3)	0.026 (3)	0.027 (2)	0.001 (3)	0.006 (2)	-0.001 (2)
0.041 (3)	0.036 (3)	0.033 (3)	0.002 (3)	0.010 (2)	0.015 (2)
	U^{11} 0.0461 (3) 0.0567 (12) 0.0683 (13) 0.029 (2) 0.027 (2) 0.035 (3) 0.029 (2) 0.041 (3) 0.040 (3) 0.048 (4) 0.047 (4) 0.039 (3) 0.041 (3) 0.043 (4) 0.042 (4) 0.039 (3) 0.041 (3) 0.041 (3) 0.041 (3)	U^{11} U^{22} 0.0461 (3) 0.0263 (2) 0.0567 (12) 0.0369 (10) 0.0683 (13) 0.0330 (10) 0.029 (2) 0.020 (2) 0.027 (2) 0.024 (2) 0.029 (2) 0.027 (2) 0.029 (2) 0.023 (2) 0.041 (3) 0.033 (3) 0.040 (3) 0.023 (2) 0.048 (4) 0.036 (3) 0.047 (4) 0.034 (3) 0.039 (3) 0.020 (3) 0.041 (3) 0.023 (3) 0.041 (3) 0.023 (3) 0.043 (4) 0.039 (3) 0.043 (4) 0.039 (3) 0.043 (4) 0.039 (3) 0.041 (3) 0.033 (3) 0.041 (3) 0.039 (3) 0.041 (3) 0.026 (3) 0.041 (3) 0.026 (3) 0.041 (3) 0.036 (3)	U^{11} U^{22} U^{33} 0.0461 (3) 0.0263 (2) 0.0280 (3) 0.0567 (12) 0.0369 (10) 0.0655 (11) 0.0683 (13) 0.0330 (10) 0.0674 (11) 0.029 (2) 0.020 (2) 0.028 (2) 0.027 (2) 0.024 (2) 0.031 (2) 0.035 (3) 0.027 (2) 0.029 (2) 0.029 (2) 0.023 (2) 0.029 (2) 0.041 (3) 0.033 (3) 0.028 (2) 0.044 (3) 0.023 (2) 0.0237 (19) 0.048 (4) 0.036 (3) 0.062 (3) 0.047 (4) 0.034 (3) 0.063 (3) 0.039 (3) 0.023 (3) 0.031 (3) 0.041 (3) 0.028 (3) 0.026 (2) 0.043 (4) 0.039 (3) 0.024 (2) 0.042 (4) 0.025 (3) 0.033 (3) 0.039 (3) 0.033 (3) 0.0217 (19) 0.040 (3) 0.026 (3) 0.027 (2) 0.041 (3) 0.036 (3) 0.027 (2) 0.041 (3) 0.036 (3) 0.033 (3)	U^{11} U^{22} U^{33} U^{12} 0.0461 (3)0.0263 (2)0.0280 (3) -0.0102 (3)0.0567 (12)0.0369 (10)0.0655 (11) -0.0006 (9)0.0683 (13)0.0330 (10)0.0674 (11) -0.0024 (9)0.029 (2)0.020 (2)0.028 (2) -0.0074 (19)0.027 (2)0.024 (2)0.031 (2) -0.0027 (19)0.035 (3)0.027 (2)0.029 (2) -0.008 (2)0.029 (2)0.023 (2)0.029 (2) -0.008 (2)0.041 (3)0.033 (3)0.028 (2) -0.008 (2)0.041 (3)0.023 (2)0.0237 (19) -0.003 (2)0.048 (4)0.036 (3)0.062 (3)0.007 (3)0.047 (4)0.034 (3)0.063 (3)0.001 (3)0.031 (3)0.023 (3)0.033 (3) -0.008 (2)0.041 (3)0.028 (3)0.026 (2) -0.001 (3)0.041 (3)0.025 (3)0.031 (3) -0.006 (3)0.041 (3)0.039 (3)0.0217 (19) -0.006 (3)0.041 (3)0.039 (3)0.0217 (19) -0.007 (3)0.041 (3)0.036 (3)0.0217 (19) -0.007 (3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

supporting information

C10	0.041 (3)	0.021 (3)	0.038 (3)	-0.004 (2)	0.009 (2)	0.008 (2)
C11	0.064 (5)	0.040 (4)	0.050 (4)	-0.008 (3)	-0.006 (3)	0.011 (3)
C12	0.097 (6)	0.041 (4)	0.056 (4)	-0.009 (4)	0.005 (4)	-0.005 (3)
C13	0.099 (6)	0.045 (4)	0.068 (4)	0.008 (5)	0.029 (4)	0.000 (5)
C14	0.051 (4)	0.043 (4)	0.073 (4)	0.014 (3)	0.023 (3)	0.011 (3)
C15	0.029 (3)	0.041 (3)	0.050 (3)	0.003 (3)	0.007 (3)	0.007 (3)
C16	0.027 (3)	0.059 (4)	0.056 (4)	-0.003 (3)	0.009 (3)	0.021 (3)
C17	0.050 (4)	0.025 (3)	0.040 (3)	-0.003 (3)	0.010 (3)	0.005 (2)
C18	0.050 (4)	0.032 (3)	0.035 (3)	-0.003 (3)	0.007 (3)	0.008 (2)
C19	0.091 (6)	0.031 (3)	0.048 (4)	-0.009 (4)	-0.007 (4)	0.007 (3)
C20	0.123 (8)	0.042 (4)	0.050 (4)	-0.005 (4)	-0.009 (4)	0.001 (3)
C21	0.131 (7)	0.026 (3)	0.058 (4)	0.002 (5)	0.029 (4)	0.000 (4)
C22	0.077 (5)	0.046 (4)	0.059 (4)	0.021 (4)	0.021 (4)	0.018 (3)
C23	0.056 (4)	0.032 (3)	0.051 (3)	0.004 (3)	0.018 (3)	0.009 (3)
C24	0.058 (4)	0.040 (3)	0.044 (3)	0.002 (3)	0.022 (3)	0.007 (3)
C25	0.032 (3)	0.042 (4)	0.033 (3)	0.004 (3)	0.003 (2)	0.005 (3)
C26	0.033 (3)	0.037 (4)	0.040 (3)	0.005 (3)	0.005 (3)	0.004 (3)

Geometric parameters (Å, °)

Cu1—N3	2.008 (4)	C6—H6B	0.9900
Cu1—N4	2.008 (4)	C7—C8	1.523 (9)
Cu1—N1	2.008 (4)	С7—Н7А	0.9900
Cu1—N6	2.014 (4)	С7—Н7В	0.9900
Cu1—N7	2.527 (6)	C8—H8A	0.9900
Cu1—N8	2.528 (6)	C8—H8B	0.9900
S1—C25	1.639 (7)	C9—C16	1.512 (7)
S2—C26	1.636 (7)	C9—C10	1.513 (8)
N1—C8	1.480 (6)	С9—Н9	1.0000
N1C1	1.482 (6)	C10—C15	1.403 (7)
N1—H1	0.9300	C10-C11	1.406 (8)
N2—C2	1.437 (7)	C11—C12	1.372 (10)
N2—C1	1.474 (6)	C11—H11	0.9500
N2—C9	1.490 (6)	C12—C13	1.375 (10)
N3—C3	1.470 (7)	C12—H12	0.9500
N3—C2	1.490 (6)	C13—C14	1.372 (10)
N3—H3	0.9300	C13—H13	0.9500
N4—C4	1.469 (6)	C14—C15	1.376 (8)
N4—C5	1.479 (7)	C14—H14	0.9500
N4—H4	0.9300	C15—H15	0.9500
N5—C5	1.445 (6)	C16—H16A	0.9800
N5—C6	1.450 (7)	C16—H16B	0.9800
N5—C17	1.490 (7)	C16—H16C	0.9800
N6—C7	1.480 (7)	C17—C24	1.514 (7)
N6—C6	1.487 (7)	C17—C18	1.520 (8)
N6—H6	0.9300	C17—H17	1.0000
N7—C25	1.160 (8)	C18—C23	1.379 (8)
N8—C26	1.160 (8)	C18—C19	1.384 (9)

supporting information

C1—H1A	0.9900	C19—C20	1.381 (10)
C1—H1B	0.9900	С19—Н19	0.9500
C2—H2A	0.9900	C20—C21	1.376 (11)
C2—H2B	0.9900	C20—H20	0.9500
C3—C4	1 518 (8)	$C_{21} - C_{22}$	1.385(11)
C3_H3A	0.9900	C21_H21	0.9500
C2 H2P	0.9900	$C_{21} = 1121$	1 3 90 (0)
	0.9900	C22—C23	1.369 (9)
C4—H4A	0.9900	C22—H22	0.9500
C4—H4B	0.9900	С23—Н23	0.9500
С5—Н5А	0.9900	C24—H24A	0.9800
С5—Н5В	0.9900	C24—H24B	0.9800
С6—Н6А	0.9900	C24—H24C	0.9800
N3—Cu1—N4	85.80 (17)	N6—C7—H7A	110.3
N3—Cu1—N1	93.45 (17)	С8—С7—Н7А	110.3
N4—Cu1—N1	179.2 (2)	N6—C7—H7B	110.3
N3—Cu1—N6	1791(2)	C8—C7—H7B	110.3
N4—Cu1—N6	94 36 (17)	H7A - C7 - H7B	108.6
N1_Cu1_N6	86 38 (17)	N1 - C8 - C7	107.8(4)
$C_8 $ N1 C_1	113.3(4)	N1 = C3 = C7	110.2
$C_8 = N_1 = C_1$	115.5(4) 106.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.2
C_{0} N1 C_{1}	100.9(3)	$C = C_0 = H_0 A$	110.2
	117.3 (3)	$NI - C\delta - H\delta B$	110.2
C8—NI—HI	106.2	C/—C8—H8B	110.2
C1—N1—H1	106.2	H8A—C8—H8B	108.5
Cu1—N1—H1	106.2	N2—C9—C16	110.0 (4)
C2—N2—C1	113.3 (4)	N2—C9—C10	114.6 (4)
C2—N2—C9	114.7 (4)	C16—C9—C10	114.7 (5)
C1—N2—C9	112.7 (4)	N2—C9—H9	105.6
C3—N3—C2	114.1 (4)	С16—С9—Н9	105.6
C3—N3—Cu1	107.4 (3)	С10—С9—Н9	105.6
C2—N3—Cu1	114.1 (3)	C15—C10—C11	116.6 (6)
C3—N3—H3	106.9	C15—C10—C9	121.2 (5)
C2—N3—H3	106.9	C11—C10—C9	122.2 (5)
Cu1 - N3 - H3	106.9	C12-C11-C10	121.2(7)
C4-N4-C5	114 1 (4)	C12 - C11 - H11	119.4
C4—N4—Cu1	1071(3)	C10-C11-H11	119.4
$C_5 \text{ N4} \text{ Cul}$	107.1(3) 115 5 (3)	C_{11} C_{12} C_{13}	119.4 120 5 (7)
CA NA HA	106.5	$C_{11} = C_{12} = C_{13}$	110.8
C_{4} N_{4} H_{4}	106.5	$C_{11} = C_{12} = H_{12}$	119.0
C_{3} N4 H4	100.5	C13 - C12 - C12	119.0
Cui—N4—H4	100.5		120.2 (8)
C5—N5—C6	113.4 (5)	C14—C13—H13	119.9
C5—N5—C17	113.0 (4)	С12—С13—Н13	119.9
C6—N5—C17	117.8 (4)	C13—C14—C15	119.7 (7)
C7—N6—C6	114.0 (5)	C13—C14—H14	120.2
C7—N6—Cu1	106.2 (3)	C15—C14—H14	120.2
C6—N6—Cu1	116.2 (3)	C14—C15—C10	121.9 (6)
C7—N6—H6	106.6	C14—C15—H15	119.0
C6—N6—H6	106.6	C10—C15—H15	119.0

Cu1—N6—H6	106.6	C9—C16—H16A	109.5
N2—C1—N1	109.0 (4)	C9—C16—H16B	109.5
N2—C1—H1A	109.9	H16A—C16—H16B	109.5
N1—C1—H1A	109.9	C9—C16—H16C	109.5
N2—C1—H1B	109.9	H16A—C16—H16C	109.5
N1—C1—H1B	109.9	H16B—C16—H16C	109.5
H1A—C1—H1B	108.3	N5—C17—C24	111.2 (4)
N2—C2—N3	109.4 (4)	N5—C17—C18	113.0 (5)
N2—C2—H2A	109.8	C24—C17—C18	114.4 (4)
N3—C2—H2A	109.8	N5—C17—H17	105.8
N2—C2—H2B	109.8	C24—C17—H17	105.8
N3—C2—H2B	109.8	C18 - C17 - H17	105.8
$H_2A = C_2 = H_2B$	108.2	C^{23} C^{18} C^{19}	117.5 (6)
N3-C3-C4	108.1 (4)	C_{23} C_{18} C_{17}	122.4 (6)
N3—C3—H3A	110.1	C19 - C18 - C17	122.1(6) 120.0(6)
C4-C3-H3A	110.1	C_{20} C_{19} C_{18}	120.0(0) 121.7(7)
N3-C3-H3B	110.1	$C_{20} = C_{19} = H_{19}$	119.2
C4-C3-H3B	110.1	$C_{20} = C_{10} = H_{10}$	119.2
$H_{3}A = C_{3} = H_{3}B$	108.4	$C_{10} - C_{10} - C_{10}$	119.2 119.4 (7)
N4-C4-C3	107.3(4)	$C_{21} = C_{20} = C_{12}$	120.3
N4 - C4 - C3 N4 - C4 - H4A	107.3 (4)	$C_{21} = C_{20} = H_{20}$	120.3
$C_3 - C_4 - H_4 \Delta$	110.2	C_{20} C_{21} C_{22} C_{22}	120.3 120.8(7)
N4 - C4 - H4B	110.2	$C_{20} = C_{21} = C_{22}$	119.6
$C_3 - C_4 - H_4 B$	110.2	$C_{20} = C_{21} = H_{21}$	119.6
$H_{4} = C_{4} = H_{4}B$	108.5	C22 = C21 = 1121 C21 = C22 = C23	119.0 118.2(7)
N5 C5 N4	108.8 (4)	C21—C22—C25	120.9
N5-C5-H5A	100.0 (4)	C21 C22 H22	120.9
N4-C5-H5A	109.9	$C_{23} = C_{22} = 1122$ $C_{18} = C_{23} = C_{22}$	120.9 122.4(7)
N5-C5-H5B	109.9	C18 - C23 - C22 C18 - C23 - H23	118.8
N4-C5-H5B	109.9	C13 C23 H23	118.8
$H_5A = C_5 = H_5B$	109.9	C17 - C24 - H24A	109.5
N5_C6_N6	108.5 108 5 (4)	C17 = C24 = H24R C17 = C24 = H24R	109.5
N5-C6-H6A	100.5 (4)	$H_{24} = C_{24} = H_{24} B$	109.5
N6 C6 H6A	110.0	C_{17} C_{24} H_{24} H_{24}	109.5
N5 C6 H6B	110.0	$H_{24A} = C_{24} = H_{24C}$	109.5
N6 C6 H6B	110.0	H24B C24 H24C	109.5
H6A C6 H6B	108 /	N7 C25 S1	109.5
N6 C7 C8	103.4	$N_{1}^{-} C_{2}^{-} S_{1}^{-}$	179.3 (6)
110-07-08	107.1 (4)	108-020-52	179.5 (0)
N3—Cu1—N1—C8	-166.4(3)	C6—N6—C7—C8	-172.6(4)
N6—Cu1—N1—C8	12.7 (3)	Cu1—N6—C7—C8	-43.4(5)
N3—Cu1—N1—C1	-38.0(4)	C1 - N1 - C8 - C7	-170.5(4)
N6—Cu1—N1—C1	141.1 (4)	Cu1—N1—C8—C7	-39.7 (5)
N4—Cu1—N3—C3	-12.5 (4)	N6—C7—C8—N1	56.3 (6)
N1—Cu1—N3—C3	167.1 (4)	C2—N2—C9—C16	150.3 (5)
N4—Cu1—N3—C2	-140.0 (4)	C1—N2—C9—C16	-78.0 (6)
N1—Cu1—N3—C2	39.6 (4)	C2—N2—C9—C10	-78.8 (6)
N3—Cu1—N4—C4	-16.9 (4)	C1—N2—C9—C10	52.9 (6)
			\~/

N6—Cu1—N4—C4	164.0 (4)	N2-C9-C10-C15	84.8 (6)
N3—Cu1—N4—C5	-145.2 (4)	C16—C9—C10—C15	-146.6 (5)
N6—Cu1—N4—C5	35.7 (4)	N2-C9-C10-C11	-95.1 (6)
N4—Cu1—N6—C7	-162.9 (4)	C16—C9—C10—C11	33.5 (7)
N1—Cu1—N6—C7	17.4 (4)	C15-C10-C11-C12	1.1 (9)
N4—Cu1—N6—C6	-35.0 (4)	C9—C10—C11—C12	-179.1 (6)
N1—Cu1—N6—C6	145.4 (4)	C10-C11-C12-C13	-0.9 (11)
C2-N2-C1-N1	-75.4 (6)	C11—C12—C13—C14	0.5 (11)
C9—N2—C1—N1	152.3 (4)	C12-C13-C14-C15	-0.5 (11)
C8—N1—C1—N2	-179.1 (4)	C13-C14-C15-C10	0.7 (10)
Cu1—N1—C1—N2	55.6 (5)	C11—C10—C15—C14	-1.0 (9)
C1—N2—C2—N3	80.1 (5)	C9-C10-C15-C14	179.1 (5)
C9—N2—C2—N3	-148.6 (4)	C5—N5—C17—C24	168.0 (5)
C3—N3—C2—N2	174.0 (4)	C6—N5—C17—C24	-56.7 (7)
Cu1—N3—C2—N2	-62.0 (5)	C5—N5—C17—C18	-61.8 (6)
C2—N3—C3—C4	166.4 (4)	C6—N5—C17—C18	73.6 (6)
Cu1—N3—C3—C4	38.9 (5)	N5-C17-C18-C23	-68.8 (7)
C5—N4—C4—C3	171.2 (4)	C24—C17—C18—C23	59.8 (7)
Cu1—N4—C4—C3	42.1 (5)	N5-C17-C18-C19	106.6 (6)
N3—C3—C4—N4	-54.6 (6)	C24—C17—C18—C19	-124.8 (6)
C6—N5—C5—N4	81.0 (6)	C23-C18-C19-C20	-0.1 (10)
C17—N5—C5—N4	-141.6 (5)	C17—C18—C19—C20	-175.8 (6)
C4—N4—C5—N5	177.3 (5)	C18—C19—C20—C21	1.0 (11)
Cu1—N4—C5—N5	-58.0 (6)	C19—C20—C21—C22	-1.8 (11)
C5—N5—C6—N6	-79.4 (5)	C20—C21—C22—C23	1.8 (10)
C17—N5—C6—N6	145.4 (5)	C19—C18—C23—C22	0.2 (9)
C7—N6—C6—N5	179.9 (4)	C17—C18—C23—C22	175.7 (5)
Cu1—N6—C6—N5	55.9 (6)	C21—C22—C23—C18	-1.0 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1····N7 ⁱ	0.93	2.54	3.258 (7)	135
$N4$ — $H4$ ···· $N8^{ii}$	0.93	2.46	3.202 (7)	137

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*.