

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 3-amino-4-[(2-hydroxyethyl)aminolbenzoate

Natarajan Arumugam,^a Aisyah Saad Abdul Rahim,^a‡ Shafida Abd. Hamid,^b Mohd Mustagim Rosli^c and Hoong-Kun Fun^c*§

^aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bKuliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Received 20 July 2010; accepted 21 July 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.134; data-to-parameter ratio = 23.1.

In the crystal structure of the title compound, $C_{11}H_{16}N_2O_3$, molecules are linked by one O-H···N and two N-H···O intermolecular hydrogen bonds into a three-dimensional network, which incorporates $R_2^2(14)$ and $R_2^2(16)$ graph-set motifs.

Related literature

For the biological activity of amino benzoic acid and benzimidazole derivatives, see: Kumar et al. (2003); Stefan et al. (2002); Pan et al. (1999). For related structures, see: Narendra Babu et al. (2009); Abdul Rahim et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data V = 2430.81 (9) Å³ C11H16N2O3 $M_r = 224.26$ Z = 8Monoclinic, C2/ca = 23.2300 (5) Å b = 14.5914 (4) Å T = 296 Kc = 7.5815(1) Å $\beta = 108.931 \ (1)^{\circ}$

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ $0.55 \times 0.37 \times 0.25 \text{ mm}$

‡ Additional correspondence author, e-mail: aisyah@usm.my. § Thomson Reuters ResearcherID: A-3561-2009.

26584 measured reflections

 $R_{\rm int} = 0.035$

3739 independent reflections

2597 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker SMART APEXII CCD
  area-detector diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2009)
  T_{\min} = 0.953, T_{\max} = 0.978
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.134$	independent and constrained
S = 1.02	refinement
3739 reflections	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
162 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D1 - H1O1 \cdots N2^{i}$ $N2 - H1N2 \cdots O3^{ii}$ $N2 - H2N2 \cdots O1^{iii}$	0.846 (15)	2.017 (15)	2.8628 (14)	178.4 (14)
	0.880 (19)	2.145 (19)	3.0083 (16)	167.0 (13)
	0.907 (15)	2.113 (15)	2.9800 (14)	159.7 (13)

Symmetry codes: (i) $-x, y, -z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (iii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

NA, ASAR and SAH gratefully acknowledge the Ministry of Science, Technology and Innovations (MOSTI) Grant 304/ PFARMASI/650512/I121 and the FRGS Grant (FRGS0510-119) for funding the synthetic chemistry work. NA thanks Universiti Sains Malaysia for the award of postdoctoral fellowship. HKF and MMR thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5088).

References

- Abdul Rahim, A. S., Abd Hamid, S., Narendra Babu, S. N., Loh, W.-S. & Fun, H.-K. (2010). Acta Cryst. E66, 0846-0847.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kumar, A., Bansal, D., Bajaj, K., Sharma, S., Archana & Srivastava, V. K. (2003). Bioorg. Med. Chem. 11, 5281-5291.

Narendra Babu, S. N., Abdul Rahim, A. S., Abd Hamid, S., Balasubramani, K. & Fun, H.-K. (2009). Acta Cryst. E65, o2070-o2071.

- Pan, P. C. & Sun, C. M. (1999). Tetrahedron Lett. 40, 6443-6446.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stefan, B., Carmen, G. & Kerstin, K. (2002). Bioorg. Med. Chem. 10, 2415-2437.

supporting information

Acta Cryst. (2010). E66, o2141 [https://doi.org/10.1107/S1600536810029077]

Ethyl 3-amino-4-[(2-hydroxyethyl)amino]benzoate

Natarajan Arumugam, Aisyah Saad Abdul Rahim, Shafida Abd. Hamid, Mohd Mustaqim Rosli and Hoong-Kun Fun

S1. Comment

Amino benzoic acid derivatives are important intermediates for the synthesis of various heterocyclic compounds of pharmacological interests (Kumar *et al.*, 2003). The synthesis of novel benzimidazole derivatives such as 2-aminomethyl benzimidazoles (Stefan *et al.*, 2002) and oxobenzimidazoles (Pan *et al.*, 1999) are commonly accessed *via* aminobenzoic acid derivatives. As part of an ongoing study on such compounds, we present the crystal structure of the title compound (I), which was an intermediate in a synthesis.

In the title molecule (Fig. 1), the bond lengths and angles are within normal ranges and are similiar to those in related structures (Narendra Babu *et al.*, 2009; Abdul Rahim *et al.*, 2010). The benzoate group is essentially planar with a maximum deviation of -0.006 (1) for atom C4.

In the crystal structure, molecules are linked by intermolecular N2—H1N2···O3ⁱⁱ, N2—H2N2···O1ⁱⁱⁱ and O1— H1O1···N2ⁱ hydrogen bonds (see Table 1 for symmetry codes) into a three-dimensional network with $R_2^2(14)$ and $R_2^2(16)$ graph-set motifs (Bernstein *et al.*, 1995).

S2. Experimental

Ethyl 4-(2-hydroxyethylamino)-3-nitro-benzoate (0.5 g, 1.96 mmol), ammonium formate (0.4 g, 6.8 mmol) and palladium on carbon (250 mg) were mixed in ethanol. The reaction mixture was irradiated under microwave conditions at 373K for 2 minutes. After completion, the reaction mixture was filtered through celite and the filtrate was concentrated under reduced pressure to yield the crude product. The product was recrystallised from EtOAc to afford the title compound as colourless crystals.

S3. Refinement

N-bound and O-bound H atoms were located from a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically [C-H = 0.93, 0.96 or 0.97 Å] and were refined using a riding model, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl and 1.2 for all other atoms. A rotating model was used for the methyl group.

Figure 1

The molecular structure, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2

The crystal packing of (I) viewed along the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

Ethyl 3-amino-4-[(2-hydroxyethyl)amino]benzoate

Crystal data $C_{11}H_{16}N_2O_3$ $M_r = 224.26$

Monoclinic, *C*2/*c* Hall symbol: -C 2yc Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.8 - 30.6^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless

 $0.55 \times 0.37 \times 0.25 \text{ mm}$

 $\theta_{\text{max}} = 30.6^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$

26584 measured reflections 3739 independent reflections

2597 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.035$

 $h = -32 \rightarrow 33$

 $k = -20 \rightarrow 20$

 $l = -10 \rightarrow 10$

Cell parameters from 8941 reflections

a = 23.2300 (5) Å b = 14.5914 (4) Å c = 7.5815 (1) Å $\beta = 108.931 (1)^{\circ}$ $V = 2430.81 (9) \text{ Å}^{3}$ Z = 8 F(000) = 960 $D_{x} = 1.226 \text{ Mg m}^{-3}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.953, T_{\max} = 0.978$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.134$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
3739 reflections	and constrained refinement
162 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0626P)^2 + 0.4393P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or e	quivalent isotropic	displacement	parameters	$(Å^2$)
		_ · · · · · · · · · · · · · · · · · · ·			1 4	/

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.07544 (4)	0.04108 (6)	-0.13906 (13)	0.0595 (2)	
O2	0.17663 (4)	0.52426 (6)	0.03582 (14)	0.0667 (3)	
03	0.24606 (4)	0.41940 (7)	0.03351 (18)	0.0826 (3)	
N1	0.01804 (4)	0.17082 (8)	0.01775 (14)	0.0544 (2)	
N2	0.13085 (5)	0.11676 (7)	0.00330 (14)	0.0540 (2)	
C1	-0.07977 (6)	0.10608 (9)	-0.00450 (17)	0.0581 (3)	
H1A	-0.0643	0.0789	0.1186	0.070*	
H1B	-0.1223	0.1212	-0.0277	0.070*	

supporting information

C2	-0.04490 (5)	0.19272 (8)	-0.00811 (16)	0.0521 (3)
H2A	-0.0627	0.2237	-0.1266	0.063*
H2B	-0.0472	0.2336	0.0903	0.063*
C3	0.05994 (5)	0.23731 (8)	0.01945 (15)	0.0490 (3)
C4	0.04734 (5)	0.33047 (8)	0.02461 (19)	0.0600 (3)
H4A	0.0091	0.3487	0.0258	0.072*
C5	0.09038 (6)	0.39616 (9)	0.0280 (2)	0.0623 (3)
H5A	0.0809	0.4579	0.0308	0.075*
C6	0.14783 (5)	0.37052 (8)	0.02717 (16)	0.0539 (3)
C7	0.16117 (5)	0.27727 (8)	0.02449 (15)	0.0518 (3)
H7A	0.1997	0.2597	0.0254	0.062*
C8	0.11884 (5)	0.21078 (8)	0.02050 (14)	0.0479 (2)
C9	0.19533 (5)	0.43832 (9)	0.03180 (17)	0.0575 (3)
C10	0.21965 (6)	0.59737 (9)	0.0476 (2)	0.0668 (3)
H10A	0.2336	0.5963	-0.0598	0.080*
H10B	0.2546	0.5910	0.1595	0.080*
C11	0.18689 (8)	0.68429 (11)	0.0526 (3)	0.0838 (5)
H11A	0.2149	0.7347	0.0733	0.126*
H11B	0.1697	0.6817	0.1519	0.126*
H11C	0.1550	0.6926	-0.0640	0.126*
H1O1	-0.0924 (7)	0.0638 (11)	-0.246 (2)	0.075 (4)*
H1N1	0.0238 (6)	0.1165 (11)	-0.0138 (19)	0.065 (4)*
H1N2	0.1691 (8)	0.1076 (10)	0.012 (2)	0.072 (4)*
H2N2	0.1176 (7)	0.0761 (10)	0.072 (2)	0.071 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0687 (5)	0.0560 (5)	0.0529 (5)	0.0008 (4)	0.0184 (4)	0.0009 (4)
O2	0.0536 (5)	0.0594 (5)	0.0905 (7)	-0.0071 (4)	0.0280 (4)	-0.0010 (4)
03	0.0551 (5)	0.0787 (7)	0.1247 (9)	-0.0041 (4)	0.0441 (5)	-0.0072 (6)
N1	0.0481 (5)	0.0538 (6)	0.0645 (6)	-0.0011 (4)	0.0226 (4)	-0.0009 (4)
N2	0.0508 (5)	0.0569 (6)	0.0567 (6)	0.0036 (4)	0.0210 (4)	-0.0002 (4)
C1	0.0572 (6)	0.0655 (7)	0.0577 (7)	-0.0079 (5)	0.0270 (5)	-0.0043 (5)
C2	0.0481 (6)	0.0587 (6)	0.0534 (6)	-0.0015 (5)	0.0218 (5)	-0.0029 (5)
C3	0.0452 (5)	0.0574 (6)	0.0461 (5)	-0.0014 (4)	0.0172 (4)	-0.0015 (4)
C4	0.0462 (6)	0.0590 (7)	0.0794 (8)	0.0021 (5)	0.0266 (6)	-0.0004 (6)
C5	0.0533 (6)	0.0541 (7)	0.0839 (8)	0.0020 (5)	0.0285 (6)	-0.0005 (6)
C6	0.0475 (6)	0.0594 (7)	0.0575 (6)	-0.0028 (5)	0.0207 (5)	-0.0018 (5)
C7	0.0436 (5)	0.0638 (7)	0.0501 (6)	0.0018 (5)	0.0180 (4)	-0.0015 (5)
C8	0.0474 (5)	0.0561 (6)	0.0411 (5)	0.0021 (4)	0.0154 (4)	-0.0011 (4)
С9	0.0510 (6)	0.0643 (7)	0.0600 (7)	-0.0028 (5)	0.0219 (5)	-0.0024 (5)
C10	0.0603 (7)	0.0693 (8)	0.0737 (8)	-0.0151 (6)	0.0257 (6)	-0.0026 (6)
C11	0.0976 (11)	0.0696 (9)	0.0974 (12)	-0.0124 (8)	0.0499 (9)	-0.0071 (8)
C6 C7 C8 C9 C10 C11	0.0475 (6) 0.0436 (5) 0.0474 (5) 0.0510 (6) 0.0603 (7) 0.0976 (11)	0.0594 (7) 0.0638 (7) 0.0561 (6) 0.0643 (7) 0.0693 (8) 0.0696 (9)	0.0575 (6) 0.0501 (6) 0.0411 (5) 0.0600 (7) 0.0737 (8) 0.0974 (12)	-0.0028 (5) 0.0018 (5) 0.0021 (4) -0.0028 (5) -0.0151 (6) -0.0124 (8)	0.0207 (5) 0.0180 (4) 0.0154 (4) 0.0219 (5) 0.0257 (6) 0.0499 (9)	-0.0018 (-0.0015 (-0.0011 (-0.0024 (-0.0026 (-0.0071 (

Geometric parameters (Å, °)

01—C1	1.4203 (15)	C3—C4	1.3938 (17)	
01—H101	0.844 (17)	C3—C8	1.4194 (15)	
O2—C9	1.3306 (16)	C4—C5	1.3792 (17)	
O2—C10	1.4447 (15)	C4—H4A	0.9300	
О3—С9	1.2065 (15)	C5—C6	1.3880 (16)	
N1—C3	1.3714 (14)	С5—Н5А	0.9300	
N1—C2	1.4465 (14)	C6—C7	1.3972 (18)	
N1—H1N1	0.851 (15)	C6—C9	1.4738 (17)	
N2—C8	1.4144 (15)	С7—С8	1.3747 (16)	
N2—H1N2	0.880 (17)	С7—Н7А	0.9300	
N2—H2N2	0.907 (16)	C10—C11	1.486 (2)	
C1—C2	1.5064 (17)	C10—H10A	0.9700	
C1—H1A	0.9700	C10—H10B	0.9700	
C1—H1B	0.9700	C11—H11A	0.9600	
C2—H2A	0.9700	C11—H11B	0.9600	
C2—H2B	0.9700	C11—H11C	0.9600	
C101H101	107.8 (11)	C4C5H5A	110.8	
$C_{9} - C_{10}$	118 22 (10)	C6-C5-H5A	119.8	
$C_{3} = N_{1} = C_{2}$	110.22(10) 121.87(10)	$C_{0} = C_{0} = C_{0}$	118.72 (11)	
$C_3 = N_1 = H_1 N_1$	119.1 (10)	$C_{5} - C_{6} - C_{9}$	122 18 (11)	
C_2 -N1-H1N1	119.1(10) 114 3 (10)	$C_{7} - C_{6} - C_{9}$	119 10 (10)	
C_{2} N1 H1N1 C_{3} H1N2	114.5(10) 111.4(10)	$C_{8} - C_{7} - C_{6}$	121 82 (10)	
C8 = N2 = H1N2 C8 = N2 = H2N2	117.9 (9)	C8-C7-H7A	119.1	
H1N2 N2 H2N2	117.9(0) 112.2(13)	C6-C7-H7A	119.1	
01-C1-C2	112.5 (9)	C7 - C8 - N2	121.69 (10)	
01 - C1 - H1A	109.1	C7 - C8 - C3	119 27 (10)	
$C^2 - C^1 - H^1 A$	109.1	$N_{2} - C_{8} - C_{3}$	118 86 (10)	
01-C1-H1B	109.1	03 - C9 - 02	122 72 (12)	
C^2 — $C1$ — $H1B$	109.1	03 - 09 - 02	122.72(12) 124 60 (12)	
HIA-CI-HIB	107.8	02 - 02 - 02	112 68 (10)	
N1 - C2 - C1	109.76 (10)	02 - C10 - C11	106 38 (11)	
N1—C2—H2A	109.7	O2— $C10$ — $H10A$	110.5	
C1 - C2 - H2A	109.7	C11—C10—H10A	110.5	
N1-C2-H2B	109.7	Ω^2 — $C10$ — $H10B$	110.5	
C1-C2-H2B	109.7	C11-C10-H10B	110.5	
$H_2A - C_2 - H_2B$	108.2	H10A - C10 - H10B	108.6	
N1-C3-C4	122.37 (10)	C10-C11-H11A	109.5	
N1-C3-C8	119 14 (10)	C10-C11-H11B	109.5	
C4-C3-C8	118.47 (10)	H11A—C11—H11B	109.5	
$C_{5}-C_{4}-C_{3}$	121.38 (11)	C10-C11-H11C	109.5	
C5—C4—H4A	119.3	H11A—C11—H11C	109.5	
C3—C4—H4A	119.3	H11B—C11—H11C	109.5	
C4—C5—C6	120.33 (11)			
C2 N1 C2 C1	170 71 (10)	C6 $C7$ $C9$ $C2$	-0.12(16)	
C_{3} — N_{1} — C_{2} — C_{1}	1/2./1(10)	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0.15 (10)	

supporting information

01 C1 C2 N1	5(17(12)	N1 C2 C9 C7	170 22 (10)
OI - CI - C2 - NI	-56.17 (13)	NI-C3-C8-C/	-1/9.22 (10)
C2—N1—C3—C4	9.84 (17)	C4—C3—C8—C7	-0.70 (16)
C2—N1—C3—C8	-171.70 (10)	N1-C3-C8-N2	5.47 (15)
N1—C3—C4—C5	179.39 (12)	C4—C3—C8—N2	-176.01 (10)
C8—C3—C4—C5	0.93 (18)	C10—O2—C9—O3	-1.65 (19)
C3—C4—C5—C6	-0.3 (2)	C10—O2—C9—C6	177.74 (10)
C4—C5—C6—C7	-0.54 (19)	C5—C6—C9—O3	179.09 (13)
C4—C5—C6—C9	-179.63 (12)	C7—C6—C9—O3	0.0 (2)
C5—C6—C7—C8	0.76 (17)	C5—C6—C9—O2	-0.29 (17)
C9—C6—C7—C8	179.87 (10)	C7—C6—C9—O2	-179.38 (10)
C6—C7—C8—N2	175.04 (10)	C9—O2—C10—C11	-179.15 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H…A
01—H101…N2 ⁱ	0.846 (15)	2.017 (15)	2.8628 (14)	178.4 (14)
N2—H1 <i>N</i> 2···O3 ⁱⁱ	0.880 (19)	2.145 (19)	3.0083 (16)	167.0 (13)
N2—H2N2····O1 ⁱⁱⁱ	0.907 (15)	2.113 (15)	2.9800 (14)	159.7 (13)

Symmetry codes: (i) -*x*, *y*, -*z*-1/2; (ii) -*x*+1/2, -*y*+1/2, -*z*; (iii) -*x*, -*y*, -*z*.