

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,5-Dimethyl-2-phenyl-4-{[(*E*)-3,4,5trimethoxybenzylidene]amino}-1*H*pyrazol-3(2*H*)-one

Shan-Bin Liu, Cai-Feng Bi,* Yu-Hua Fan, Xia Zhang and Dong-Mei Zhang

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China Correspondence e-mail: bicaifeng301@163.com

Received 20 July 2010; accepted 23 July 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.098; data-to-parameter ratio = 13.3.

In the title compound, $C_{21}H_{23}N_3O_4$, the pyrazole ring forms dihedral angles of 21.58 (8) and 66.64 (7)° with the benzene and phenyl rings, respectively. The crystal structure is stabilized by weak intermolecular $C-H\cdots O$ hydrogen bonds.

Related literature

For general background to Schiff base compounds, see: Atwood & Harvey (2001); Che & Huang (2003). For the applications of metal–Schiff base complexes, see: Drozdzak *et al.* (2005); Adsule *et al.* (2006); Yuan *et al.* (2007). For a related structure, see: Sun *et al.* (2007).

Experimental

Crystal data	
$C_{21}H_{23}N_3O_4$	a = 12.3644 (12) A
$M_r = 381.42$	$b = 14.0075$ (16) μ
Monoclinic, $P2_1/c$	$c = 11.2682 (11) \tilde{A}$

$\beta = 96.4680 \ (1)^{\circ}$
V = 1939.2 (3) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Siemens SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.964, \ T_{\max} = 0.988$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.098$ S = 0.993422 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5 - H5C \cdots O1^{i}$ $C9 - H9 \cdots O4^{ii}$	0.96 0.93	2.31 2.56	3.211 (2) 3.346 (3)	155 142
	1	. 3 (**)		

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x + 1, y, z + 1.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the National Science Foundation of China for its financial support of this project (grant No. 20971115).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5091).

References

- Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242–7246.
- Atwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37-52.
- Che, C. M. & Huang, J. S. (2003). Coord. Chem. Rev. 242, 97-113.
- Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055–3074.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sun, Y.-F., Zhang, D.-D. & Song, H.-C. (2007). Chin. J. Struc. Chem. 26, 511– 514.
- Yuan, M., Zhao, F., Zhang, W., Wang, Z. M. & Gao, S. (2007). *Inorg. Chem.* 46, 11235–11242.

 $0.40 \times 0.17 \times 0.13~\mathrm{mm}$

10089 measured reflections

3422 independent reflections 2084 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K

 $R_{\rm int} = 0.038$

258 parameters

 $\Delta \rho_{\text{max}} = 0.15 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.18 \text{ e } \text{\AA}^{-3}$

Acta Cryst. (2010). E66, o2149 [https://doi.org/10.1107/S160053681002934X]

1,5-Dimethyl-2-phenyl-4-{[(*E*)-3,4,5-trimethoxybenzylidene]amino}-1*H*-pyrazol-3(2*H*)-one

Shan-Bin Liu, Cai-Feng Bi, Yu-Hua Fan, Xia Zhang and Dong-Mei Zhang

S1. Comment

Schiff bases are among the most fundamental chelating systems in coordination chemistry (Atwood *et al.*, 2001; Che *et al.*, 2003). The metal complexes based on this type ligands have expanded enormously areas of catalytic activities (Drozdzak *et al.*, 2005), molecular magnetism (Yuan *et al.*, 2007) and biological activities, such as antitumor activities (Adsule *et al.*, 2006). The examples given above clearly demonstrate that Schiff base ligands are of special interest in the field of chemistry. Herein, we present the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles can be compared to those in a related structure (Sun *et al.*, 2007). The dihedral angles between the pyrazole ring and the benzene and phenyl rings are 21.58 (8)° and 66.64 (7)°, respectively. The crystal structure is stabilized by by weak intermolecular C—H···O hydrogen bonds.

S2. Experimental

4-aminoantpyrine (10 mmol, 2.032 g) was added with stirring to anhydrous ethanol (30 ml) and an anhydrous ethanol solution (10 ml) of 3,4,5-trimethoxybenzaldehyde (10 mmol, 1.962 g) was slowly added. The reaction mixture was stirred at 353 K for 5 h, whereupon a yellow solid separated out. The precipitate formed was filtered off, washed several times with anhydrous ethanol and dried under vacuum. Yellow block-shaped crystals were obtained from an anhydrous ethanol solution of the title compound after 2 days by slow evaporation at room temperature.

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.96 Å $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

Part of the crystal structure showing weak C—H···O hydrogen bonds as dashed lines. Only H atoms involved in hydrogen bonds are shown.

1,5-Dimethyl-2-phenyl-4-{[(*E*)-3,4,5-trimethoxybenzylidene]amino}-1*H*-pyrazol-3(2*H*)-one

Crystal data

$C_{21}H_{23}N_3O_4$	$\beta = 96.4680 \ (1)^{\circ}$
$M_r = 381.42$	V = 1939.2 (3) Å ³
Monoclinic, $P2_1/c$	Z = 4
Hall symbol: -P 2ybc	F(000) = 808
a = 12.3644 (12) Å	$D_{\rm x} = 1.306 {\rm ~Mg} {\rm ~m}^{-3}$
b = 14.0075 (16) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 11.2682 (11) Å	Cell parameters from 2128 reflections

 $\theta = 2.2-25.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K

Data collection

Siemens SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.964, \ T_{\max} = 0.988$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
<i>S</i> = 0.99	H-atom parameters constrained
3422 reflections	$w = 1/[\sigma^2(F_o^2) + (0.039P)^2]$
258 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Block, yellow

 $R_{\rm int} = 0.038$

 $h = -14 \rightarrow 14$ $k = -16 \rightarrow 12$ $l = -13 \rightarrow 13$

 $0.40 \times 0.17 \times 0.13 \text{ mm}$

10089 measured reflections 3422 independent reflections 2084 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.58862 (12)	0.17160 (11)	0.75617 (14)	0.0483 (4)	
0.55362 (12)	0.07674 (11)	0.73659 (14)	0.0488 (4)	
0.38480 (12)	0.18932 (11)	0.49987 (13)	0.0456 (4)	
0.56035 (11)	0.31372 (9)	0.65254 (13)	0.0616 (4)	
0.14379 (11)	0.51801 (9)	0.24428 (12)	0.0597 (4)	
0.06093 (10)	0.38623 (9)	0.08868 (12)	0.0555 (4)	
0.12137 (12)	0.20441 (10)	0.10776 (12)	0.0641 (4)	
0.53561 (15)	0.22988 (14)	0.66664 (17)	0.0451 (5)	
0.45678 (14)	0.16819 (13)	0.60050 (16)	0.0415 (5)	
0.46934 (14)	0.07841 (13)	0.64717 (17)	0.0425 (5)	
0.40708 (16)	-0.00978 (13)	0.61267 (19)	0.0568 (6)	
0.4568	-0.0613	0.6042	0.085*	
0.3628	0.0004	0.5382	0.085*	
	x 0.58862 (12) 0.55362 (12) 0.38480 (12) 0.56035 (11) 0.14379 (11) 0.06093 (10) 0.12137 (12) 0.53561 (15) 0.45678 (14) 0.46934 (14) 0.40708 (16) 0.4568 0.3628	xy $0.58862 (12)$ $0.17160 (11)$ $0.55362 (12)$ $0.07674 (11)$ $0.55362 (12)$ $0.07674 (11)$ $0.38480 (12)$ $0.18932 (11)$ $0.56035 (11)$ $0.31372 (9)$ $0.14379 (11)$ $0.51801 (9)$ $0.06093 (10)$ $0.38623 (9)$ $0.12137 (12)$ $0.20441 (10)$ $0.53561 (15)$ $0.22988 (14)$ $0.45678 (14)$ $0.16819 (13)$ $0.46934 (14)$ $0.07841 (13)$ $0.40708 (16)$ $-0.00978 (13)$ 0.3628 0.0004	xyz $0.58862 (12)$ $0.17160 (11)$ $0.75617 (14)$ $0.55362 (12)$ $0.07674 (11)$ $0.73659 (14)$ $0.38480 (12)$ $0.18932 (11)$ $0.49987 (13)$ $0.56035 (11)$ $0.31372 (9)$ $0.65254 (13)$ $0.14379 (11)$ $0.51801 (9)$ $0.24428 (12)$ $0.06093 (10)$ $0.38623 (9)$ $0.08868 (12)$ $0.12137 (12)$ $0.20441 (10)$ $0.10776 (12)$ $0.53561 (15)$ $0.22988 (14)$ $0.66664 (17)$ $0.45678 (14)$ $0.16819 (13)$ $0.60050 (16)$ $0.46934 (14)$ $0.07841 (13)$ $0.61267 (19)$ 0.4568 -0.0613 0.6042 0.3628 0.0004 0.5382	xyz U_{iso}^*/U_{eq} 0.58862 (12)0.17160 (11)0.75617 (14)0.0483 (4)0.55362 (12)0.07674 (11)0.73659 (14)0.0488 (4)0.38480 (12)0.18932 (11)0.49987 (13)0.0456 (4)0.56035 (11)0.31372 (9)0.65254 (13)0.0616 (4)0.14379 (11)0.51801 (9)0.24428 (12)0.0597 (4)0.06093 (10)0.38623 (9)0.08868 (12)0.0555 (4)0.12137 (12)0.20441 (10)0.10776 (12)0.0641 (4)0.53561 (15)0.22988 (14)0.66664 (17)0.0451 (5)0.46934 (14)0.16819 (13)0.60050 (16)0.0415 (5)0.46934 (14)0.07841 (13)0.61267 (19)0.0568 (6)0.4568-0.06130.60420.085*0.36280.00040.53820.085*

H4C	0.3614	-0.0255	0.6733	0.085*
C5	0.55506 (17)	0.01888 (15)	0.8440 (2)	0.0682 (7)
H5A	0.5077	0.0468	0.8963	0.102*
H5B	0.6278	0.0162	0.8838	0.102*
H5C	0.5306	-0.0445	0.8227	0.102*
C6	0.70012 (16)	0.18510 (13)	0.80311 (17)	0.0460(5)
C7	0.72641 (19)	0.24765 (15)	0.89492 (19)	0.0645 (6)
H7	0.6722	0.2807	0.9286	0.077*
C8	0.8353 (2)	0.26125 (18)	0.9374 (2)	0.0788 (8)
H8	0.8544	0.3047	0.9985	0.095*
С9	0.9143 (2)	0.2109 (2)	0.8894 (3)	0.0798 (8)
Н9	0.9871	0.2200	0.9182	0.096*
C10	0.88698 (18)	0.14758 (18)	0.7999 (2)	0.0765 (7)
H10	0.9411	0.1129	0.7683	0.092*
C11	0.78040 (17)	0.13441 (15)	0.7557 (2)	0.0613 (6)
H11	0.7622	0.0913	0.6939	0.074*
C12	0.36413 (15)	0.27582 (14)	0.47241 (17)	0.0478 (5)
H12	0.3986	0.3235	0.5201	0.057*
C13	0.28837 (15)	0.30404 (13)	0.36894 (16)	0.0429 (5)
C14	0.25703 (15)	0.39875 (13)	0.35636 (17)	0.0463 (5)
H14	0.2868	0.4437	0.4114	0.056*
C15	0.18193 (15)	0.42704 (13)	0.26269 (17)	0.0439 (5)
C16	0.13902 (15)	0.36017 (14)	0.17957 (17)	0.0446 (5)
C17	0.17022 (15)	0.26509 (14)	0.19268 (16)	0.0460 (5)
C18	0.24460 (15)	0.23685 (14)	0.28662 (16)	0.0461 (5)
H18	0.2653	0.1731	0.2947	0.055*
C19	0.17650 (18)	0.58758 (14)	0.33332 (19)	0.0658 (6)
H19A	0.1578	0.5659	0.4092	0.099*
H19B	0.1400	0.6468	0.3129	0.099*
H19C	0.2538	0.5970	0.3379	0.099*
C20	0.10337 (18)	0.41981 (17)	-0.01563 (19)	0.0735 (7)
H20A	0.1388	0.4801	0.0009	0.110*
H20B	0.0450	0.4275	-0.0787	0.110*
H20C	0.1549	0.3745	-0.0396	0.110*
C21	0.12836 (19)	0.10573 (14)	0.1296 (2)	0.0703 (7)
H21A	0.2030	0.0859	0.1341	0.105*
H21B	0.0864	0.0722	0.0660	0.105*
H21C	0.1005	0.0917	0.2038	0.105*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0450 (10)	0.0437 (10)	0.0528 (11)	-0.0016 (8)	-0.0099 (8)	0.0052 (8)
N2	0.0480 (10)	0.0402 (10)	0.0556 (11)	-0.0017 (8)	-0.0053 (8)	0.0121 (9)
N3	0.0477 (10)	0.0446 (10)	0.0427 (10)	0.0030 (7)	-0.0027 (8)	0.0051 (8)
01	0.0657 (10)	0.0377 (9)	0.0756 (11)	-0.0008(7)	-0.0176 (8)	0.0059 (7)
02	0.0717 (10)	0.0454 (9)	0.0582 (9)	0.0105 (7)	-0.0101 (8)	0.0030 (7)
03	0.0515 (9)	0.0663 (10)	0.0453 (9)	0.0047 (7)	-0.0093 (7)	0.0096 (7)

O4	0.0802 (11)	0.0523 (10)	0.0538 (9)	-0.0018 (7)	-0.0188 (8)	-0.0043 (8)
C1	0.0445 (12)	0.0400 (12)	0.0493 (13)	0.0061 (9)	-0.0022 (9)	0.0020 (10)
C2	0.0419 (11)	0.0415 (12)	0.0397 (12)	0.0043 (9)	-0.0018 (9)	0.0029 (9)
C3	0.0392 (11)	0.0427 (12)	0.0450 (12)	0.0038 (9)	0.0019 (9)	0.0027 (10)
C4	0.0553 (13)	0.0479 (13)	0.0663 (15)	-0.0039 (10)	0.0024 (11)	0.0001 (11)
C5	0.0662 (15)	0.0656 (15)	0.0695 (16)	-0.0030 (12)	-0.0064 (12)	0.0279 (13)
C6	0.0470 (12)	0.0438 (12)	0.0441 (12)	-0.0020 (10)	-0.0088 (10)	0.0079 (10)
C7	0.0706 (16)	0.0645 (15)	0.0557 (14)	0.0010 (12)	-0.0050 (12)	-0.0033 (12)
C8	0.089 (2)	0.0772 (18)	0.0617 (16)	-0.0245 (16)	-0.0266 (15)	-0.0002 (14)
C9	0.0563 (16)	0.085 (2)	0.091 (2)	-0.0145 (14)	-0.0253 (15)	0.0310 (17)
C10	0.0463 (15)	0.0813 (18)	0.101 (2)	0.0010 (12)	0.0043 (14)	0.0130 (16)
C11	0.0518 (14)	0.0638 (15)	0.0668 (16)	0.0008 (11)	-0.0005 (12)	-0.0037 (12)
C12	0.0491 (12)	0.0481 (13)	0.0437 (12)	0.0007 (10)	-0.0051 (9)	0.0011 (10)
C13	0.0425 (11)	0.0478 (12)	0.0367 (11)	0.0008 (9)	-0.0027 (9)	0.0051 (10)
C14	0.0513 (12)	0.0453 (12)	0.0403 (12)	-0.0034 (9)	-0.0038 (9)	0.0006 (9)
C15	0.0455 (12)	0.0415 (11)	0.0437 (12)	0.0031 (9)	0.0001 (9)	0.0061 (10)
C16	0.0407 (11)	0.0524 (13)	0.0387 (12)	0.0022 (9)	-0.0039 (9)	0.0072 (10)
C17	0.0500 (12)	0.0494 (13)	0.0372 (12)	-0.0040 (10)	-0.0012 (10)	-0.0016 (10)
C18	0.0515 (12)	0.0425 (12)	0.0429 (12)	0.0027 (9)	-0.0010 (10)	0.0035 (10)
C19	0.0833 (17)	0.0464 (13)	0.0663 (15)	0.0053 (12)	0.0020 (13)	-0.0007 (12)
C20	0.0790 (17)	0.0973 (19)	0.0432 (14)	0.0217 (14)	0.0019 (12)	0.0140 (13)
C21	0.0875 (18)	0.0523 (15)	0.0675 (16)	-0.0072 (12)	-0.0063 (13)	-0.0076 (12)

Geometric parameters (Å, °)

N1—C1	1.402 (2)	C8—C9	1.364 (3)
N1—N2	1.407 (2)	C8—H8	0.9300
N1-C6	1.432 (2)	C9—C10	1.357 (3)
N2—C3	1.366 (2)	С9—Н9	0.9300
N2C5	1.455 (2)	C10-C11	1.368 (3)
N3—C12	1.269 (2)	C10—H10	0.9300
N3—C2	1.392 (2)	C11—H11	0.9300
01—C1	1.228 (2)	C12—C13	1.465 (3)
O2—C15	1.367 (2)	C12—H12	0.9300
O2—C19	1.424 (2)	C13—C14	1.385 (2)
O3—C16	1.375 (2)	C13—C18	1.388 (2)
O3—C20	1.420 (2)	C14—C15	1.383 (3)
O4—C17	1.368 (2)	C14—H14	0.9300
O4—C21	1.405 (2)	C15—C16	1.387 (3)
C1—C2	1.445 (3)	C16—C17	1.390 (3)
C2—C3	1.365 (2)	C17—C18	1.380 (2)
C3—C4	1.484 (2)	C18—H18	0.9300
C4—H4A	0.9600	C19—H19A	0.9600
C4—H4B	0.9600	C19—H19B	0.9600
C4—H4C	0.9600	C19—H19C	0.9600
С5—Н5А	0.9600	C20—H20A	0.9600
С5—Н5В	0.9600	C20—H20B	0.9600
С5—Н5С	0.9600	C20—H20C	0.9600

C6—C7	1.367 (3)	C21—H21A	0.9600
C6—C11	1.376 (3)	C21—H21B	0.9600
C7—C8	1.391 (3)	C21—H21C	0.9600
C7—H7	0.9300		012000
	0.9500		
C1—N1—N2	109.06 (15)	С9—С10—Н10	119.7
C1—N1—C6	122.78 (15)	C11—C10—H10	119.7
N2—N1—C6	116.67 (14)	C10—C11—C6	119.8 (2)
C3—N2—N1	107.16 (14)	C10—C11—H11	120.1
$C_3 - N_2 - C_5$	124.06 (15)	C6-C11-H11	120.1
N1 - N2 - C5	114 90 (16)	N3-C12-C13	122.99 (18)
$C_{12} = N_{3} = C_{2}^{2}$	119.61 (16)	N3—C12—H12	118 5
$C_{12} = 10^{-10} = 02^{-10}$	117.73 (15)	C_{13} C_{12} H_{12}	118.5
$C_{16} = 0_{2} = 0_{19}$	114.23 (15)	C_{14} C_{13} C_{18}	119.85 (18)
$C_{17} - O_{4} - C_{21}$	118 35 (16)	C_{14} C_{13} C_{12}	119.09 (18)
01-C1-N1	123 15 (18)	C18 - C13 - C12	121 01 (17)
$O_1 = C_1 = C_2$	125.13(18) 131.03(18)	$C_{15} = C_{13} = C_{12}$	121.01(17) 120.58(18)
$V_1 = C_1 = C_2$	104.86 (16)	$C_{15} = C_{14} = C_{15}$	120.38 (18)
$C_1 = C_2$	104.00(10) 122.06(17)	$C_{13} = C_{14} = H_{14}$	119.7
$C_3 = C_2 = C_1$	122.90(17) 108.14(16)	0^{2} C_{15}^{15} C_{14}^{14}	125.01.(18)
$C_3 = C_2 = C_1$	108.14(10) 128.69(17)	02 - 015 - 016	125.01(18) 115.34(17)
13 - 2 - 21 22 - 23 N2	120.09(17) 110.13(16)	$C_{14} = C_{15} = C_{16}$	113.54(17)
$C_2 = C_3 = C_4$	110.13(10) 120.25(18)	$C_{14} = C_{15} = C_{10}$	119.03(17) 120.43(17)
$C_2 = C_3 = C_4$	129.23(10) 120.61(17)	03 - 016 - 017	120.43(17)
$N_2 = C_3 = C_4$	120.01 (17)	03-016-017	119.79 (18)
$C_3 - C_4 - H_4 A$	109.5	C15 - C10 - C17	119.05 (18)
$C_3 - C_4 - \Pi_4 D$	109.5	04 - C17 - C16	124.20(18)
H4A - C4 - H4B	109.5	04-01/-016	115.18(17)
	109.5	C18 - C17 - C18	120.62 (18)
H4A—C4—H4C	109.5	C17 - C18 - C13	119.64 (18)
H4B—C4—H4C	109.5	C17—C18—H18	120.2
N2—C5—H5A	109.5	C13—C18—H18	120.2
N2—C5—H5B	109.5	02—C19—H19A	109.5
H5A—C5—H5B	109.5	02—C19—H19B	109.5
N2—C5—H5C	109.5	Н19А—С19—Н19В	109.5
H5A—C5—H5C	109.5	02—C19—H19C	109.5
H5B—C5—H5C	109.5	H19A—C19—H19C	109.5
C/C6C11	120.3 (2)	H19B—C19—H19C	109.5
C7—C6—N1	120.07 (19)	O3—C20—H20A	109.5
C11—C6—N1	119.66 (18)	O3—C20—H20B	109.5
C6—C7—C8	119.1 (2)	H20A—C20—H20B	109.5
С6—С7—Н7	120.4	O3—C20—H20C	109.5
С8—С7—Н7	120.4	H20A—C20—H20C	109.5
C9—C8—C7	120.1 (2)	H20B—C20—H20C	109.5
С9—С8—Н8	120.0	O4—C21—H21A	109.5
С7—С8—Н8	120.0	O4—C21—H21B	109.5
C10—C9—C8	120.2 (2)	H21A—C21—H21B	109.5
С10—С9—Н9	119.9	O4—C21—H21C	109.5
С8—С9—Н9	119.9	H21A—C21—H21C	109.5

C9—C10—C11	120.5 (2)	H21B—C21—H21C	109.5
C1—N1—N2—C3	-8.40 (19)	C8—C9—C10—C11	0.9 (4)
C6—N1—N2—C3	-152.94 (16)	C9—C10—C11—C6	-0.6 (4)
C1—N1—N2—C5	-150.54 (16)	C7—C6—C11—C10	-0.8 (3)
C6—N1—N2—C5	64.9 (2)	N1-C6-C11-C10	179.61 (18)
N2—N1—C1—O1	-170.55 (17)	C2—N3—C12—C13	-179.20 (16)
C6—N1—C1—O1	-28.6 (3)	N3-C12-C13-C14	169.61 (17)
N2—N1—C1—C2	6.95 (19)	N3-C12-C13-C18	-7.8 (3)
C6—N1—C1—C2	148.88 (17)	C18—C13—C14—C15	0.3 (3)
C12—N3—C2—C3	168.73 (17)	C12—C13—C14—C15	-177.09 (17)
C12—N3—C2—C1	-17.2 (3)	C19—O2—C15—C14	-5.6 (3)
O1—C1—C2—C3	174.1 (2)	C19—O2—C15—C16	173.74 (17)
N1—C1—C2—C3	-3.0 (2)	C13—C14—C15—O2	178.25 (17)
O1—C1—C2—N3	-0.6 (3)	C13—C14—C15—C16	-1.1 (3)
N1-C1-C2-N3	-177.84 (17)	C20-O3-C16-C15	88.4 (2)
N3—C2—C3—N2	173.05 (16)	C20-O3-C16-C17	-95.6 (2)
C1—C2—C3—N2	-2.1 (2)	O2-C15-C16-O3	-2.1 (3)
N3—C2—C3—C4	-6.2 (3)	C14—C15—C16—O3	177.30 (16)
C1—C2—C3—C4	178.61 (18)	O2-C15-C16-C17	-178.04 (16)
N1—N2—C3—C2	6.4 (2)	C14—C15—C16—C17	1.3 (3)
C5—N2—C3—C2	144.21 (18)	C21—O4—C17—C18	14.1 (3)
N1—N2—C3—C4	-174.22 (15)	C21—O4—C17—C16	-165.26 (17)
C5—N2—C3—C4	-36.4 (3)	O3—C16—C17—O4	2.5 (3)
C1—N1—C6—C7	86.2 (2)	C15—C16—C17—O4	178.47 (17)
N2—N1—C6—C7	-134.48 (18)	O3—C16—C17—C18	-176.90 (16)
C1—N1—C6—C11	-94.1 (2)	C15—C16—C17—C18	-0.9 (3)
N2—N1—C6—C11	45.2 (2)	O4—C17—C18—C13	-179.14 (17)
C11—C6—C7—C8	1.8 (3)	C16—C17—C18—C13	0.2 (3)
N1—C6—C7—C8	-178.59 (18)	C14—C13—C18—C17	0.1 (3)
C6—C7—C8—C9	-1.5 (3)	C12—C13—C18—C17	177.48 (17)
C7—C8—C9—C10	0.2 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C5—H5 <i>C</i> ···O1 ⁱ	0.96	2.31	3.211 (2)	155
С9—Н9…О4 ^{іі}	0.93	2.56	3.346 (3)	142

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+3/2; (ii) *x*+1, *y*, *z*+1.