Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 4-Hydroxyanilinium perchlorate dihydrate

#### Xue-qun Fu

Ordered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: fuxuequn222@163.com

Received 8 May 2010; accepted 28 June 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.048; wR factor = 0.097; data-to-parameter ratio = 13.5.

In the crystal structure of the title compound,  $C_6H_8NO^+$ .-ClO<sub>4</sub><sup>-</sup>·2H<sub>2</sub>O, intermolecular N-H···O and O-H···O hydrogen bonds occur. The protonated amine cations and the perchlorate anions are linked through the water molecules, and the hydroxy groups of the cations and the anions are linked through the water molecules. The cations are connected to the perchlorate anions *via* intermolecular N-H···O hydrogen bonds. In addition, the crystal structure exhibits weak intermolecular C-H··· $\pi$  interactions.

#### **Related literature**

For background to phase transition materials, see: Li et al. (2008); Zhang et al. (2009)



#### Experimental

Crystal data  $C_6H_8NO^+ \cdot CIO_4^- \cdot 2H_2O$   $M_r = 245.62$ Orthorhombic, *Pna2*<sub>1</sub> a = 24.341 (5) Å

b = 5.253 (1) Å c = 7.824 (2) Å  $V = 1000.4 (4) \text{ Å}^{3}$ Z = 4 Mo  $K\alpha$  radiation  $\mu = 0.40 \text{ mm}^{-1}$ 

#### Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005)  $T_{\rm min} = 0.866, T_{\rm max} = 0.923$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$   $wR(F^2) = 0.097$  S = 1.112275 reflections 168 parameters 8 restraints T = 298 K $0.40 \times 0.30 \times 0.20 \text{ mm}$ 

9517 measured reflections 2275 independent reflections 1986 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.052$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1049 Friedel pairs Flack parameter: 0.00 (7)

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 benzene ring.

| $D - H \cdots A$                       | D-H            | $H \cdot \cdot \cdot A$     | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------------------|----------------|-----------------------------|-------------------------|---------------------------|
| $O1-H1O\cdots O2W^{i}$                 | 0.75 (3)       | 2.10 (3)                    | 2.801 (3)               | 156 (4)                   |
| $N1 - H1N \cdot \cdot \cdot O4$        | 0.79 (5)       | 2.34 (5)                    | 3.016 (4)               | 144 (4)                   |
| $N1 - H2N \cdot \cdot \cdot O1W^{ii}$  | 0.98 (4)       | 1.98 (5)                    | 2.951 (4)               | 168 (4)                   |
| $N1 - H3N \cdots O1W$                  | 1.00 (5)       | 1.97 (5)                    | 2.972 (4)               | 175 (4)                   |
| $O1W - H1AW \cdots O3^{iii}$           | 0.79 (5)       | 2.40 (7)                    | 3.089 (3)               | 146 (8)                   |
| $O1W - H1BW \cdots O5$                 | 0.83 (4)       | 2.47 (6)                    | 3.083 (4)               | 132 (5)                   |
| $O2W - H2AW \cdots O4$                 | 0.93 (4)       | 2.28 (4)                    | 3.068 (4)               | 143 (4)                   |
| $O2W - H2BW \cdot \cdot \cdot O1^{iv}$ | 0.77(3)        | 2.17 (3)                    | 2.937 (3)               | 173 (5)                   |
| $C2-H2\cdots Cg1^{iv}$                 | 0.93           | 2.88                        | 3.677 (3)               | 144                       |
| Symmetry codes: (i) -                  | x + 1, -y + 2, | $z + \frac{1}{2}$ (ii) x, y | y + 1, z; (iii) x       | $v_{1}z_{2} + 1$ ; (iv)   |

Symmetry codes: (1)  $-x + 1, -y + 2, z + \frac{1}{2}$ ; (1) x, y + 1, z; (11) x, y, z + 1; (1v)  $-x + 1, -y + 1, z - \frac{1}{2}$ .

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the starter fund of Southeast University for financial support to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2151).

#### References

Flack, H. D. (1983). Acta Cryst. A**39**, 876–881. Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. **11**, 1959–1962.

- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.

# supporting information

Acta Cryst. (2010). E66, o1920 [https://doi.org/10.1107/S1600536810025365]

## 4-Hydroxyanilinium perchlorate dihydrate

### Xue-qun Fu

#### S1. Comment

As a continuation of our study of phase transition materials, including organic ligands (Li *et al.*, 2008), metal-organic coordination compounds (Zhang *et al.*, 2009), organic–inorganic hybrids, we studied the dielectric properties of the title compound, unfortunately, there was no distinct anomaly observed from 93 K to 350 K, suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Here, we report the crystal structure of the title compound (Fig. 1).

The asymmetric unit of the title compound is made up of a 4–hydroxyanilinium cation cation wherein the non-hydrogen atoms are practically co-planar with a mean deviation of 0.015 (2) Å, a perchlorate anion and two solvent molecules of water (Fig. 1). The crystal packing (Fig. 2) is stabilized by intermolecular N—H…O, O—H…O hydrogen bonds and weak intermolecular C—H… $\pi$  interactions. (Table 1). Both the protonated amine cations and the perchlorate anions are linked through the water molecules, and the hydroxy groups of the cations and the anions are linked through the water molecules. Additionally, the cations are connected to the perchlorate anions via intermolecular N—H…O hydrogen bonds.

#### S2. Experimental

1.09g (10 mmol) 4–aminophenol was firstly dissolved in 10ml ethanol, to which perchloric acid aqueous solution (70% w/w) was then added under stirring until the PH of the solution was ca. 6. Ethanol was added until the precipitated substrates disappeared. Colorless prism single crystal for X–ray was obtained by the acid solution slow evaporated at room temperature after two days.

#### **S3. Refinement**

Aryl H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å.  $U_{iso}(H) = 1.2U_{eq}(C)$ . The other H atoms attached to N and O atoms were found difference maps using restraints for O—H bond distances (O—H = 0.85 (5) Å) and H—O—H angles (H…H = 1.35 (10) Å). Their displacement parameters were freely refined.



#### Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.



#### Figure 2

N—H···O, O—H···O and C—H··· $\pi$  interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) - *x* + 1, - *y* + 2, *z* + 1/2; (ii) *x*, *y* + 1, *z*; (iii) *x*, *y*, *z* + 1; (iv) - *x* + 1, - *y* + 1, *z* - 1/2.]

4-Hydroxyanilinium perchlorate dihydrate

#### Crystal data

 $C_6H_8NO^+ \cdot CIO_4^- \cdot 2H_2O$   $M_r = 245.62$ Orthorhombic,  $Pna2_1$ Hall symbol: P 2c -2n a = 24.341 (5) Å b = 5.253 (1) Å c = 7.824 (2) Å V = 1000.4 (4) Å<sup>3</sup> Z = 4

#### Data collection

| Rigaku SCXmini                                       | 9517 measured reflections                                                 |
|------------------------------------------------------|---------------------------------------------------------------------------|
| diffractometer                                       | 2275 independent reflections                                              |
| Radiation source: fine-focus sealed tube             | 1986 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                               | $R_{\rm int} = 0.052$                                                     |
| Detector resolution: 13.6612 pixels mm <sup>-1</sup> | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ |
| $\omega$ scans                                       | $h = -31 \rightarrow 31$                                                  |
| Absorption correction: multi-scan                    | $k = -6 \rightarrow 6$                                                    |
| (CrystalClear; Rigaku, 2005)                         | $l = -10 \rightarrow 10$                                                  |
| $T_{\min} = 0.866, \ T_{\max} = 0.923$               |                                                                           |
|                                                      |                                                                           |

F(000) = 512

 $\theta = 3.1 - 55.2^{\circ}$ 

 $\mu = 0.40 \text{ mm}^{-1}$ T = 298 K

Prism. colourless

 $0.40 \times 0.30 \times 0.20$  mm

 $D_{\rm x} = 1.631 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 4523 reflections

#### Refinement

Refinement on  $F^2$ Hydrogen site location: difference Fourier map Least-squares matrix: full H atoms treated by a mixture of independent  $R[F^2 > 2\sigma(F^2)] = 0.048$ and constrained refinement  $wR(F^2) = 0.097$  $w = 1/[\sigma^2(F_o^2) + (0.0423P)^2]$ S = 1.11where  $P = (F_0^2 + 2F_c^2)/3$ 2275 reflections  $(\Delta/\sigma)_{\rm max} = 0.001$ 168 parameters  $\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$ 8 restraints  $\Delta \rho_{\rm min} = -0.53 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant Absolute structure: Flack (1983), 1049 Friedel direct methods pairs Secondary atom site location: difference Fourier Absolute structure parameter: 0.00 (7) map

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x           | у            | Ζ           | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|-------------|--------------|-------------|-------------------------------|
| Cl1 | 0.70519 (2) | 0.26502 (10) | 0.38081 (9) | 0.03119 (16)                  |
| O1  | 0.41921 (9) | 0.7270 (4)   | 0.6125 (3)  | 0.0418 (5)                    |
| H1O | 0.4080 (14) | 0.855 (5)    | 0.638 (4)   | 0.041 (10)*                   |

# supporting information

| O2   | 0.65704 (9)  | 0.1268 (4) | 0.4283 (3) | 0.0543 (6)  |
|------|--------------|------------|------------|-------------|
| O3   | 0.72121 (12) | 0.1930 (5) | 0.2130 (3) | 0.0615 (7)  |
| O4   | 0.69370 (9)  | 0.5318 (3) | 0.3859 (3) | 0.0490 (5)  |
| 05   | 0.74825 (10) | 0.2072 (4) | 0.4975 (4) | 0.0633 (7)  |
| N1   | 0.64637 (12) | 0.7547 (5) | 0.7092 (4) | 0.0383 (6)  |
| H1N  | 0.6637 (19)  | 0.763 (7)  | 0.624 (7)  | 0.067 (14)* |
| H2N  | 0.6575 (16)  | 0.911 (8)  | 0.768 (6)  | 0.082 (13)* |
| H3N  | 0.6580 (18)  | 0.587 (9)  | 0.759 (6)  | 0.102 (16)* |
| C1   | 0.47480 (12) | 0.7447 (5) | 0.6368 (3) | 0.0303 (6)  |
| C2   | 0.50729 (12) | 0.5551 (5) | 0.5650 (4) | 0.0323 (6)  |
| H2   | 0.4911       | 0.4256     | 0.5014     | 0.039*      |
| C3   | 0.56328 (12) | 0.5591 (5) | 0.5878 (4) | 0.0347 (6)  |
| Н3   | 0.5852       | 0.4326     | 0.5404     | 0.042*      |
| C4   | 0.58649 (11) | 0.7533 (4) | 0.6821 (3) | 0.0308 (6)  |
| C5   | 0.55500 (11) | 0.9431 (5) | 0.7512 (4) | 0.0320 (6)  |
| Н5   | 0.5714       | 1.0744     | 0.8124     | 0.038*      |
| C6   | 0.49832 (11) | 0.9382 (5) | 0.7292 (4) | 0.0324 (6)  |
| H6   | 0.4765       | 1.0651     | 0.7768     | 0.039*      |
| O1W  | 0.68473 (10) | 0.2523 (4) | 0.8370 (3) | 0.0461 (6)  |
| H1AW | 0.680 (3)    | 0.245 (11) | 0.937 (6)  | 0.19 (4)*   |
| H1BW | 0.7155 (18)  | 0.270 (10) | 0.793 (8)  | 0.13 (2)*   |
| O2W  | 0.62796 (12) | 0.7872 (5) | 0.0985 (4) | 0.0514 (6)  |
| H2AW | 0.6577 (16)  | 0.773 (8)  | 0.172 (5)  | 0.079 (15)* |
| H2BW | 0.6131 (18)  | 0.658 (6)  | 0.103 (6)  | 0.070 (14)* |
|      |              |            |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Cl1 | 0.0311 (3)  | 0.0332 (3)  | 0.0292 (3)  | 0.0050 (2)   | 0.0005 (3)   | -0.0030 (3)  |
| 01  | 0.0300 (11) | 0.0394 (11) | 0.0560 (14) | 0.0019 (10)  | -0.0011 (10) | -0.0022 (11) |
| O2  | 0.0455 (12) | 0.0505 (11) | 0.0667 (15) | -0.0075 (10) | 0.0107 (11)  | 0.0084 (11)  |
| 03  | 0.0783 (17) | 0.0697 (15) | 0.0365 (14) | 0.0053 (14)  | 0.0176 (13)  | -0.0112 (11) |
| 04  | 0.0573 (13) | 0.0358 (9)  | 0.0541 (12) | 0.0082 (9)   | -0.0003 (13) | 0.0001 (11)  |
| 05  | 0.0484 (15) | 0.0774 (16) | 0.0640 (17) | 0.0242 (13)  | -0.0244 (13) | -0.0038 (13) |
| N1  | 0.0317 (14) | 0.0414 (15) | 0.0419 (17) | 0.0010 (12)  | 0.0015 (12)  | 0.0017 (13)  |
| C1  | 0.0319 (14) | 0.0327 (13) | 0.0262 (14) | -0.0010 (12) | -0.0009 (12) | 0.0064 (11)  |
| C2  | 0.0337 (15) | 0.0293 (13) | 0.0341 (14) | -0.0031 (12) | -0.0005 (12) | -0.0067 (11) |
| C3  | 0.0357 (16) | 0.0277 (12) | 0.0405 (16) | 0.0041 (11)  | 0.0070 (13)  | -0.0073 (11) |
| C4  | 0.0292 (13) | 0.0301 (13) | 0.0331 (14) | 0.0011 (12)  | 0.0000 (11)  | 0.0044 (11)  |
| C5  | 0.0383 (15) | 0.0287 (11) | 0.0290 (13) | -0.0009 (11) | -0.0045 (12) | -0.0015 (11) |
| C6  | 0.0358 (14) | 0.0295 (13) | 0.0320 (15) | 0.0087 (11)  | -0.0014 (11) | -0.0040 (12) |
| O1W | 0.0394 (12) | 0.0513 (12) | 0.0477 (18) | -0.0040 (12) | -0.0053 (10) | 0.0005 (11)  |
| O2W | 0.0401 (15) | 0.0486 (14) | 0.0654 (17) | 0.0015 (12)  | -0.0133 (12) | 0.0038 (13)  |
|     |             |             |             |              |              |              |

### Geometric parameters (Å, °)

| Cl1—03 | 1.421 (2) | C2—C3 | 1.375 (4) |
|--------|-----------|-------|-----------|
| Cl1—05 | 1.423 (2) | C2—H2 | 0.9300    |

# supporting information

| Cl1—O2                                                                                                                                                                                                                                                                                                                      | 1.428 (2)                                                                                                                                                                                                               | C3—C4                                                                                                                                                                                                  | 1.379 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cl1—O4                                                                                                                                                                                                                                                                                                                      | 1.4297 (18)                                                                                                                                                                                                             | C3—H3                                                                                                                                                                                                  | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O1—C1                                                                                                                                                                                                                                                                                                                       | 1.370 (3)                                                                                                                                                                                                               | C4—C5                                                                                                                                                                                                  | 1.369 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| O1—H1O                                                                                                                                                                                                                                                                                                                      | 0.75 (3)                                                                                                                                                                                                                | C5—C6                                                                                                                                                                                                  | 1.391 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N1—C4                                                                                                                                                                                                                                                                                                                       | 1.473 (4)                                                                                                                                                                                                               | C5—H5                                                                                                                                                                                                  | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| N1—H1N                                                                                                                                                                                                                                                                                                                      | 0.79 (5)                                                                                                                                                                                                                | C6—H6                                                                                                                                                                                                  | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| N1—H2N                                                                                                                                                                                                                                                                                                                      | 0.98 (4)                                                                                                                                                                                                                | O1W—H1AW                                                                                                                                                                                               | 0.79 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N1—H3N                                                                                                                                                                                                                                                                                                                      | 1.00 (5)                                                                                                                                                                                                                | O1W—H1BW                                                                                                                                                                                               | 0.83 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C1—C6                                                                                                                                                                                                                                                                                                                       | 1.372 (4)                                                                                                                                                                                                               | O2W—H2AW                                                                                                                                                                                               | 0.93 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C1—C2                                                                                                                                                                                                                                                                                                                       | 1.391 (4)                                                                                                                                                                                                               | O2W—H2AW                                                                                                                                                                                               | 0.77 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} 03 - C11 - 05 \\ 03 - C11 - 02 \\ 05 - C11 - 02 \\ 03 - C11 - 04 \\ 05 - C11 - 04 \\ 02 - C11 - 04 \\ C1 - 01 - H10 \\ C4 - N1 - H1N \\ C4 - N1 - H2N \\ H1N - N1 - H2N \\ C4 - N1 - H3N \\ H1N - N1 - H3N \\ H1N - N1 - H3N \\ O1 - C1 - C6 \\ O1 - C1 - C2 \\ C6 - C1 - C2 \\ C3 - C2 - C1 \end{array}$ | 109.51 (18)<br>109.27 (17)<br>109.22 (16)<br>109.90 (17)<br>109.61 (14)<br>109.31 (13)<br>105 (3)<br>114 (3)<br>110 (2)<br>102 (4)<br>109 (3)<br>103 (4)<br>119 (4)<br>122.4 (3)<br>117.2 (2)<br>120.4 (3)<br>120.0 (3) | C3-C2-H2<br>C1-C2-H2<br>C2-C3-C4<br>C2-C3-H3<br>C4-C3-H3<br>C5-C4-C3<br>C5-C4-N1<br>C3-C4-N1<br>C3-C4-N1<br>C4-C5-C6<br>C4-C5-H5<br>C6-C5-H5<br>C1-C6-C5<br>C1-C6-H6<br>H1AW-O1W-H1BW<br>H2AW-O2W-H2BW | 120.0<br>120.0<br>119.1 (2)<br>120.4<br>120.4<br>121.4 (2)<br>119.6 (2)<br>119.6 (2)<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.4<br>120.4<br>120.4<br>19.5 (2)<br>120.2<br>120.2<br>120.4<br>120.4<br>19.6 (2)<br>10.4<br>19.6 (2)<br>10.4<br>10.4<br>19.6 (2)<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.4<br>10.6 (2)<br>10.2<br>10.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120.2<br>120 |
| O1-C1-C2-C3                                                                                                                                                                                                                                                                                                                 | -178.6 (2)                                                                                                                                                                                                              | C3-C4-C5-C6                                                                                                                                                                                            | 1.3 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C6-C1-C2-C3                                                                                                                                                                                                                                                                                                                 | 0.7 (4)                                                                                                                                                                                                                 | N1-C4-C5-C6                                                                                                                                                                                            | -178.4 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C1-C2-C3-C4                                                                                                                                                                                                                                                                                                                 | -0.2 (4)                                                                                                                                                                                                                | O1-C1-C6-C5                                                                                                                                                                                            | 179.1 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C2-C3-C4-C5                                                                                                                                                                                                                                                                                                                 | -0.8 (4)                                                                                                                                                                                                                | C2-C1-C6-C5                                                                                                                                                                                            | -0.2 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C2-C3-C4-N1                                                                                                                                                                                                                                                                                                                 | 178.9 (3)                                                                                                                                                                                                               | C4-C5-C6-C1                                                                                                                                                                                            | -0.8 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

| D—H···A                                         | D—H      | H···A    | D···· $A$ | D—H··· $A$ |  |
|-------------------------------------------------|----------|----------|-----------|------------|--|
| 01—H1 <i>O</i> ···O2 <i>W</i> <sup>i</sup>      | 0.75 (3) | 2.10 (3) | 2.801 (3) | 156 (4)    |  |
| N1—H1 <i>N</i> ···O4                            | 0.79 (5) | 2.34 (5) | 3.016 (4) | 144 (4)    |  |
| N1—H2 $N$ ···O1 $W$ <sup>ii</sup>               | 0.98 (4) | 1.98 (5) | 2.951 (4) | 168 (4)    |  |
| N1—H3 <i>N</i> ···O1 <i>W</i>                   | 1.00 (5) | 1.97 (5) | 2.972 (4) | 175 (4)    |  |
| O1 <i>W</i> —H1 <i>AW</i> ····O3 <sup>iii</sup> | 0.79 (5) | 2.40 (7) | 3.089 (3) | 146 (8)    |  |
| O1 <i>W</i> —H1 <i>BW</i> ····O5                | 0.83 (4) | 2.47 (6) | 3.083 (4) | 132 (5)    |  |
| O2 <i>W</i> —H2 <i>AW</i> ···O4                 | 0.93 (4) | 2.28 (4) | 3.068 (4) | 143 (4)    |  |
|                                                 |          |          |           |            |  |

|                                                |          |          | , information |         |
|------------------------------------------------|----------|----------|---------------|---------|
| O2 <i>W</i> —H2 <i>BW</i> ····O1 <sup>iv</sup> | 0.77 (3) | 2.17 (3) | 2.937 (3)     | 173 (5) |
| C2—H2…Cg1 <sup>iv</sup>                        | 0.93     | 2.88     | 3.677 (3)     | 144     |

Symmetry codes: (i) -*x*+1, -*y*+2, *z*+1/2; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*, *z*+1; (iv) -*x*+1, -*y*+1, *z*-1/2.