organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4'-Diphenyl-2,2'-bi-1,3-thiazole

Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 8 July 2010; accepted 9 July 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.079; data-to-parameter ratio = 17.3.

In the centrosymmetric title compound, $C_{18}H_{12}N_2S_{24}$, the five-(r.m.s. deviation = 0.002 Å) and six-membered (r.m.s. deviation = 0.002 Å) rings are essentially coplanar [dihedral angle between rings = 1.9 (1)°].

Related literature

For the crystal structures of other 4,4'-disubstituted compounds, see: Bolognesi *et al.* (1987); Craig *et al.* (1988); Curtis *et al.* (2004).

Experimental

Crystal data C₁₈H₁₂N₂S₂

 $M_r = 320.42$

```
Monoclinic, P2_1/c

a = 5.7769 (4) Å

b = 7.6573 (5) Å

c = 17.1960 (12) Å

\beta = 99.614 (1)°

V = 749.99 (9) Å<sup>3</sup>
```

Data collection

Bruker SMART APEX
diffractometer6993 measured reflections
1730 independent reflectionsAbsorption correction: multi-scan
(SADABS; Sheldrick, 1996)
 $T_{\min} = 0.902, T_{\max} = 0.966$ $R_{int} = 0.026$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.028 & 100 \text{ parameters} \\ wR(F^2) = 0.079 & H\text{-atom parameters constrained} \\ S = 1.04 & \Delta\rho_{\max} = 0.42 \text{ e } \text{\AA}^{-3} \\ 1730 \text{ reflections} & \Delta\rho_{\min} = -0.24 \text{ e } \text{\AA}^{-3} \end{array}$

Z = 2

Mo $K\alpha$ radiation

 $0.30 \times 0.10 \times 0.10 \ \text{mm}$

 $\mu = 0.35 \text{ mm}^{-1}$

T = 100 K

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

I thank the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2046).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Bolognesi, A., Catellani, M., Destri, S. & Porzio, W. (1987). Acta Cryst. C43, 1171–1173.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Craig, D. C., Goodwin, H. A., Onggo, D. & Rae, A. D. (1988). *Aust. J. Chem.* **41**, 1625–1644.

Curtis, D., Cao, J. & Kampf, J. F. (2004). J. Am. Chem. Soc. 126, 4318-4328.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, o2030 [https://doi.org/10.1107/S1600536810027261]

4,4'-Diphenyl-2,2'-bi-1,3-thiazole

Seik Weng Ng

S1. Comment

2,2'-Bithiazole and other 4,4'-disubstituted derivatives possess a pair of nitrogen-donor sites that renders such molecules capable of chelating metal atoms. The crystal structure of the parent compound as well as those of the methyl and ethyl substituted derivatives have been reported (Bolognesi *et al.*, 1987; Craig *et al.*, 1988, Curtis *et al.*, 2004). These molecules are centrosymmetric compounds having an inversion center midway along the C_{azolyl}–C_{azolyl} bond. In the parent compound, this bond is 1.468 (6) Å (Bolognesi *et al.*, 1987). The bond is somewhat shortened to 1.455 (2) Å in the phenyl analog (Scheme I, Fig. 1).

S2. Experimental

The organic compound was returned unchanged in an attempted reaction of lead(II) nitrate (0.13 mmol, 0.04 g) with 4,4'- diphenyl-2,2'-bithiazole (0.25 mmol, 0.08 g) in the presence of potassium thiocyanate (0.25 mmol, 0.03 g) in a methanol/THF mixture. Crystals were obtained after one week of setting the mixture aside.

S3. Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.95 Å) and included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$.

Figure 1

Displacement ellipsoid plot (Barbour, 2001) of $C_{18}H_{12}N_2S_2$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The molecule lies on an inversion center.

4,4'-Diphenyl-2,2'-bi-1,3-thiazole

Crystal data

C₁₈H₁₂N₂S₂ $M_r = 320.42$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.7769 (4) Å b = 7.6573 (5) Å c = 17.1960 (12) Å $\beta = 99.614$ (1)° V = 749.99 (9) Å³ Z = 2

Data collection

Bruker SMART APEX	6993 measured reflections
diffractometer	1730 independent reflections
Radiation source: fine-focus sealed tube	1575 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -7 \longrightarrow 7$
(SADABS; Sheldrick, 1996)	$k = -9 \longrightarrow 9$
$T_{\min} = 0.902, \ T_{\max} = 0.966$	$l = -21 \rightarrow 22$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fo

F(000) = 332

 $\theta = 2.4 - 28.3^{\circ}$

 $\mu = 0.35 \text{ mm}^{-1}$ T = 100 K

Prism, colorless

 $0.30 \times 0.10 \times 0.10 \text{ mm}$

 $D_x = 1.419 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4091 reflections

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0421P)^2 + 0.350P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.76174 (5)	0.35670 (4)	0.446214 (17)	0.01797 (12)	
N1	0.35546 (18)	0.49301 (13)	0.39798 (6)	0.0151 (2)	
C1	0.2750 (2)	0.43006 (15)	0.25545 (7)	0.0139 (2)	
C2	0.0586 (2)	0.51551 (16)	0.24862 (7)	0.0156 (2)	
H2	0.0132	0.5690	0.2936	0.019*	
C3	-0.0906 (2)	0.52260 (16)	0.17611 (7)	0.0179 (3)	
Н3	-0.2377	0.5804	0.1719	0.022*	
C4	-0.0255 (2)	0.44574 (17)	0.10999 (7)	0.0198 (3)	
H4	-0.1278	0.4505	0.0607	0.024*	
C5	0.1903 (2)	0.36157 (16)	0.11614 (7)	0.0193 (3)	
Н5	0.2355	0.3094	0.0708	0.023*	
C6	0.3399 (2)	0.35345 (15)	0.18827 (7)	0.0165 (3)	
H6	0.4868	0.2957	0.1921	0.020*	

supporting information

C7	0.4293 (2)	0.41960 (15)	0.33292 (7)	0.0140 (2)	
C8	0.6444 (2)	0.34026 (16)	0.34867 (7)	0.0167 (3)	
H8	0.7186	0.2835	0.3103	0.020*	
C9	0.5133 (2)	0.46895 (15)	0.46100 (7)	0.0150 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01731 (17)	0.02092 (18)	0.01515 (17)	0.00472 (11)	0.00112 (12)	-0.00100 (11)
N1	0.0165 (5)	0.0146 (5)	0.0145 (5)	-0.0003 (4)	0.0035 (4)	0.0003 (4)
C1	0.0159 (6)	0.0113 (5)	0.0149 (6)	-0.0023 (4)	0.0038 (4)	0.0007 (4)
C2	0.0166 (6)	0.0142 (6)	0.0167 (6)	-0.0010 (4)	0.0046 (5)	-0.0004(4)
C3	0.0156 (6)	0.0155 (6)	0.0221 (6)	-0.0006(4)	0.0014 (5)	0.0004 (5)
C4	0.0229 (7)	0.0179 (6)	0.0167 (6)	-0.0023 (5)	-0.0020(5)	-0.0003 (5)
C5	0.0256 (7)	0.0179 (6)	0.0147 (6)	-0.0011 (5)	0.0044 (5)	-0.0030 (4)
C6	0.0180 (6)	0.0149 (6)	0.0172 (6)	0.0006 (4)	0.0040 (5)	-0.0007 (4)
C7	0.0168 (6)	0.0115 (5)	0.0145 (5)	-0.0017 (4)	0.0043 (4)	-0.0004 (4)
C8	0.0187 (6)	0.0176 (6)	0.0141 (5)	0.0006 (4)	0.0034 (4)	-0.0013 (4)
C9	0.0164 (6)	0.0134 (5)	0.0157 (6)	0.0001 (4)	0.0041 (4)	0.0001 (4)

Geometric parameters (Å, °)

S1—C8	1.7056 (12)	С3—Н3	0.9500
S1—C9	1.7278 (12)	C4—C5	1.3914 (18)
N1-C9	1.3076 (15)	C4—H4	0.9500
N1C7	1.3817 (15)	C5—C6	1.3897 (17)
C1—C2	1.3981 (16)	С5—Н5	0.9500
C1—C6	1.4013 (16)	С6—Н6	0.9500
C1—C7	1.4762 (16)	C7—C8	1.3690 (17)
C2—C3	1.3934 (17)	C8—H8	0.9500
С2—Н2	0.9500	C9—C9 ⁱ	1.455 (2)
C3—C4	1.3870 (18)		
C8—S1—C9	88.74 (6)	С6—С5—Н5	119.9
C9—N1—C7	110.30 (10)	C4—C5—H5	119.9
C2—C1—C6	119.02 (11)	C5—C6—C1	120.33 (11)
C2—C1—C7	119.86 (11)	С5—С6—Н6	119.8
C6—C1—C7	121.11 (11)	C1—C6—H6	119.8
C3—C2—C1	120.28 (11)	C8—C7—N1	114.40 (11)
С3—С2—Н2	119.9	C8—C7—C1	126.45 (11)
C1—C2—H2	119.9	N1—C7—C1	119.14 (10)
C4—C3—C2	120.33 (11)	C7—C8—S1	111.12 (9)
С4—С3—Н3	119.8	С7—С8—Н8	124.4
С2—С3—Н3	119.8	S1—C8—H8	124.4
C3—C4—C5	119.76 (11)	N1C9C9 ⁱ	123.47 (14)
С3—С4—Н4	120.1	N1—C9—S1	115.44 (9)
С5—С4—Н4	120.1	C9 ⁱ —C9—S1	121.09 (12)
C6—C5—C4	120.27 (11)		

	0 (0 (17)	G(G1 G7 G0	0 (7 (10)
C6-C1-C2-C3	0.60 (17)	$C_{0}-C_{1}-C_{2}$	0.67 (18)
C7—C1—C2—C3	-178.53 (11)	C2-C1-C7-N1	0.83 (16)
C1—C2—C3—C4	-0.32 (18)	C6—C1—C7—N1	-178.29 (11)
C2—C3—C4—C5	-0.17 (18)	N1-C7-C8-S1	-0.35 (13)
C3—C4—C5—C6	0.36 (19)	C1—C7—C8—S1	-179.35 (9)
C4—C5—C6—C1	-0.06 (18)	C9—S1—C8—C7	0.34 (10)
C2-C1-C6-C5	-0.41 (17)	C7—N1—C9—C9 ⁱ	-179.94 (14)
C7—C1—C6—C5	178.71 (11)	C7—N1—C9—S1	0.14 (13)
C9—N1—C7—C8	0.13 (15)	C8—S1—C9—N1	-0.28 (10)
C9—N1—C7—C1	179.22 (10)	C8—S1—C9—C9 ⁱ	179.80 (14)
C2—C1—C7—C8	179.79 (12)		

Symmetry code: (i) -x+1, -y+1, -z+1.