

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Chlorido[1-(2-ethoxyphenyl)3-(4-nitrophenyl)triazenido]mercury(II)

Mohammad Reza Melardi,^a* Zeynab Roohi,^a Nazanin Heidari^a and Mohammad Kazem Rofouei^b

^aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and ^bFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran Correspondence e-mail: m.melardi@kiau.ac.ir

Received 6 June 2010; accepted 13 July 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.005 Å; R factor = 0.022; wR factor = 0.047; data-to-parameter ratio = 26.9.

In the title compound, $[Hg(C_{14}H_{13}N_4O_3)Cl]$, the Hg^{II} atom is four-coordinated by one O atom and two N atoms from a tridentate 1-(2-ethoxyphenyl)-3-(4-nitrophenyl)triazenide ligand and one terminal chloride ion in a distorted squareplanar geometry. In the crystal structure, the mononuclear complexes are linked into pairs through C-H···O and C-H···Cl hydrogen bonds as well as $\pi - \pi$ and C – H··· π stacking interactions. In addition, weak Hg- μ^6 -arene π -interactions [mean distance of 3.667 (2) Å] are present between these dimers. The π - π stacking interactions are between aromatic rings with a centroid-centroid distance of 3.884 (2) Å. Moreover, edge-to-face interactions are present between ethoxy CH groups and aromatic rings with $H \cdots \pi$ distances of 2.81 Å.

Related literature

For transition-metal complexes containing 1,3-diaryltriazenide ligands, see: Moore & Robinson (1986); Vrieze & Van Koten, (1987); Horner et al. (2006). For related structures, see: Melardi et al. (2007, 2009); Rofouei et al. (2009).

Experimental

Crystal data $[Hg(C_{14}H_{13}N_4O_3)Cl]$

 $M_r = 521.32$

 $\mu = 10.11 \text{ mm}^-$

 $0.44 \times 0.10 \times 0.08 \ \mathrm{mm}$

T = 120 K

Z = 4Mo $K\alpha$ radiation

Monoclinic, Cc a = 13.4829 (5) Å b = 15.5746 (6) Å c = 7.7545 (3) Å $\beta = 107.6355 \ (6)^{\circ}$ V = 1551.84 (10) Å³

Data collection

11603 measured reflections
5612 independent reflections
5130 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.031$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.022$	H-atom parameters constrained
$wR(F^2) = 0.047$	$\Delta \rho_{\rm max} = 0.87 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.76	$\Delta \rho_{\rm min} = -0.73 \text{ e } \text{\AA}^{-3}$
5612 reflections	Absolute structure: Flack (1983),
209 parameters	2739 Friedel pairs
2 restraints	Flack parameter: 0.003 (5)

Table 1

Hydrogen-bond geometry (Å, °). Cg2 is the centroid of the C1-C6 ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C3-H3···O3 ⁱ	0.95	2.54	3.489 (5)	174
$C5-H5\cdots O2^{ii}$	0.95	2.55	3.390 (5)	147
C9−H9···Cl1 ⁱⁱⁱ	0.95	2.80	3.738 (4)	169
$C13-H13A\cdots O3^{iv}$	0.99	2.47	3.431 (5)	162
$C13-H13B\cdots Cg2^{v}$	0.99	2.81	3.570 (4)	134
Symmetry codes: (i)	x + 1, -y +	$-1, z - \frac{1}{2};$ (ii)	$x + \frac{1}{2}, -y + \frac{3}{2},$	$z - \frac{1}{2};$ (iii)

 $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) x + 1, y, z; (v) $x, -y + 1, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2293).

References

- Bruker (2001). SAINT-Plus. and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Horner, M., Manzoni de Oliveira, G., Bonini, J. S. & Fenner, H. (2006). J. Organomet. Chem. 691, 655-658.
- Melardi, M. R., Rofouei, M. K. & Massomi, J. (2007). Anal. Sci. 23, x67-x68. Melardi, M. R., Salemi, Y., Razi Kazemi, S. & Rofouei, M. K. (2009). Acta Cryst. E65, m302.
- Moore, D. S. & Robinson, S. D. (1986). Adv. Inorg. Chem. Radiochem. 30, 1-68
- Rofouei, M. K., Hematyar, M., Ghoulipour, V. & Attar Gharamaleki, J. (2009). Inorg. Chim. Acta, 362, 3777-3784.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry, pp. 189-244. Oxford: Pergamon Press.

supporting information

Acta Cryst. (2010). E66, m975 [https://doi.org/10.1107/S1600536810027819]

Chlorido[1-(2-ethoxyphenyl)3-(4-nitrophenyl)triazenido]mercury(II)

Mohammad Reza Melardi, Zeynab Roohi, Nazanin Heidari and Mohammad Kazem Rofouei

S1. Comment

Triazene compounds characterized by having a diazoamino group (–N=NN–) commonly adopt a trans configuration in the ground state. The study of transition-metal complexes containing 1,3-diaryltriaznide ligands has greatly increased in the past few years because of the versatility of their coordination forms, yielding a variety of coordination compounds with large structural diversity (Moore & Robinson, 1986; Vrieze & Van Koten, 1987; Horner *et al.*, 2006). The crystal structures of a few complexes related to the title compound have been reported recently (Melardi *et al.*, 2007; Rofouei *et al.*, 2009).

In the title complex (Fig. 1), the [1-(2-ethoxyphenyl)3-(4-nitrophenyl)]triazenide ion is coordinated to the central atom Hg(II) through two N atoms [Hg1—N1 = 2.070 (3) Å and Hg1—N3 = 2.711 (3) Å] and one O atom [Hg1—O1 = 2.662 (2) Å]. In addition, a Cl⁻ ion is coordinated to Hg(II) atom with the bond distance Hg1—Cl1 = 2.269 (9) Å. These bond distances agree very well with the corresponding distances reported in related structures (Melardi *et al.*, 2007; Rofouei *et al.*, 2009). The atoms of the ligand and lie in a plane (maximum deviation from coplanarity being 0.115 (4)Å for O2 while Cl1 and Hg1 lie 1.402 (3) and 0.606 (2)Å, respecively, out of this plane. The molecules of the title complex are linked to form pairs through non-classical C—H···O and C—H···Cl hydrogen bond, as well as π - π and C—H··· π stacking interactions.

There are π - π stacking interactions present between aromatic rings with centroid-centroid distance of 3.884 (2) Å for $Cg1 \cdots Cg1$ (Cg1 = C7 - C12, x, 1 - y, z-1/2), and also edge-to-face interactions are present between CH group of ethoxy with aromatic rings with H $\cdots\pi$ distance of 2.81 Å for C13-H13B \cdots Cg2 (Cg2 = C1 - C6 x, 1 - y, z-1/2). In addition, weak Hg- μ^6 -arene π -interactions (mean distance 3.667 (2) Å) are present between these dimers. The secondary Hg- μ^6 -arene π -interactions involve carbon atoms of the C1-C6 phenyl rings (Table 1, Fig. 2). The weak non-covalent interactions seem to play important role in the crystal packing and the formation of a desired framework. The unit cell packing of the title compound is shown in Fig. 3.

S2. Experimental

A methanol solution of 1-(2-ethoxyphenyl)-3-(4-nitrophenyl)triazene (0.286 g, 1 mmol) was added to a solution of mercury(II) chloride (0.270 g, 1 mmol). After mixing for 30 minutes at room temperature, solution of sodium acetate in water was added to adjust the *p*H at 6–6.2. After 2 h, a red solid was readily precipitated out. It was filtered off, washed with methanol and dried in vacuum. The orange crude material was dissolved in 10 ml of dichloromethane (CH_2Cl_2), and placed in a freezer without covering. After two weeks beautiful orange and air-stable crystals of the title complex were obtained by slow evaporation of the solvent; m.p. 460–462 K.

S3. Refinement

An absolute structure was established using Flack (1983) method. The H-atoms were placed in calculated positions with C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms, respectively, and included in the refinement in riding mode with fixed isotropic displacement parameters ($U_{iso}(H) = 1.5U_{eq}(C)$ for the CH₃-groups and $U_{iso}(H) = 1.2U_{eq}(C)$ for the other groups). The highest positive residual electron density peak of 0.87 eÅ³ was localized at a distance of 0.91 Å from the Hg1 atom and was meaningless.

Figure 1

Molecular structure of the title compound, with ellipsoids drawn at 50% probability level.

Figure 2

Figure 3

The unit cell packing diagram of the title compound along the c axis.

Chlorido[1-(2-ethoxyphenyl)3-(4-nitrophenyl)triazenido]mercury(II)

Crystal data

[Hg(C₁₄H₁₃N₄O₃)Cl] $M_r = 521.32$ Monoclinic, Cc Hall symbol: C -2yc a = 13.4829 (5) Å b = 15.5746 (6) Å c = 7.7545 (3) Å $\beta = 107.6355$ (6)° V = 1551.84 (10) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.142, T_{\max} = 0.618$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.047$ S = 0.765612 reflections 209 parameters F(000) = 984 $D_x = 2.231 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5899 reflections $\theta = 2.6-32.6^{\circ}$ $\mu = 10.11 \text{ mm}^{-1}$ T = 120 KNeedle, red $0.44 \times 0.10 \times 0.08 \text{ mm}$

11603 measured reflections 5612 independent reflections 5130 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 32.8^\circ, \ \theta_{min} = 2.1^\circ$ $h = -20 \rightarrow 20$ $k = -23 \rightarrow 23$ $l = -11 \rightarrow 11$

2 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2)]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.87$ e Å⁻³

Special details

 $\Delta \rho_{\min} = -0.73 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 2739 Friedel pairs Absolute structure parameter: 0.003 (5)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Hg1	0.12017 (2)	0.366861 (6)	0.01531 (2)	0.01598 (3)	
Cl1	0.09959 (7)	0.22761 (6)	-0.07489 (13)	0.02390 (18)	
01	0.29846 (19)	0.43726 (16)	0.0064 (3)	0.0186 (5)	
O2	-0.3935 (2)	0.61872 (18)	0.3415 (5)	0.0284 (6)	
O3	-0.4252 (2)	0.48304 (18)	0.3448 (4)	0.0251 (6)	
N1	0.1308 (2)	0.49607 (17)	0.0809 (4)	0.0139 (5)	
N2	0.0536 (2)	0.52465 (18)	0.1369 (4)	0.0143 (5)	
N3	-0.0072 (2)	0.46291 (18)	0.1493 (4)	0.0135 (5)	
N4	-0.3717 (2)	0.5440 (2)	0.3237 (4)	0.0178 (6)	
C1	0.1976 (2)	0.5559 (2)	0.0397 (4)	0.0141 (6)	
C2	0.2875 (3)	0.5247 (2)	0.0013 (4)	0.0158 (6)	
C3	0.3560 (3)	0.5818 (2)	-0.0381 (5)	0.0207 (7)	
H3	0.4169	0.5612	-0.0620	0.025*	
C4	0.3359 (3)	0.6695 (3)	-0.0427 (5)	0.0240 (8)	
H4	0.3840	0.7086	-0.0675	0.029*	
C5	0.2464 (3)	0.7004 (2)	-0.0112 (5)	0.0240 (7)	
H5	0.2326	0.7604	-0.0169	0.029*	
C6	0.1767 (3)	0.6436 (2)	0.0287 (5)	0.0177 (6)	
H6	0.1149	0.6646	0.0484	0.021*	
C7	-0.0947 (2)	0.4891 (2)	0.1988 (4)	0.0126 (6)	
C8	-0.1560 (3)	0.4226 (2)	0.2309 (5)	0.0162 (6)	
H8	-0.1348	0.3647	0.2252	0.019*	
C9	-0.2472 (3)	0.4396 (2)	0.2710 (5)	0.0169 (6)	
H9	-0.2888	0.3943	0.2931	0.020*	
C10	-0.2762 (3)	0.5245 (2)	0.2780 (5)	0.0158 (6)	
C11	-0.2170 (3)	0.5921 (2)	0.2465 (5)	0.0155 (6)	
H11	-0.2385	0.6498	0.2531	0.019*	
C12	-0.1261 (3)	0.5744 (2)	0.2052 (5)	0.0155 (6)	
H12	-0.0853	0.6200	0.1813	0.019*	
C13	0.3904 (3)	0.4016 (3)	-0.0273 (5)	0.0206 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H13A	0.4541	0.4228	0.0641	0.025*
H13B	0.3930	0.4188	-0.1487	0.025*
C14	0.3835 (3)	0.3054 (2)	-0.0161 (6)	0.0251 (8)
H14A	0.4450	0.2792	-0.0368	0.038*
H14B	0.3207	0.2851	-0.1083	0.038*
H14C	0.3802	0.2891	0.1042	0.038*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.01404 (5)	0.01342 (4)	0.02179 (5)	0.00069 (9)	0.00741 (3)	-0.00111 (10)
Cl1	0.0207 (4)	0.0148 (4)	0.0376 (5)	0.0004 (3)	0.0109 (4)	-0.0046 (3)
01	0.0137 (11)	0.0211 (12)	0.0250 (13)	0.0020 (9)	0.0117 (10)	-0.0003 (10)
O2	0.0230 (14)	0.0235 (14)	0.0441 (18)	0.0042 (11)	0.0182 (13)	0.0018 (12)
03	0.0175 (13)	0.0306 (15)	0.0307 (15)	-0.0056 (11)	0.0127 (12)	-0.0014 (12)
N1	0.0124 (12)	0.0148 (12)	0.0164 (12)	-0.0001 (10)	0.0070 (11)	-0.0015 (10)
N2	0.0123 (12)	0.0168 (13)	0.0144 (13)	-0.0011 (10)	0.0048 (10)	0.0009 (10)
N3	0.0111 (12)	0.0162 (13)	0.0133 (12)	0.0012 (10)	0.0040 (10)	0.0011 (10)
N4	0.0134 (13)	0.0239 (15)	0.0179 (14)	-0.0031 (11)	0.0074 (11)	-0.0009 (11)
C1	0.0115 (14)	0.0188 (15)	0.0127 (14)	-0.0012 (11)	0.0048 (11)	-0.0004 (12)
C2	0.0161 (15)	0.0196 (16)	0.0132 (14)	0.0017 (12)	0.0067 (12)	0.0004 (12)
C3	0.0151 (15)	0.0282 (19)	0.0209 (17)	-0.0013 (13)	0.0088 (13)	-0.0001 (14)
C4	0.0261 (19)	0.0242 (18)	0.0256 (18)	-0.0077 (15)	0.0134 (16)	0.0024 (15)
C5	0.0248 (19)	0.0191 (17)	0.0308 (19)	-0.0043 (14)	0.0123 (16)	0.0012 (15)
C6	0.0188 (16)	0.0169 (15)	0.0203 (16)	0.0005 (12)	0.0100 (13)	-0.0003 (12)
C7	0.0103 (13)	0.0176 (15)	0.0103 (13)	0.0016 (11)	0.0037 (11)	0.0007 (11)
C8	0.0168 (15)	0.0148 (14)	0.0180 (15)	-0.0013 (12)	0.0067 (12)	-0.0005 (12)
C9	0.0163 (15)	0.0197 (16)	0.0157 (15)	-0.0036 (12)	0.0065 (12)	-0.0010 (12)
C10	0.0138 (15)	0.0221 (16)	0.0135 (14)	-0.0028 (12)	0.0070 (13)	-0.0010 (12)
C11	0.0129 (14)	0.0161 (15)	0.0181 (15)	0.0012 (12)	0.0055 (12)	-0.0014 (12)
C12	0.0142 (15)	0.0144 (14)	0.0180 (15)	-0.0023 (11)	0.0053 (12)	0.0004 (12)
C13	0.0144 (15)	0.0272 (18)	0.0211 (16)	0.0060 (14)	0.0069 (13)	-0.0027 (15)
C14	0.0222 (18)	0.0262 (19)	0.0289 (19)	0.0072 (15)	0.0107 (16)	-0.0008 (15)

Geometric parameters (Å, °)

Hg1—N1	2.070 (3)	C5—C6	1.392 (5)
Hg1—Cl1	2.2699 (9)	С5—Н5	0.9500
Hg1—O1	2.662 (2)	С6—Н6	0.9500
Hg1—N3	2.711 (3)	С7—С8	1.394 (4)
O1—C2	1.370 (4)	C7—C12	1.401 (5)
O1—C13	1.453 (4)	C8—C9	1.382 (5)
O2—N4	1.218 (4)	C8—H8	0.9500
O3—N4	1.233 (4)	C9—C10	1.385 (5)
N1—N2	1.320 (4)	С9—Н9	0.9500
N1—C1	1.399 (4)	C10-C11	1.387 (5)
N2—N3	1.286 (4)	C11—C12	1.385 (5)
N3—C7	1.406 (4)	C11—H11	0.9500

supporting information

N4 C10	1 A(7 (4))	C12 U12	0.0500
	1.407 (4)		0.9300
	1.392 (4)	C13—C14	1.505 (6)
C1—C2	1.419 (4)	C13—H13A	0.9900
C2—C3	1.382 (5)	C13—H13B	0.9900
C3—C4	1.390 (6)	C14—H14A	0.9800
С3—Н3	0.9500	C14—H14B	0.9800
C4—C5	1.389 (6)	C14—H14C	0.9800
C4—H4	0.9500		
N1—Hg1—Cl1	175.95 (8)	C1—C6—C5	120.0 (3)
N1 - Hg1 - O1	67 07 (9)	C1 - C6 - H6	120.0
$C_1 = H_{g1} = O_1$	114 37 (6)	C5-C6-H6	120.0
$N_1 H_{\alpha 1} N_2$	51.22(10)	C_{2}^{8}	120.0
NI - HgI - NS	31.23(10)	$C_{0} = C_{1} = C_{12}$	119.0(3)
CII—ngi—Ns	127.80 (0)	$C_{0} - C_{1} - N_{3}$	113.2(3)
OI—HgI—N3	117.69 (8)	C12 - C7 - N3	124.9 (3)
C2-01-C13	117.8 (3)	C9—C8—C7	120.9 (3)
C2—O1—Hg1	108.66 (19)	С9—С8—Н8	119.5
C13—O1—Hg1	132.3 (2)	С7—С8—Н8	119.5
N2—N1—C1	118.5 (3)	C8—C9—C10	118.3 (3)
N2—N1—Hg1	114.0 (2)	С8—С9—Н9	120.9
C1—N1—Hg1	126.3 (2)	С10—С9—Н9	120.9
N3—N2—N1	110.9 (3)	C9—C10—C11	122.2 (3)
N2—N3—C7	114.2 (3)	C9—C10—N4	119.1 (3)
N2—N3—Hg1	83.78 (18)	C11—C10—N4	118.7 (3)
C7—N3—Hg1	161.0(2)	C12-C11-C10	1191(3)
02-N4-03	123.4(3)	C_{12} C_{11} H_{11}	120.4
O_2 N/ C_{10}	129.1(3) 110.0(3)	C10 C11 H11	120.1
02 - N4 - C10	117.0(3)	C_{10} C_{11} C_{12} C_{7}	120.4
C(-C1-N1)	117.0(3)	C11 = C12 = C7	119.7 (3)
$C_0 - C_1 - N_1$	122.4 (3)	CII—CI2—HI2	120.2
C6-C1-C2	119.5 (3)	C/C12H12	120.2
NI-CI-C2	118.1 (3)	01	107.4 (3)
O1—C2—C3	124.9 (3)	O1—C13—H13A	110.2
01—C2—C1	115.2 (3)	C14—C13—H13A	110.2
C3—C2—C1	119.8 (3)	O1—C13—H13B	110.2
C2—C3—C4	120.0 (3)	C14—C13—H13B	110.2
С2—С3—Н3	120.0	H13A—C13—H13B	108.5
С4—С3—Н3	120.0	C13—C14—H14A	109.5
C5—C4—C3	120.7 (3)	C13—C14—H14B	109.5
C5—C4—H4	119.7	H14A—C14—H14B	109.5
C3—C4—H4	119.7	C13—C14—H14C	109.5
C4-C5-C6	1199(4)	H14A—C14—H14C	109 5
C4—C5—H5	120.0	H14B-C14-H14C	109.5
C6 C5 H5	120.0		109.5
0-05-115	120.0		
N1 H_{α} 1 O1 C2	-165(2)	N1 C1 C2 O1	0.0(A)
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	10.3(2) 150.22(18)	$1 \times 1 - C = C - C = C - C = C - C = C = C = C$	0.9 (4)
UI - II = UI - U2	139.32(18)	$U = U = U^2 = U^2$	3.1 (3) 170.2 (2)
N3—Hg1—O1—C2	-24.7(2)	N1—C1—C2—C3	-1/9.3 (3)
NI—Hg1—O1—C13	176.7 (3)	01—C2—C3—C4	178.8 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1—Hg1—O1—C13 N3—Hg1—O1—C13 O1—Hg1—N1—N2 N3—Hg1—N1—N2 O1—Hg1—N1—C1 N3—Hg1—N1—C1 C1—N1—N2—N3 Hg1—N1—N2—N3 Hg1—N1—N2—N3 N1—N2—N3—Hg1 N1—Hg1—N3—N2	-7.4 (3) 168.5 (3) -173.2 (2) -2.54 (18) 19.7 (2) -169.6 (3) 172.7 (3) 4.5 (3) -176.7 (3) -3.1 (2) 2.39 (17)	C1-C2-C3-C4 C2-C3-C4-C5 C3-C4-C5-C6 N1-C1-C6-C5 C2-C1-C6-C5 C4-C5-C6-C1 N2-N3-C7-C8 N2-N3-C7-C12 C12-C7-C8-C9 N3-C7-C8-C9 C7-C8-C9-C10	-1.0 (5) -1.2 (5) 1.2 (6) 179.4 (3) -3.1 (5) 0.9 (6) -173.8 (3) 10.7 (4) -0.7 (5) -176.5 (3) 0.1 (5)
N2-N1-C1-C2 $1/2.4 (5)$ N4-C10-C11-C12 $1/9.3 (5)$ Hg1-N1-C1-C2 $-21.0 (4)$ C10-C11-C12-C7 $-1.0 (5)$ C13-O1-C2-C3 $1.7 (5)$ C8-C7-C12-C11 $1.1 (5)$ Hg1-O1-C2-C3 $-167.2 (3)$ N3-C7-C12-C11 $176.5 (3)$ C13-O1-C2-C1 $-178.5 (3)$ C2-O1-C13-C14 $-179.4 (3)$ Hg1-O1-C2-C1 $12.6 (3)$ Hg1-O1-C13-C14 $-13.6 (4)$	$\begin{array}{c} \text{Cl1} - \text{Hg1} - \text{N3} - \text{C7} \\ \text{Cl1} - \text{Hg1} - \text{N3} - \text{C7} \\ \text{O1} - \text{Hg1} - \text{N3} - \text{C7} \\ \text{N2} - \text{N1} - \text{C1} - \text{C6} \\ \text{Hg1} - \text{N1} - \text{C1} - \text{C6} \\ \text{Hg1} - \text{N1} - \text{C1} - \text{C6} \end{array}$	-10.8(7) -10.8(7) 173.8(6) -10.1(5) 156.5(3) 172.4(2)	O3-N4-C10-C9 O3-N4-C10-C9 O2-N4-C10-C11 O3-N4-C10-C11 C9-C10-C11-C12	$\begin{array}{c} -3.7 (5) \\ -3.6 (5) \\ 177.4 (3) \\ 0.5 (5) \\ 170.2 (2) \end{array}$
	$\begin{array}{c} Hg1 \longrightarrow H1 \longrightarrow C1 \longrightarrow C2 \\ Hg1 \longrightarrow H1 \longrightarrow C1 \longrightarrow C2 \\ C13 \longrightarrow O1 \longrightarrow C2 \longrightarrow C3 \\ Hg1 \longrightarrow O1 \longrightarrow C2 \longrightarrow C3 \\ C13 \longrightarrow O1 \longrightarrow C2 \longrightarrow C1 \\ Hg1 \longrightarrow O1 \longrightarrow C2 \longrightarrow C1 \\ Hg1 \longrightarrow O1 \longrightarrow C2 \longrightarrow C1 \\ C6 \longrightarrow C1 \longrightarrow C2 \longrightarrow C1 \\ C6 \longrightarrow C1 \longrightarrow C2 \longrightarrow C1 \\ C1 \longrightarrow C2 \longrightarrow C1 \longrightarrow C2 \longrightarrow C1 \longrightarrow C2 \\ C1 \longrightarrow C2 \longrightarrow C1 \longrightarrow C1$	-21.0 (4) 1.7 (5) -167.2 (3) -178.5 (3) 12.6 (3) -176.7 (3)	C10-C11-C12-C7 C8-C7-C12-C11 N3-C7-C12-C11 C2-O1-C13-C14 Hg1-O1-C13-C14	-1.0 (5) 1.1 (5) 176.5 (3) -179.4 (3) -13.6 (4)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H…4	<i>D</i> —Н	H…A	$D \cdots A$	D—H…4
	0.05	2.54	2 490 (5)	174
C3—H3···O3 ⁴	0.95	2.54	3.489 (5)	1/4
С5—Н5…О2 ⁿ	0.95	2.55	3.390 (5)	147
C9—H9…Cl1 ⁱⁱⁱ	0.95	2.80	3.738 (4)	169
C13—H13 <i>A</i> ···O3 ^{iv}	0.99	2.47	3.431 (5)	162
C13—H13 B ···Cg2 ^v	0.99	2.81	3.570 (4)	134

Symmetry codes: (i) *x*+1, -*y*+1, *z*-1/2; (ii) *x*+1/2, -*y*+3/2, *z*-1/2; (iii) *x*-1/2, -*y*+1/2, *z*+1/2; (iv) *x*+1, *y*, *z*; (v) *x*, -*y*+1, *z*-1/2.