metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diacetonitrile(3-{2-[8-(2-bromoethoxy)-9,10-dioxoanthracen-1-yloxy]ethyl}-1-(2-pyridylmethyl)imidazolium)silver(I) bis(hexafluoridophosphate)

Qing-Song Wen, Cheng-Lin Zhou and Da-Bin Qin*

School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China Correspondence e-mail: gindabincwnu@yahoo.com.cn

Received 8 July 2010; accepted 26 July 2010

Key indicators: single-crystal X-ray study; T = 116 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.053; wR factor = 0.132; data-toparameter ratio = 11.4.

The title compound, $[Ag(C_{27}H_{23}BrN_3O_4)(CH_3CN)_2](PF_6)_2$, is a mononuclear salt species in which the silver(I) atom is coordinated by one ligand and two acetonitrile molecules and exhibits a distorted T-shaped coordination. The asymmetric unit contains one independent cation and two independent hexafluoridophosphate anions, one of which is disordered over two positions in a 0.756 (11):0.244 (11) ratio. Weak $\pi - \pi$ interactions between the anthraquinone ring systems [centroid–centroid distance = 3.676(3) Å], intermolecular Ag- π interactions [Cg···Ag = 3.405 Å] and C-H··· π interactions between pairs of adjacent molecules are observed.

Related literature

For the synthesis of 1,8-bis(2-bromoethoxy)anthraquinone, see: Chen et al. (1992) and of 2-[(1H-imidazol-1-yl)methyl]pyridine, see: Chiu et al. (2005). For related structures, see: Mahajan et al. (2001, 2002). For Ag $-\pi$ interactions, see: Mascal et al. (2000).

Experimental

b = 12.826 (4) Å
c = 18.199 (6) Å
$\alpha = 89.034 \ (14)^{\circ}$
$\beta = 88.278 \ (12)^{\circ}$
$\gamma = 74.805 \ (7)^{\circ}$

Data collection

Bruker SMART CCD area-detector	18740 measured reflections
diffractometer	6327 independent reflections
Absorption correction: multi-scan	5355 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.062$
$T_{\min} = 0.706, \ T_{\max} = 0.754$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ 107 restraints $wR(F^2) = 0.132$ H-atom parameters constrained S = 1.07 $\Delta \rho_{\rm max} = 0.95 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -1.24$ e Å⁻³ 6327 reflections 554 parameters

Table 1

Selected bond lengths (Å).

Ag1-N4	2.230 (4)	Ag1-N1	2.284 (4)
Ag1-N5	2.256 (4)		

 $\mu = 1.88 \text{ mm}^{-1}$ T = 116 K

 $0.20 \times 0.18 \times 0.16 \text{ mm}$

Table 2

Hydrogen-bond geometry (Å, °).

Cg1 and Cg3 are the centroids of the N2/N3/C7-C9 imidazole rings and C12-C16/C25 anthraquinone rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C26-H26B\cdots Cg3^{i}$ $C31-H31B\cdots Cg1^{ii}$	0.97 0.96	2.98 3.38	3.845 (5) 3.781 (4)	148 108

Symmetry codes: (i) -x + 2, -y + 2, -z + 2; (ii) -x, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank the Scientific Researching Fund Projects of China West Normal University (grant No. 06B003) and the Youth Fund Projects of Sichuan Educational Department (grant No. 2006B039).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2276).

References

- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Z. H., Schall, O. F., Alcalá, M., Li, Y., Gokel, G. W. & Echegoyen, L. (1992). J. Am. Chem. Soc. 114, 444-451.
- Chiu, P. L., Lai, C. L., Chang, C. F., Hu, C. H. & Lee, H. M. (2005). Organometallics, 24, 6169-6178.
- Mahajan, A., Bedi, P. K., Kaur, P. & Kumar, S. (2001). Thin Solid Films, 398, 82 - 86
- Mahajan, A., Bedi, P. K., Kaur, P. & Kumar, S. (2002). Thin Solid Films, 420, 392-397.
- Mascal, M., Kerdelhué, J. L., Blake, A. J., Cooke, P. A., Mortimer, R. J. & Teat, S. J. (2000). Eur. J. Inorg. Chem. pp. 485-490.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, m1030 [https://doi.org/10.1107/S1600536810029739]

Diacetonitrile(3-{2-[8-(2-bromoethoxy)-9,10-dioxoanthracen-1-yloxy]ethyl}-1-(2-pyridylmethyl)imidazolium)silver(I) bis(hexafluoridophosphate)

Qing-Song Wen, Cheng-Lin Zhou and Da-Bin Qin

S1. Comment

Anthraquinone derivatives have attracted much attention due to their optical and photosemiconducting properties (Mahajan *et al.*, 2001, 2002).

The silver(I) atom is bridged by the pyridyl N-atom from one ligand and two acetonitrile molecules and exhibits distorted T shaped coordination (Table 1, Fig. 1). The imidazole rings make dihedral angles with the attached pyridine ring of $61.07 (15)^{\circ}$ and anthraquinone ring of $44.80 (10)^{\circ}$. The carbonyl atoms O2 and O4 are almost coplane with the anthraquinone plane, the dihedral angle between the planes of the C23/C24/C25/O2 and C16/C17/C18/O4 fragments is $1.02 (27)^{\circ}$. (Fig. 1).

The crystal structure is stabilized by π - π interactions between the anthraquinone ring systems of the inversion related molecules, with a $Cg^3 \cdots Cg^{4^i}$ distance of 3.676 (3) Å, [symmetry code i: 1 - x, 2 - y, 2 - z] where Cg^3 is the C12—C16/C25 ring centroid and Cg^4 is the C16—C18/C23—C25 ring centroid (Fig. 2), and two adjacent molecules are bridged by Ag… π interactions involving the pyridyl rings: [Cg^2 ...Ag1ⁱⁱ = 3.405 Å, (Fig. 2). Cg^2 is the N1/C1—C5 ring centroid, symmetry code ii: 1 - x, 1 - y, 1 - z]. The present values are thus outside the range of Ag-centroid distances of 2.89–3.37 Å (Mascal *et al.*, 2000). Besides, the structure is further stabilized by C—H… π intermolecular interactions involving the ethoxy carbon C26 and one of the anthraquinone rings [H26B… Cg^{3ii} = 2.98 Å, C26—H26B… Cg^{3ii} = 148°, and a weaker contact between one of the acetonitrile donors and the imidazole ring is observed H31B… Cg^{1iv} = 3.38 Å, C31—H31B… Cg^{1iv} = 108°. Cg^1 and Cg^3 are the centroids of the N2/N3/C7—C9 imidazole rings and C12—C16/C25 anthraquinone rings]. Symmetry code for the two interactions, iii: 2 - x, 2 - y, 2 - z; iv: -x, 1 - y, 1 - z.

S2. Experimental

1,8-Bis(2-bromoethoxy)anthraquinone (Chen *et al.*, 1992) (1.92 g, 10 mmol) was added to a solution of 2-((1*H*imidazol-1-yl)methyl)pyridine (Chiu *et al.*, 2005) (2.48 g, 20 mmol) in 50 ml of THF. The mixture was refluxed for 48 h. The resulting precipitate was isolated and washed with THF(2 × 5 ml) and was then dissolved in methanol (20 ml). To the aqueous solution was added an excess of NH_4PF_6 resulting in a yellow precipitation. The yellow solid was collected and washed with water and Et₂O and dried under vacuum. The title compound was synthesized from the reaction of a slurry of Ag₂O (64 mg, 0.275 mmol) in 10 ml of acetonitrile was treated with the yellow solid (213 mg, 0.50 mmol). The mixture was stirred for 12 h with exclusion of light at 323 K until nearly all Ag₂O was dissolved. The filtrate was concentrated to *ca* 2 ml. Addition of Et₂O (20 ml) to the filtrate yielded a yellow solid. Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from acetonitrile.

S3. Refinement

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$, and $U_{iso}(H) = 1.5U_{eq}(C)$ for the acetonitrile methyl group. In one of the hexafluorophosphate anions five F atoms were found to be disordered over two sites with occupancies 0.756 (11) and 0.244 (11). The disorder was completed with a combination of PLATON (Spek, 2009) and SHELXL97 (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. H atoms and the F7B—F12B disordered positions have been omitted.

Figure 2

A packing section of the title compound, viewed down the *c* axis, intermolecular Ag $-\pi$ interactions shown with dashed lines.

Diacetonitrile(3-{2-[8-(2-bromoethoxy)-9,10-dioxoanthracen-1-yloxy]ethyl}-1-(2pyridylmethyl)imidazolium)silver(I) bis(hexafluoridophosphate)

Crystal data

[Ag(C ₂₇ H ₂₃ BrN ₃ O ₄)(C ₂ H ₃ N) ₂](PF ₆) ₂
$M_r = 1013.31$
Triclinic, P1
Hall symbol: -P 1
a = 7.961 (3) Å
b = 12.826 (4) Å
c = 18.199 (6) Å
$\alpha = 89.034 \ (14)^{\circ}$
$\beta = 88.278 \ (12)^{\circ}$
$\gamma = 74.805 \ (7)^{\circ}$
$V = 1792.3 (10) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 14.63 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\rm min} = 0.706, T_{\rm max} = 0.754$

Refinement

Refinement on F^2 Hydrogen site location: inferred from neighbouring sites Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ H-atom parameters constrained $wR(F^2) = 0.132$ $w = 1/[\sigma^2(F_o^2) + (0.0714P)^2]$ S = 1.07where $P = (F_0^2 + 2F_c^2)/3$ 6327 reflections $(\Delta/\sigma)_{\rm max} = 0.005$ 554 parameters $\Delta \rho_{\rm max} = 0.95 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -1.24 \text{ e} \text{ Å}^{-3}$ 107 restraints Primary atom site location: structure-invariant Extinction correction: SHELXL97 (Sheldrick, direct methods Secondary atom site location: difference Fourier Extinction coefficient: 0.0390 (15) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Z = 2F(000) = 1004 $D_{\rm x} = 1.878 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 6148 reflections $\theta = 1.6 - 27.9^{\circ}$ $\mu = 1.88 \text{ mm}^{-1}$ T = 116 KPrism, colorless $0.20 \times 0.18 \times 0.16$ mm

18740 measured reflections 6327 independent reflections 5355 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.062$ $\theta_{\rm max} = 25.0^\circ, \, \theta_{\rm min} = 1.1^\circ$ $h = -9 \rightarrow 9$ $k = -15 \rightarrow 15$ $l = -21 \rightarrow 21$

2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

	x	v	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
<u>Ασ1</u>	0.81202 (5)	0.46133 (3)	0 492136 (19)	0.02593 (16)	
Br1	1,00740 (8)	0.40133(5) 0.58237(5)	0.472130(17) 0.87898(3)	0.02393(10) 0.0448(2)	
P1	0.80962(15)	0.90464(9)	0.40606 (6)	0.0183(3)	
P2	0.60902(13) 0.60236(17)	0.90101(9) 0.47473(9)	0.77493 (7)	0.0105(3) 0.0245(3)	
F1	0.6821(4)	0.8274(2)	0.38733(15)	0.0309(6)	
F2	0.9560(3)	0.8403(2)	0.34916 (13)	0.0267(6)	
F3	0.7208 (4)	0.9869 (2)	0.34205 (13)	0.0286 (6)	
F4	0.9307 (4)	0.9829 (2)	0.42395 (14)	0.0297 (6)	
F5	0.6638 (3)	0.9684 (2)	0.46379 (13)	0.0285 (6)	
F6	0.8966 (3)	0.8235 (2)	0.47089 (13)	0.0279 (6)	
F8	0.5481 (5)	0.5903 (2)	0.81166 (17)	0.0503 (9)	
F7A	0.6754 (11)	0.3596 (5)	0.7368 (4)	0.058 (2)	0.756 (11)
F9A	0.4254 (8)	0.4499 (6)	0.7960 (4)	0.0705 (19)	0.756 (11)
F10A	0.6775 (11)	0.4261 (5)	0.8501 (3)	0.0568 (18)	0.756 (11)
F11A	0.7834 (6)	0.5029 (5)	0.7539 (4)	0.0573 (17)	0.756 (11)
F12A	0.5296 (11)	0.5322 (5)	0.6986 (3)	0.062 (2)	0.756 (11)
F7B	0.590 (3)	0.3654 (15)	0.7364 (12)	0.046 (5)	0.244 (11)
F9B	0.3932 (18)	0.5058 (17)	0.7743 (11)	0.058 (5)	0.244 (11)
F10B	0.586 (2)	0.4211 (14)	0.8544 (8)	0.039 (4)	0.244 (11)
F11B	0.8056 (18)	0.439 (2)	0.7781 (11)	0.077 (5)	0.244 (11)
F12B	0.621 (3)	0.5124 (16)	0.6922 (8)	0.049 (5)	0.244 (11)
01	0.6449 (4)	1.0682 (2)	0.82082 (15)	0.0216 (7)	
O2	0.8220 (5)	0.9164 (3)	0.90418 (16)	0.0362 (9)	
03	1.0398 (4)	0.7780 (2)	0.98270 (16)	0.0257 (7)	
04	0.5994 (5)	1.1618 (3)	1.14206 (18)	0.0418 (9)	
N1	0.5981 (5)	0.6198 (3)	0.49115 (18)	0.0183 (8)	
N2	0.7119 (5)	0.7748 (3)	0.64378 (18)	0.0175 (8)	
N3	0.7046 (5)	0.9302 (3)	0.68965 (18)	0.0183 (8)	
N4	0.9818 (5)	0.4191 (3)	0.5892 (2)	0.0250 (9)	
N5	0.8324 (5)	0.3673 (3)	0.3871 (2)	0.0269 (9)	
C1	0.4750 (6)	0.6286 (4)	0.4402 (2)	0.0221 (10)	
H1	0.4891	0.5739	0.4058	0.027*	
C2	0.3295 (6)	0.7149 (4)	0.4368 (2)	0.0234 (10)	
H2	0.2485	0.7193	0.4003	0.028*	
C3	0.3068 (6)	0.7957 (3)	0.4897 (2)	0.0232 (10)	
H3	0.2086	0.8541	0.4898	0.028*	
C4	0.4321 (6)	0.7873 (3)	0.5416 (2)	0.0199 (9)	
H4	0.4192	0.8401	0.5772	0.024*	
C5	0.5769 (6)	0.7000 (3)	0.5405 (2)	0.0176 (9)	
C6	0.7295 (6)	0.6862 (3)	0.5915 (2)	0.0202 (9)	
H6A	0.7429	0.6192	0.6189	0.024*	
H6B	0.8349	0.6799	0.5618	0.024*	
C7	0.7110 (6)	0.8763 (3)	0.6279 (2)	0.0210 (10)	
H7	0.7143	0.9050	0.5808	0.025*	
C8	0.7039(7)	0.8602 (4)	0.7485 (2)	0.0261 (11)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H8	0 7017	0 8767	0 7981	0.031*
C9	0.7073 (6)	0.7634 (4)	0.7195 (2)	0.0240 (10)
H9	0.7065	0.7006	0.7456	0.029*
C10	0.7066 (7)	1.0449 (3)	0.6937 (2)	0.0241 (10)
H10A	0.6794	1.0784	0.6458	0.029*
H10B	0.8232	1.0484	0.7051	0.029*
C11	0.5801 (6)	1.1092 (3)	0.7502 (2)	0.0237 (10)
HIIA	0.5744	1.1855	0.7456	0.028*
H11B	0.4644	1.0997	0.7439	0.028*
C12	0.5707 (6)	1.1236 (3)	0.8828 (2)	0.0196 (9)
C13	0 4385 (6)	1 2174 (3)	0.8799(3)	0.0246(10)
H13	0 3939	1 2440	0.8347	0.030*
C14	0 3706 (6)	1 2731 (4)	0.9440(3)	0.0286 (11)
H14	0 2796	1 3356	0.9415	0.034*
C15	0.4388 (6)	1 2352 (4)	1 0106 (3)	0.0299(11)
H15	0.3952	1.2332 (1)	1.0532	0.036*
C16	0.5722 (6)	1 1412 (4)	1.0332 1.0147 (2)	0.0230(10)
C17	0.6479 (6)	1.1112(1) 1.1053(4)	1.0117(2) 1.0879(2)	0.0230(10) 0.0277(11)
C18	0.7802 (6)	1.0009 (4)	1.0075(2) 1.0945(2)	0.0245(10)
C19	0.7302(0) 0.8386(7)	0.9673(4)	1 1646 (2)	0.0213(10) 0.0303(12)
H19	0.7945	1 0098	1 2052	0.036*
C20	0.9628 (7)	0.8701 (4)	1.2032 1 1732 (2)	0.030
H20	1 0008	0.8475	1 2201	0.037*
C21	1.0000 1.0319(7)	0.8060 (4)	1.2201 1 1136 (2)	0.0279(11)
H21	1 1157	0.7410	1 1204	0.0279 (11)
C22	0.9738 (6)	0.7410 0.8400 (4)	1.0423 (2)	0.035 0.0206 (10)
C23	0.8463 (6)	0.9375(3)	1.0129(2) 1.0320(2)	0.0206(10)
C24	0.7757 (6)	0.9373(3)	0.9574(2)	0.0200(10)
C25	0.6409 (6)	1 0806 (3)	0.9577(2) 0.9513(2)	0.0193 (9)
C26	1 1559 (6)	0.6745(4)	0.9913(2) 0.9962(2)	0.0175(7)
H26A	1.1995 (0)	0.6313	1 0277	0.0270(11)
H26R	1.0595	0.6824	1.0203	0.033*
C27	1.2390	0.0024 0.6212 (4)	0.0205	0.033
	1.2049 (7)	0.0212 (4)	0.9225 (5)	0.0333 (12)
1127A 1127B	1.2995	0.5500	0.9285	0.040*
1127D	1.2430	0.0700	0.0093	0.040°
C20	1.0321(0) 1.1464(7)	0.3993(3) 0.3730(4)	0.0423(3) 0.7117(3)	0.0210(10)
	1.1404 (7)	0.3739 (4)	0.7117 (5)	0.0310 (11)
H29A H20D	1.2090	0.3338	0.7012	0.040*
H29D	1.1138	0.3150	0.7303	0.046*
П29C	1.11/2	0.4302 0.2126 (4)	0.7427 0.2207(2)	0.040°
C30	0.8230(0)	0.3130(4) 0.2415(4)	0.3397(3)	0.0200(11)
	0.0075 (7)	0.2413 (4)	0.2790 (3)	0.0303 (13)
IJ21D	0.0302	0.1088	0.2983	0.057*
	0.0930	0.2447	0.2410	0.057*
пл	0.0945	0.2039	0.2003	0.05/**

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0270 (2)	0.0223 (2)	0.0255 (2)	-0.00068 (16)	-0.00450 (15)	-0.00217 (15)
Br1	0.0453 (4)	0.0449 (4)	0.0436 (4)	-0.0092 (3)	-0.0102 (3)	-0.0097 (3)
P1	0.0207 (6)	0.0191 (6)	0.0130 (6)	-0.0012 (5)	-0.0021 (4)	0.0012 (5)
P2	0.0289 (7)	0.0217 (6)	0.0232 (6)	-0.0068 (5)	-0.0067 (5)	0.0027 (5)
F1	0.0292 (16)	0.0306 (15)	0.0346 (15)	-0.0105 (13)	-0.0048 (12)	0.0012 (12)
F2	0.0294 (15)	0.0287 (14)	0.0195 (13)	-0.0040 (12)	0.0066 (11)	-0.0033 (11)
F3	0.0364 (16)	0.0287 (15)	0.0169 (13)	-0.0014 (12)	-0.0066 (11)	0.0089 (11)
F4	0.0333 (16)	0.0279 (14)	0.0301 (15)	-0.0107 (13)	-0.0076 (12)	-0.0040 (12)
F5	0.0312 (16)	0.0242 (14)	0.0214 (13)	0.0075 (12)	0.0056 (11)	0.0005 (11)
F6	0.0295 (15)	0.0271 (14)	0.0188 (13)	0.0073 (12)	-0.0032 (11)	0.0065 (11)
F8	0.075 (3)	0.0322 (17)	0.0439 (19)	-0.0153 (17)	0.0184 (17)	-0.0086 (14)
F7A	0.101 (5)	0.025 (2)	0.048 (3)	-0.019 (3)	0.016 (4)	-0.014 (2)
F9A	0.052 (3)	0.069 (4)	0.104 (4)	-0.041 (3)	0.001 (3)	0.003 (4)
F10A	0.081 (5)	0.047 (3)	0.039 (3)	-0.008 (3)	-0.029 (3)	0.017 (2)
F11A	0.031 (3)	0.039 (3)	0.101 (4)	-0.010 (2)	0.021 (2)	-0.008 (3)
F12A	0.100 (5)	0.045 (3)	0.030 (3)	0.003 (3)	-0.032 (3)	0.003 (2)
F7B	0.077 (9)	0.025 (6)	0.040 (7)	-0.020(7)	-0.004 (8)	-0.006 (5)
F9B	0.039 (7)	0.064 (9)	0.073 (8)	-0.015 (7)	-0.009 (6)	-0.010 (7)
F10B	0.047 (7)	0.043 (6)	0.031 (6)	-0.017 (6)	-0.002 (6)	0.007 (5)
F11B	0.056 (7)	0.086 (9)	0.084 (8)	-0.009 (7)	-0.007 (6)	0.002 (7)
F12B	0.063 (9)	0.042 (7)	0.039 (7)	-0.014 (7)	0.014 (7)	0.019 (6)
01	0.0293 (18)	0.0182 (15)	0.0139 (15)	0.0003 (13)	-0.0081 (13)	-0.0001 (12)
O2	0.056 (2)	0.0275 (18)	0.0143 (17)	0.0098 (17)	-0.0124 (16)	-0.0040 (14)
03	0.034 (2)	0.0247 (17)	0.0147 (15)	-0.0007 (14)	-0.0071 (13)	0.0042 (13)
O4	0.055 (3)	0.049 (2)	0.0219 (19)	-0.014 (2)	0.0068 (17)	-0.0133 (17)
N1	0.023 (2)	0.0153 (18)	0.0153 (18)	-0.0027 (15)	-0.0030 (15)	0.0011 (15)
N2	0.021 (2)	0.0151 (18)	0.0160 (18)	-0.0034 (15)	-0.0044 (15)	0.0016 (15)
N3	0.026 (2)	0.0179 (18)	0.0122 (18)	-0.0070 (16)	-0.0040 (15)	0.0020 (15)
N4	0.024 (2)	0.0193 (19)	0.029 (2)	-0.0021 (17)	-0.0014 (18)	0.0023 (17)
N5	0.029 (2)	0.029 (2)	0.022 (2)	-0.0064 (18)	-0.0064 (17)	-0.0001 (18)
C1	0.026 (3)	0.022 (2)	0.020 (2)	-0.009(2)	-0.0059 (19)	0.0000 (19)
C2	0.022 (2)	0.027 (2)	0.023 (2)	-0.010 (2)	-0.0094 (19)	0.004 (2)
C3	0.019 (2)	0.019 (2)	0.031 (3)	-0.0040 (19)	-0.0051 (19)	0.0036 (19)
C4	0.023 (2)	0.016 (2)	0.021 (2)	-0.0057 (18)	-0.0014 (18)	-0.0008 (18)
C5	0.021 (2)	0.016 (2)	0.017 (2)	-0.0072 (18)	-0.0028 (17)	0.0023 (17)
C6	0.024 (2)	0.017 (2)	0.018 (2)	-0.0010 (18)	-0.0066 (18)	-0.0029 (18)
C7	0.028 (3)	0.023 (2)	0.012 (2)	-0.006(2)	-0.0053 (18)	0.0029 (18)
C8	0.042 (3)	0.025 (2)	0.014 (2)	-0.013 (2)	-0.004(2)	0.0014 (19)
C9	0.038 (3)	0.021 (2)	0.014 (2)	-0.010 (2)	-0.0018 (19)	0.0009 (18)
C10	0.043 (3)	0.017 (2)	0.015 (2)	-0.012 (2)	-0.004(2)	0.0027 (18)
C11	0.035 (3)	0.017 (2)	0.018 (2)	-0.005 (2)	-0.0090 (19)	0.0026 (18)
C12	0.020 (2)	0.022 (2)	0.020 (2)	-0.0101 (19)	-0.0017 (18)	-0.0020 (18)
C13	0.025 (3)	0.022 (2)	0.027 (2)	-0.005(2)	-0.003(2)	0.001 (2)
C14	0.026 (3)	0.021 (2)	0.038 (3)	-0.005 (2)	0.002 (2)	-0.007 (2)
C15	0.031 (3)	0.028 (3)	0.031 (3)	-0.009(2)	0.012 (2)	-0.010 (2)

C16	0.027 (3)	0.025 (2)	0.022 (2)	-0.014 (2)	0.0038 (19)	-0.0032 (19)
C17	0.033 (3)	0.033 (3)	0.021 (2)	-0.018 (2)	0.006 (2)	-0.007 (2)
C18	0.031 (3)	0.036 (3)	0.014 (2)	-0.022 (2)	0.0004 (19)	0.002 (2)
C19	0.044 (3)	0.043 (3)	0.012 (2)	-0.028 (3)	0.002 (2)	-0.004 (2)
C20	0.047 (3)	0.045 (3)	0.012 (2)	-0.032 (3)	-0.011 (2)	0.009 (2)
C21	0.034 (3)	0.034 (3)	0.021 (2)	-0.017 (2)	-0.011 (2)	0.008 (2)
C22	0.025 (3)	0.029 (2)	0.013 (2)	-0.016 (2)	-0.0044 (18)	0.0019 (18)
C23	0.026 (2)	0.025 (2)	0.016 (2)	-0.015 (2)	-0.0014 (18)	-0.0019 (18)
C24	0.026 (3)	0.023 (2)	0.013 (2)	-0.011 (2)	-0.0039 (18)	0.0018 (19)
C25	0.024 (2)	0.019 (2)	0.016 (2)	-0.0082 (19)	0.0023 (18)	-0.0031 (18)
C26	0.030 (3)	0.025 (2)	0.027 (3)	-0.006 (2)	-0.007 (2)	0.006 (2)
C27	0.029 (3)	0.034 (3)	0.035 (3)	-0.003 (2)	-0.002 (2)	-0.002 (2)
C28	0.020 (2)	0.016 (2)	0.027 (3)	-0.0017 (18)	0.001 (2)	-0.0034 (19)
C29	0.034 (3)	0.027 (3)	0.030(3)	-0.003 (2)	-0.011 (2)	-0.002 (2)
C30	0.025 (3)	0.029 (3)	0.026 (3)	-0.007 (2)	-0.004 (2)	0.003 (2)
C31	0.048 (4)	0.033 (3)	0.032 (3)	-0.006 (3)	-0.006 (2)	-0.011 (2)

Geometric parameters (Å, °)

Ag1—N4	2.230 (4)	С6—Н6А	0.9700
Ag1—N5	2.256 (4)	C6—H6B	0.9700
Ag1—N1	2.284 (4)	С7—Н7	0.9300
Br1-C27	1.961 (5)	C8—C9	1.351 (6)
P1—F2	1.601 (3)	C8—H8	0.9300
P1—F1	1.602 (3)	С9—Н9	0.9300
P1—F5	1.606 (3)	C10—C11	1.511 (6)
P1—F4	1.606 (3)	C10—H10A	0.9700
P1—F6	1.608 (2)	C10—H10B	0.9700
P1—F3	1.609 (3)	C11—H11A	0.9700
P2—F9A	1.560 (5)	C11—H11B	0.9700
P2—F11B	1.564 (14)	C12—C13	1.376 (6)
P2—F10A	1.563 (5)	C12—C25	1.424 (6)
P2—F7A	1.600 (6)	C13—C14	1.397 (6)
P2—F8	1.585 (3)	С13—Н13	0.9300
P2—F11A	1.609 (5)	C14—C15	1.372 (7)
P2—F12A	1.612 (5)	C14—H14	0.9300
P2—F7B	1.607 (15)	C15—C16	1.385 (7)
P2—F9B	1.608 (14)	C15—H15	0.9300
P2—F10B	1.608 (13)	C16—C25	1.415 (6)
P2—F12B	1.588 (14)	C16—C17	1.494 (6)
O1—C12	1.376 (5)	C17—C18	1.476 (7)
01—C11	1.438 (5)	C18—C19	1.394 (6)
O2—C24	1.217 (5)	C18—C23	1.414 (6)
O3—C22	1.364 (5)	C19—C20	1.382 (7)
O3—C26	1.427 (5)	C19—H19	0.9300
O4—C17	1.225 (5)	C20—C21	1.382 (7)
N1C5	1.351 (5)	C20—H20	0.9300
N1	1.351 (5)	C21—C22	1.415 (6)

N2—C7	1.326 (5)	C21—H21	0.9300
N2—C9	1.384 (5)	C22—C23	1.403 (6)
N2—C6	1.471 (5)	C23—C24	1.506 (6)
N3—C7	1.321 (5)	C24—C25	1.505 (6)
N3—C8	1.386 (5)	C26—C27	1.510(7)
N3—C10	1.479 (5)	С26—Н26А	0.9700
N4—C28	1 122 (6)	C26—H26B	0.9700
N5-C30	1 129 (6)	C27—H27A	0.9700
C1-C2	1.129 (6)	C27—H27B	0.9700
C1H1	0.9300	C_{28} C_{29} C_{29}	1 476 (6)
$C_2 = C_3$	1 308 (6)	$C_{20} = C_{29}$	0.0600
$C_2 = C_3$	1.338 (0)	C29—1129A C20 H20P	0.9000
$C_2 = C_4$	0.9300	С29—Н29В	0.9000
$C_3 = C_4$	1.377(0)	C29—H29C	0.9600
	0.9300	C_{30} $-C_{31}$	1.467 (7)
C4—C5	1.381 (6)	C31—H31A	0.9600
C4—H4	0.9300	С31—Н31В	0.9600
C5—C6	1.522 (6)	С31—Н31С	0.9600
N4—Ag1—N5	127.22 (14)	N2—C6—C5	114.4 (3)
N4—Ag1—N1	119.44 (13)	N2—C6—H6A	108.6
N5—Ag1—N1	113.27 (13)	С5—С6—Н6А	108.6
F2—P1—F1	90.22 (15)	N2—C6—H6B	108.6
F2—P1—F5	179.42 (16)	С5—С6—Н6В	108.6
F1—P1—F5	89.84 (15)	H6A—C6—H6B	107.6
F2P1F4	89.66 (15)	N3—C7—N2	109.3 (4)
F1F4	179.30 (16)	N3—C7—H7	125.4
F5—P1—F4	90 28 (15)	N2-C7-H7	125.4
F2P1F6	90.03 (14)	C9 - C8 - N3	125.1 106 5 (4)
F1P1F6	90.03 (11)	C9 - C8 - H8	126.8
F5P1F6	90.27 (13) 89 39 (14)	N3_C8_H8	126.8
F4 P1 F6	90.42(15)	$C_8 = C_9 = N_2$	120.0 107.4(4)
$F_2 = P_1 = F_2$	90.42(13) 90.77(14)	$C_{0} = C_{0} = 1\sqrt{2}$	107.4 (+)
$F_2 - F_1 - F_3$	90.77 (14) 90.95 (15)	$N_{2} = C_{2} = H_{1}$	120.3
$\Gamma I - \Gamma I - \Gamma 3$	89.83(13)	$N_2 = C_9 = H_9$	120.3
F_{3} F_{1} F_{3} F_{4} F_{1} F_{3}	89.61(14)	N_{3} C_{10} U_{10A}	114.1 (4)
F4 - F1 - F3	89.40 (14) 170.19 (16)	N_{3} C_{10} H_{10A}	108.7
FO - PI - F3	1/9.18 (16)	CII - CI0 - HI0A	108.7
F9A—P2—F11B	148.0 (9)	N3-C10-HI0B	108.7
F9A—P2—F10A	90.0 (4)	CII—CIO—HI0B	108.7
FIIB—P2—FIOA	64.6 (8)	H10A—C10—H10B	107.6
F9A—P2—F7A	92.0 (3)	O1—C11—C10	106.2 (4)
F11B—P2—F7A	70.3 (8)	O1—C11—H11A	110.5
F10A—P2—F7A	90.5 (4)	C10—C11—H11A	110.5
F9A—P2—F8	93.4 (3)	O1—C11—H11B	110.5
F11B—P2—F8	104.5 (9)	C10—C11—H11B	110.5
F10A—P2—F8	88.7 (3)	H11A—C11—H11B	108.7
F7A—P2—F8	174.5 (4)	C13—C12—O1	122.7 (4)
F9A—P2—F11A	178.8 (3)	C13—C12—C25	120.8 (4)
F10A—P2—F11A	90.0 (3)	O1—C12—C25	116.5 (4)

F7A—P2—F11A	89.2 (3)	C12—C13—C14	120.9 (4)
F8—P2—F11A	85.4 (2)	C12—C13—H13	119.5
F9A—P2—F12A	92.6 (4)	C14—C13—H13	119.5
F11B—P2—F12A	114.0 (8)	C15—C14—C13	119.6 (5)
F10A—P2—F12A	176.0 (3)	C15—C14—H14	120.2
F7A—P2—F12A	92.5 (4)	C13—C14—H14	120.2
F8—P2—F12A	88.1 (3)	C14—C15—C16	120.4 (4)
F11A—P2—F12A	87.4 (3)	C14—C15—H15	119.8
F9A—P2—F7B	69.7 (8)	C16—C15—H15	119.8
F11B—P2—F7B	94 2 (10)	C_{15} C_{16} C_{25}	1217(4)
F10A = P2 = F7B	98.9 (9)	$C_{15} - C_{16} - C_{17}$	121.7(1) 1186(4)
F8 P2 F7B	161 3 (8)	C_{25} C_{16} C_{17}	110.0(1) 119.7(4)
$F_{11} = P_{2} = F_{7} = F_{7}$	111 5 (8)	04-C17-C18	119.7(1) 120.4(4)
$F12\Delta P2 F7B$	84 8 (9)	04-C17-C16	120.7(7) 120.2(5)
F11R P2 F0R	1771(10)	C_{18} C_{17} C_{16}	120.2(3) 110.5(4)
F10A P2 F0B	1/7.1(10) 113 1 (7)	$C_{10} = C_{17} = C_{10}$	119.3(+) 121.1(5)
$F_{10} = F_{2} = F_{20}$	113.1(7) 108 4 (7)	$C_{10} = C_{10} = C_{20}$	121.1(3)
$\Gamma / A - \Gamma 2 - \Gamma 9 D$	100.4(7)	C19 - C18 - C17	117.3(4) 121.4(4)
F8 - F2 - F9B	/0.8 (/)	$C_{23} = C_{18} = C_{17}$	121.4(4)
F11A - F2 - F9B	130.1(8)	$C_{20} = C_{19} = C_{18}$	119.4 (4)
F12A - P2 - F9B	68.5 (<i>1</i>)	C10 C10 H10	120.3
F/B - P2 - F9B	84.4 (9)	C18—C19—H19	120.3
F9A—P2—F10B	62.8 (6)	C19 - C20 - C21	121.5 (4)
F11B—P2—F10B	90.8 (9)	С19—С20—Н20	119.3
F7A—P2—F10B	92.6 (7)	С21—С20—Н20	119.3
F8—P2—F10B	89.2 (6)	C20—C21—C22	119.4 (5)
F11A—P2—F10B	117.2 (7)	C20—C21—H21	120.3
F12A—P2—F10B	155.0 (7)	C22—C21—H21	120.3
F7B—P2—F10B	90.0 (11)	O3—C22—C23	119.2 (4)
F9B—P2—F10B	86.7 (9)	O3—C22—C21	120.5 (4)
F9A—P2—F12B	115.1 (7)	C23—C22—C21	120.3 (4)
F11B—P2—F12B	88.7 (10)	C22—C23—C18	118.3 (4)
F10A—P2—F12B	153.3 (7)	C22—C23—C24	121.9 (4)
F7A—P2—F12B	80.1 (8)	C18—C23—C24	119.8 (4)
F8—P2—F12B	98.3 (7)	O2—C24—C25	121.3 (4)
F11A—P2—F12B	65.1 (7)	O2—C24—C23	120.4 (4)
F7B—P2—F12B	82.6 (11)	C25—C24—C23	118.3 (4)
F9B—P2—F12B	93.7 (9)	C16—C25—C12	116.6 (4)
F10B—P2—F12B	172.5 (10)	C16—C25—C24	121.0 (4)
C12—O1—C11	118.6 (3)	C12—C25—C24	122.4 (4)
C22—O3—C26	117.3 (3)	O3—C26—C27	107.0 (4)
C5—N1—C1	118.0 (4)	O3—C26—H26A	110.3
C5—N1—Ag1	125.6 (3)	С27—С26—Н26А	110.3
C1—N1—Ag1	116.1 (3)	O3—C26—H26B	110.3
C7—N2—C9	108.1 (3)	C27—C26—H26B	110.3
C7—N2—C6	126.9 (4)	H26A—C26—H26B	108.6
C9—N2—C6	124.8 (3)	C26—C27—Br1	111.7 (3)
C7—N3—C8	108.7 (4)	С26—С27—Н27А	109.3
C7—N3—C10	124.6 (3)	Br1—C27—H27A	109.3

C8—N3—C10	126.6 (3)	С26—С27—Н27В	109.3
C28—N4—Ag1	173.0 (4)	Br1—C27—H27B	109.3
C30—N5—Ag1	169.3 (4)	H27A—C27—H27B	107.9
N1-C1-C2	123.0 (4)	N4—C28—C29	179.2 (5)
N1—C1—H1	118.5	C28—C29—H29A	109.5
C2—C1—H1	118.5	C28—C29—H29B	109.5
C1—C2—C3	118.3 (4)	H29A—C29—H29B	109.5
C1—C2—H2	120.8	C28—C29—H29C	109.5
$C_3 - C_2 - H_2$	120.8	$\frac{1}{129} = \frac{1}{129} = \frac{1}$	109.5
C_{4} C_{3} C_{2}	118.9 (4)	H20R C20 H20C	109.5
$C_1 = C_2 = C_2$	120.5	$N_{2} = C_{2} = C_{2}$	172.0 (5)
$C_4 - C_5 - H_3$	120.5	$N_{3} = C_{30} = C_{31}$	178.0 (3)
C2—C3—H3	120.5	Сзо—Сэ1—нэ1А	109.3
C_{3} $-C_{4}$ $-C_{5}$	119.7 (4)	C30—C31—H31B	109.5
С3—С4—Н4	120.2	H31A—C31—H31B	109.5
С5—С4—Н4	120.2	C30—C31—H31C	109.5
N1—C5—C4	122.1 (4)	H31A—C31—H31C	109.5
N1—C5—C6	113.6 (4)	H31B—C31—H31C	109.5
C4—C5—C6	124.3 (4)		
N4—Ag1—N1—C5	9.4 (4)	C15—C16—C17—O4	-4.4 (7)
N5—Ag1—N1—C5	-167.7 (3)	C25—C16—C17—O4	173.9 (4)
N4—Ag1—N1—C1	-164.6 (3)	C15—C16—C17—C18	175.1 (4)
N5—Ag1—N1—C1	18.2 (3)	C25—C16—C17—C18	-6.6 (6)
N5—Ag1—N4—C28	-129(3)	O4—C17—C18—C19	3.7 (7)
N1 - Ag1 - N4 - C28	55 (3)	C16—C17—C18—C19	-175.8(4)
N4 Ag1 N5 C30	96 (2)	04-C17-C18-C23	-175.9(4)
N1 - Ag1 - N5 - C30	-87(2)	C16-C17-C18-C23	46(6)
C_{5} N1 C_{1} C_{2}	-0.4(6)	C^{23} C^{18} C^{19} C^{20}	-0.2(7)
A_{g1} N1 C1 C2	1741(3)	$C_{23} = C_{10} = C_{10} = C_{20}$	-170.8(4)
$\frac{1}{10000000000000000000000000000000000$	-1.5(7)	C18 C19 C20 C21	179.8(+)
$N_{1} = C_{1} = C_{2} = C_{3}$	1.3(7)	$C_{10} = C_{10} = C_{20} = C_{21} = C_{22}$	0.7(7)
C1 - C2 - C3 - C4	1.0(0)	C19 - C20 - C21 - C22	-0.3(7)
$C_2 - C_3 - C_4 - C_3$	0.1(6)	$C_{20} = 0_{3} = C_{22} = C_{23}$	-1/3.8(4)
CI_NI_C5_C4	2.2 (6)	$C_{26} = 0_{3} = C_{22} = C_{21}$	5.6 (6)
Agl—NI—C5—C4	-171.7 (3)	C20—C21—C22—O3	-179.9 (4)
C1—N1—C5—C6	-175.5 (4)	C20—C21—C22—C23	-0.5 (6)
Ag1—N1—C5—C6	10.5 (5)	O3—C22—C23—C18	-179.7 (4)
C3—C4—C5—N1	-2.1 (6)	C21—C22—C23—C18	0.9 (6)
C3—C4—C5—C6	175.4 (4)	O3—C22—C23—C24	2.1 (6)
C7—N2—C6—C5	-66.6 (6)	C21—C22—C23—C24	-177.3 (4)
C9—N2—C6—C5	118.8 (4)	C19—C18—C23—C22	-0.6 (6)
N1C5	177.8 (4)	C17—C18—C23—C22	179.0 (4)
C4—C5—C6—N2	0.1 (6)	C19—C18—C23—C24	177.7 (4)
C8—N3—C7—N2	0.9 (5)	C17—C18—C23—C24	-2.7 (6)
C10—N3—C7—N2	178.2 (4)	C22—C23—C24—O2	3.8 (7)
C9—N2—C7—N3	-0.5 (5)	C18—C23—C24—O2	-174.5 (4)
C6-N2-C7-N3	-175.8(4)	C_{22} C_{23} C_{24} C_{25}	-1791(4)
C7-N3-C8-C9	-10(5)	C_{18} C_{23} C_{24} C_{25}	26(6)
C_{10} N3 C_{8} C_{9}	-1782(4)	C_{15} C_{16} C_{25} C_{24} C_{25} C_{12}	2.5 (6)
010-110-00-09	1/0.2 (7)	013 - 010 - 023 - 012	2.5 (0)

N3—C8—C9—N2	0.7 (5)	C17—C16—C25—C12	-175.8 (4)
C7—N2—C9—C8	-0.1 (5)	C15—C16—C25—C24	-175.0 (4)
C6—N2—C9—C8	175.3 (4)	C17—C16—C25—C24	6.7 (6)
C7—N3—C10—C11	137.8 (4)	C13—C12—C25—C16	-2.2 (6)
C8—N3—C10—C11	-45.3 (6)	O1—C12—C25—C16	176.1 (4)
C12—O1—C11—C10	169.7 (3)	C13—C12—C25—C24	175.2 (4)
N3—C10—C11—O1	68.5 (5)	O1—C12—C25—C24	-6.5 (6)
C11—O1—C12—C13	-0.9 (6)	O2—C24—C25—C16	172.3 (4)
C11—O1—C12—C25	-179.2 (4)	C23—C24—C25—C16	-4.8 (6)
O1-C12-C13-C14	-177.9 (4)	O2—C24—C25—C12	-5.0 (7)
C25—C12—C13—C14	0.4 (7)	C23—C24—C25—C12	177.9 (4)
C12—C13—C14—C15	1.4 (7)	C22—O3—C26—C27	178.1 (4)
C13—C14—C15—C16	-1.1 (7)	O3-C26-C27-Br1	-69.2 (4)
C14—C15—C16—C25	-0.8 (7)	Ag1-N4-C28-C29	-146 (40)
C14—C15—C16—C17	177.5 (4)	Ag1-N5-C30-C31	-17 (17)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the N2/N3/C7–C9 imidazole rings and C12–C16/C25 anthraquinone rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C26—H26 <i>B</i> ··· <i>Cg</i> 3 ⁱ	0.97	2.98	3.845 (5)	148
C31—H31 B ···Cg1 ⁱⁱ	0.96	3.38	3.781 (4)	108

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+2; (ii) -*x*, -*y*+1, -*z*+1.