Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(6-{2-[6-(2,2-Dimethylpropanamido)-2-pyridyl]ethyl]-2-pyridyl)-2,2-dimethylpropanamide

Hoong-Kun Fun,^a* Wan-Sin Loh,^a Nirmal Kumar Das,^b Debabrata Sen^b and Shyamaprosad Goswami^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal, India Correspondence e-mail: hkfun@usm.my

Received 11 June 2010; accepted 15 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ () = 0.000 Å; disorder in main residue; R factor = 0.062; wR factor = 0.161; data-to-parameter ratio = 12.6.

The title compound, $C_{22}H_{30}N_4O_2$, lies about a crystallographic inversion center. The whole molecule is disordered over two positions with a refined occupancy ratio of 0.636(10): 0.364 (10). The pyridine rings are approximately planar, with maximum deviations of 0.033 (10) and 0.063 (17) Å for the major and minor components, respectively. The mean planes of the pyridine rings form dihedral angles of $17 (2)^{\circ}$ in the major component and $18 (2)^{\circ}$ in the minor component with the respective formamide groups attached to them. In the crystal packing, intermolecular N-H···O and C-H···O hydrogen bonds link the molecules into two-dimensional networks parallel to the *ab* plane.

Related literature

For the importance of dicarboxylic acids and their derivatives, see: Garcia-Tellado et al. (1990); Geib et al. (1993); Karle et al. (1997); Goswami, Dey, Fun et al. (2005); Goswami et al. (2006, 2008). For a related structure, see: Goswami, Dey, Chantrapromma et al. (2005). For the preparation, see: Yamada & Momose (1981); Goswami et al. (1989).

Experimental Crystal data

C22H30N4O2 V = 2183.94 (9) Å³ $M_r = 382.50$ Z = 4Orthorhombic, Pbca Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ a = 11.7933 (3) Å b = 10.3648 (2) Å T = 296 Kc = 17.8667 (4) Å $0.36 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.973, T_{\max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	12 restraints
$wR(F^2) = 0.161$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.17 \text{ e} \text{ Å}^{-3}$
3221 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
256 parameters	

36712 measured reflections

 $R_{\rm int}=0.076$

3221 independent reflections

1678 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\text{C10}A - \text{H10}C \cdots \text{O1}A^{\text{i}}}$ $\text{N2}A - \text{H2}AB \cdots \text{O1}A^{\text{i}}$	0.96	2.46	3.409 (12)	171
	0.86	2.26	3.100 (16)	168

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/ PFIZIK/811012). NKD, DS and SG thank the DST [SR/S1/ OC-13/2005] and CSIR [01 (1913)/04/EMR-II], Government of India, for financial support. WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship. NKD also thanks the UGC, Government of India, for a Research Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5021).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Garcia-Tellado, F., Goswami, S., Chang, S. K., Geib, S. J. & Hamilton, A. D. (1990). J. Am. Chem. Soc. 112, 7393-7394.
- Geib, S. J., Vicent, C., Fan, E. & Hamilton, A. D. (1993). Angew. Chem. Int. Ed. Engl. 32, 119-121
- Goswami, S., Dey, S., Chantrapromma, S. & Fun, H.-K. (2005). Acta Cryst. E61. o105-o107.
- Goswami, S., Dey, S., Fun, H.-K., Anjum, S. & Rahman, A.-U. (2005). Tetrahedron Lett. 46, 7187-7191.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

[§] Thomson Reuters ResearcherID: C-7581-2009.

- Goswami, S., Hamilton, A. D. & Van Engen, D. (1989). J. Am. Chem. Soc. 111, 3425-3426.
- Goswami, S., Jana, S., Dey, S., Razak, I. A. & Fun, H.-K. (2006). Supramol. Chem. 18, 571-574.
- Goswami, S., Jana, S. & Fun, H.-K. (2008). CrystEngComm, 10, 507-517.
- Karle, I. L., Ranganathan, D. & Haridas, V. (1997). J. Am. Chem. Soc. 119, 2777-278.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
 Yamada, Y. & Momose, D. (1981). Chem. Lett. pp. 1277–1278.

Acta Cryst. (2010). E66, o1960-o1961 [https://doi.org/10.1107/S1600536810023068]

N-(6-{2-[6-(2,2-Dimethylpropanamido)-2-pyridyl]ethyl}-2-pyridyl)-2,2-dimethylpropanamide

Hoong-Kun Fun, Wan-Sin Loh, Nirmal Kumar Das, Debabrata Sen and Shyamaprosad Goswami

S1. Comment

The recognition of biologically important substrates like dicarboxylic acids by bis-pyridine amide is one of the most important areas of research in supramolecular chemistry as well as in the design of materials through new crystal engineering (Garcia-Tellado *et al.*, 1990; Geib *et al.*, 1993; Karle *et al.*, 1997; Goswami, Dey, Fun *et al.*, 2005; Goswami *et al.*, 2006, 2008). The title compound can be used as receptor for dicarboxylic acids with the ethylene group acting as a spacer.

The title compound, (Fig. 1), lies about a crystallographic inversion center (symmetry code = -x, -y + 1, -z + 1). The molecule has a whole-molecule disorder over two positions with a refined ratio of 0.636 (10): 0.364 (10). In the molecule, the pyridine rings (C1–C5/N1) are approximately planar with the maximum deviations of 0.033 (10) Å at N1A and 0.063 (17) Å at C1B for the major and minor components, respectively. The mean planes of these pyridine rings form dihedral angles of 17 (2)° in the major component and 18 (2)° in the minor component with the respective formamide groups (N2/C6/O1) attached to them. This crystal structure is closely related to that of *N*-[6-(hydroxymethyl)pyridin-2-yl]-2,2-dimethylpropanamide (Goswami, Dey, Chantrapromma *et al.*, 2005).

In the crystal packing (Fig. 2 & Fig. 3), intermolecular N—H…O and C—H…O hydrogen bonds (Table 1) link the molecules into a two-dimensional network parallel to the *ab* plane.

S2. Experimental

The title compound is synthesized by a known reaction procedure (Yamada & Momose, 1981; Goswami *et al.*, 1989) as follows. In a round-bottomed flask, *N*-(6-bromomethyl-pyridine-2-yl)-2,2-dimethyl propionamide (500 mg, 1.84 mmol) and Co(PPh₃)₃Cl (1.76 g, 2 mmol) was kept under nitrogen atmosphere. Dry, degassed benzene (50 ml) was added dropwise to the flask maintaining at 0–15 °C temperature around the flask. The reaction was continued for half an hour. The deep green colour turns blue, an indication of the completion of the reaction. Then benzene was evaporated and the product extracted with CHCl₃. The solvent was then evaporated and purified by silica gel (100–200 mesh) column chromatography using ethyl acetate and petroleum ether (1:4) as eluent. Single crystals were grown by slow evaporation of a chloroform-methanol (8:2) solution of 1,2-bis(2-pivaloylamino-6-pyridyl)ethane (*m.p.* = 489–491 K, 194 mg, yield = 55%).

S3. Refinement

All the H atoms were positioned geometrically [C-H = 0.93 to 0.97 Å; N-H = 0.86 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C, N)$ or 1.5 $U_{eq}(C)$. Rigid bond restraint (SAME) was applied to the pyridine ring. The whole molecule is disordered over two positions with a refined ratio of 0.636 (10): 0.364 (10). In the final difference Fourier map, the highest peak and the deepest hole are 0.66 and 0.37 Å from H11D and H11A, respectively.

Figure 1

The molecular structure of the title compound, showing 20% probability displacement ellipsoids and the atom-numbering scheme. Both major and minor components are shown. Atoms with suffix \$ are generated by the symmetry code -x, -y + 1, -z + 1.

Figure 2

The two-dimensional networks formed by intermolecular N—H…O and C—H…O hydrogen bonds (dashed lines) parallel to the *ab* plane. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity. Only the major disorder component is shown.

The crystal packing of the title compound, viewed along the b axis, showing the two-dimensional networks. H atoms not involved in intermolecular interactions have been omitted for clarity. Only the major disorder component is shown.

N-(6-{2-[6-(2,2-Dimethylpropanamido)-2-pyridyl]ethyl}-2-pyridyl)-2,2- dimethylpropanamide

Crystal data
$C_{22}H_{30}N_4O_2$
$M_r = 382.50$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
a = 11.7933 (3) Å
b = 10.3648 (2) Å
c = 17.8667 (4) Å
V = 2183.94 (9) Å ³
Z=4

F(000) = 824 $D_x = 1.163 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2706 reflections $\theta = 2.9-20.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.36 \times 0.15 \times 0.10 \text{ mm}$ Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{\min} = 0.973, T_{\max} = 0.992$ Refinement	36712 measured reflections 3221 independent reflections 1678 reflections with $I > 2\sigma(I)$ $R_{int} = 0.076$ $\theta_{max} = 30.1^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -13 \rightarrow 16$ $k = -14 \rightarrow 14$ $l = -25 \rightarrow 25$
Pafinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.062$	H-atom parameters constrained
$wR(F^2) = 0.161$	$w = 1/[\sigma^2(F_o^2) + (0.0587P)^2 + 0.3829P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
3221 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
256 parameters	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
12 restraints	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0034 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

					_ ,
	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
O1A	0.2767 (12)	0.0598 (8)	0.3040 (6)	0.079 (3)	0.636 (10)
N2A	0.2446 (11)	0.2679 (14)	0.3392 (8)	0.0476 (18)	0.636 (10)
H2AB	0.2485	0.3473	0.3255	0.057*	0.636 (10)
N1A	0.1312 (9)	0.3395 (8)	0.4318 (5)	0.067 (3)	0.636 (10)
C1A	0.0598 (10)	0.3242 (10)	0.4903 (5)	0.073 (3)	0.636 (10)
C2A	0.0520 (10)	0.2138 (8)	0.5303 (5)	0.073 (4)	0.636 (10)
H2AA	0.0077	0.2109	0.5734	0.087*	0.636 (10)
C3A	0.1097 (10)	0.1060 (9)	0.5071 (4)	0.0587 (19)	0.636 (10)
H3AA	0.1019	0.0277	0.5320	0.070*	0.636 (10)
C4A	0.1794 (11)	0.1177 (8)	0.4459 (6)	0.055 (3)	0.636 (10)
H4AA	0.2226	0.0480	0.4297	0.066*	0.636 (10)
C5A	0.1845 (7)	0.2338 (8)	0.4088 (4)	0.041 (2)	0.636 (10)
C6A	0.2935 (10)	0.1758 (9)	0.2969 (5)	0.049 (3)	0.636 (10)
C7A	0.3538 (9)	0.2266 (9)	0.2207 (8)	0.052 (3)	0.636 (10)
C8A	0.2636 (6)	0.2620 (9)	0.1715 (3)	0.127 (4)	0.636 (10)
					()

H8AA	0.2196	0.1869	0.1594	0.191*	0.636 (10)
H8AB	0.2945	0.2982	0.1264	0.191*	0.636 (10)
H8AC	0.2160	0.3247	0.1955	0.191*	0.636 (10)
C9A	0.4357 (6)	0.1286 (6)	0.1954 (5)	0.113 (3)	0.636 (10)
H9AA	0.3960	0.0511	0.1820	0.169*	0.636 (10)
H9AB	0.4881	0.1101	0.2351	0.169*	0.636 (10)
H9AC	0.4764	0.1605	0.1528	0.169*	0.636 (10)
C10A	0.4251 (6)	0.3487 (4)	0.2434 (4)	0.0838 (18)	0.636 (10)
H10A	0.4634	0.3820	0.2001	0.126*	0.636 (10)
H10B	0.4800	0.3251	0.2806	0.126*	0.636 (10)
H10C	0.3754	0.4136	0.2632	0.126*	0.636 (10)
C11A	-0.0048 (12)	0.4445 (9)	0.5168 (6)	0.146 (4)	0.636 (10)
H11A	-0.0847	0.4225	0.5164	0.175*	0.636 (10)
H11B	0.0159	0.4583	0.5687	0.175*	0.636 (10)
O1B	0.304 (2)	0.0619 (16)	0.3078 (10)	0.089 (5)	0.364 (10)
N2B	0.257 (2)	0.254 (2)	0.3499 (15)	0.050 (4)	0.364 (10)
H2BB	0.2879	0.3288	0.3476	0.060*	0.364 (10)
N1B	0.1365 (16)	0.3484 (15)	0.4367 (9)	0.066 (5)	0.364 (10)
C1B	0.0801 (16)	0.3399 (14)	0.5017 (7)	0.049 (3)	0.364 (10)
C2B	0.0611 (19)	0.2206 (16)	0.5319 (7)	0.086 (8)	0.364 (10)
H2BA	0.0090	0.2085	0.5704	0.103*	0.364 (10)
C3B	0.122 (2)	0.1198 (19)	0.5029 (11)	0.094 (7)	0.364 (10)
H3BA	0.1199	0.0415	0.5283	0.113*	0.364 (10)
C4B	0.1855 (19)	0.1273 (16)	0.4388 (12)	0.066 (6)	0.364 (10)
H4BA	0.2232	0.0567	0.4184	0.079*	0.364 (10)
C5B	0.1887 (18)	0.2479 (16)	0.4074 (11)	0.064 (5)	0.364 (10)
C6B	0.2962 (18)	0.1758 (18)	0.2901 (10)	0.062 (6)	0.364 (10)
C7B	0.3565 (14)	0.2338 (18)	0.2344 (14)	0.053 (4)	0.364 (10)
C8B	0.4674 (12)	0.272 (3)	0.2505 (7)	0.187 (10)	0.364 (10)
H8BA	0.4664	0.3372	0.2884	0.281*	0.364 (10)
H8BB	0.5022	0.3051	0.2060	0.281*	0.364 (10)
H8BC	0.5097	0.1986	0.2681	0.281*	0.364 (10)
C9B	0.2959 (17)	0.340 (2)	0.1898 (11)	0.210 (12)	0.364 (10)
H9BA	0.2871	0.4152	0.2207	0.314*	0.364 (10)
H9BB	0.2227	0.3098	0.1743	0.314*	0.364 (10)
H9BC	0.3402	0.3617	0.1465	0.314*	0.364 (10)
C10B	0.3652 (19)	0.1244 (13)	0.1673 (7)	0.145 (7)	0.364 (10)
H10D	0.4015	0.1616	0.1243	0.218*	0.364 (10)
H10E	0.2904	0.0961	0.1540	0.218*	0.364 (10)
H10F	0.4088	0.0522	0.1847	0.218*	0.364 (10)
C11B	0.0373 (8)	0.4652 (12)	0.5286 (4)	0.060 (3)	0.364 (10)
H11C	0.1012	0.5200	0.5412	0.072*	0.364 (10)
H11D	-0.0062	0.4514	0.5740	0.072*	0.364 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
01A	0.128 (6)	0.036 (3)	0.072 (3)	-0.004 (3)	0.017 (3)	-0.009 (2)

N2A	0.055 (3)	0.041 (4)	0.047 (3)	0.007 (2)	0.015 (3)	0.003 (3)
N1A	0.081 (5)	0.049 (4)	0.070 (5)	-0.001 (3)	0.044 (4)	-0.002 (3)
C1A	0.076 (5)	0.076 (4)	0.065 (5)	0.005 (3)	0.020 (4)	-0.016 (3)
C2A	0.077 (5)	0.071 (6)	0.070 (6)	-0.011 (4)	0.025 (4)	-0.001 (4)
C3A	0.073 (4)	0.060 (3)	0.042 (3)	-0.007 (3)	0.001 (3)	0.008 (2)
C4A	0.074 (5)	0.043 (4)	0.048 (4)	-0.007 (3)	-0.006 (3)	0.016 (3)
C5A	0.042 (3)	0.040 (4)	0.041 (3)	0.008 (3)	0.004 (3)	-0.006 (3)
C6A	0.060 (5)	0.043 (5)	0.044 (3)	-0.003 (3)	0.001 (3)	0.014 (3)
C7A	0.069 (4)	0.046 (3)	0.043 (5)	-0.007 (2)	0.013 (3)	-0.004 (3)
C8A	0.085 (3)	0.235 (10)	0.062 (2)	-0.026 (5)	-0.013 (3)	0.065 (4)
C9A	0.106 (4)	0.073 (3)	0.159 (6)	0.004 (3)	0.073 (4)	-0.025 (3)
C10A	0.094 (4)	0.071 (3)	0.086 (3)	-0.021 (2)	0.025 (3)	0.000 (2)
C11A	0.181 (9)	0.091 (4)	0.165 (8)	0.045 (7)	0.105 (6)	0.014 (6)
O1B	0.129 (11)	0.062 (7)	0.074 (6)	0.041 (6)	0.040 (6)	0.027 (5)
N2B	0.069 (7)	0.025 (3)	0.056 (7)	0.001 (4)	-0.002 (4)	0.010 (4)
N1B	0.085 (9)	0.054 (7)	0.060 (7)	0.018 (5)	-0.008 (6)	-0.015 (5)
C1B	0.061 (5)	0.059 (5)	0.027 (3)	-0.004 (4)	-0.006 (3)	-0.005 (3)
C2B	0.098 (13)	0.129 (18)	0.030 (6)	0.019 (10)	0.008 (6)	0.015 (7)
C3B	0.118 (14)	0.079 (9)	0.086 (10)	-0.020 (8)	0.007 (8)	0.038 (7)
C4B	0.062 (8)	0.084 (13)	0.051 (7)	0.021 (8)	0.014 (5)	-0.013 (8)
C5B	0.071 (9)	0.055 (7)	0.068 (9)	-0.035 (6)	-0.004 (7)	0.013 (6)
C6B	0.059 (9)	0.059 (10)	0.068 (8)	0.028 (7)	0.002 (6)	-0.039 (6)
C7B	0.044 (5)	0.083 (8)	0.032 (6)	0.021 (5)	0.003 (3)	-0.019 (4)
C8B	0.096 (10)	0.37 (3)	0.095 (7)	-0.108 (14)	0.009 (7)	-0.006 (14)
C9B	0.203 (19)	0.23 (2)	0.196 (17)	0.135 (15)	0.127 (15)	0.154 (15)
C10B	0.218 (17)	0.124 (8)	0.094 (7)	-0.057 (11)	0.095 (10)	-0.047 (6)
C11B	0.063 (4)	0.098 (9)	0.019 (2)	0.020 (4)	0.000 (3)	-0.010 (3)

Geometric parameters (Å, °)

01A—C6A	1.225 (11)	O1B—C6B	1.23 (2)
N2A—C6A	1.348 (17)	N2B—C5B	1.31 (3)
N2A—C5A	1.473 (14)	N2B—C6B	1.42 (3)
N2A—H2AB	0.8600	N2B—H2BB	0.8600
N1A—C5A	1.328 (7)	N1B—C5B	1.318 (13)
N1A—C1A	1.352 (7)	N1B—C1B	1.341 (12)
C1A—C2A	1.353 (8)	C1B—C2B	1.368 (13)
C1A—C11A	1.536 (13)	C1B—C11B	1.47 (2)
С2А—С3А	1.372 (7)	C2B—C3B	1.368 (13)
C2A—H2AA	0.9300	C2B—H2BA	0.9300
C3A—C4A	1.374 (8)	C3B—C4B	1.372 (13)
СЗА—НЗАА	0.9300	СЗВ—НЗВА	0.9300
C4A—C5A	1.375 (7)	C4B—C5B	1.372 (13)
C4A—H4AA	0.9300	C4B—H4BA	0.9300
C6A—C7A	1.624 (14)	C6B—C7B	1.36 (3)
C7A—C8A	1.429 (14)	C7B—C8B	1.39 (2)
С7А—С9А	1.473 (12)	С7В—С9В	1.54 (2)
C7A—C10A	1.572 (12)	C7B—C10B	1.65 (2)

C8A—H8AA	0.9600	C8B—H8BA	0.9600
C8A—H8AB	0.9600	C8B—H8BB	0.9600
C8A—H8AC	0.9600	C8B—H8BC	0.9600
С9А—Н9АА	0.9600	С9В—Н9ВА	0.9600
С9А—Н9АВ	0.9600	C9B—H9BB	0.9600
С9А—Н9АС	0.9600	C9B—H9BC	0.9600
C10A—H10A	0.9600	C10B—H10D	0.9600
C10A—H10B	0.9600	C10B—H10E	0.9600
C10A—H10C	0.9600	C10B—H10F	0.9600
$C11A - C11A^{i}$	1302(17)	$C11B-C11B^{i}$	1 530 (19)
C11A—H11A	0.9700	C11B—H11C	0.9700
C11A—H11B	0.9700	C11B—H11D	0.9700
	0.9700		0.9700
C6A—N2A—C5A	120.6 (11)	C5B—N2B—C6B	140 (2)
C6A—N2A—H2AB	119.7	C5B—N2B—H2BB	109.9
C5A—N2A—H2AB	119.7	C6B—N2B—H2BB	109.9
C5A—N1A—C1A	116.0(7)	C5B—N1B—C1B	121.6 (13)
N1A—C1A—C2A	123.4 (8)	N1B—C1B—C2B	118.8 (13)
N1A—C1A—C11A	116.9 (8)	N1B— $C1B$ — $C11B$	113.3 (11)
C^2A — C^1A — $C^{11}A$	119.4 (8)	C2B-C1B-C11B	127.7(12)
C1A - C2A - C3A	119.7 (8)	C1B-C2B-C3B	117 1 (14)
C1A - C2A - H2AA	120.2	C1B-C2B-H2BA	121.5
C_{3A} C_{2A} H_{2AA}	120.2	C_{3B} C_{2B} H_{2BA}	121.5
C_{2A} C_{2A} C_{2A} C_{4A}	117 8 (8)	$C^{2}B$ $C^{3}B$ $C^{4}B$	121.3 124.0(14)
$C_{2A} = C_{3A} = C_{4A}$	117.8 (8)	$C_{2B} = C_{3B} = C_{4B}$	118.0
$C_{A} C_{A} C_{A} H_{A} A$	121.1	C_{2D} C_{3D} C	118.0
$C_{A} = C_{A} = C_{A}$	121.1 110 1 (7)	$C_{4}D_{-}C_{3}D_{-}\Pi_{3}DA$	110.0 114.1(12)
$C_{3A} = C_{4A} = C_{3A}$	119.1 (7)	$C_{3}D_{-}C_{4}D_{-}C_{3$	114.1(13)
$C_{5A} = C_{4A} = H_{4AA}$	120.4	$C_{3}D_{-}C_{4}D_{-}\Pi_{4}D_{A}$	123.0
$C_{JA} = C_{4A} = \Pi_{4AA}$	120.4	$C_{3}D - C_{4}D - \Pi_{4}DA$	123.0 124.2(18)
NIA C5A N2A	125.3(0)	N2D C5D C4D	124.3(10) 112.4(17)
NIA = C5A = N2A	100.9(8)	N2D-C3D-C4D	112.4(17) 122.0(14)
C4A - C5A - N2A	129.0(8)	NIB-C3B-C4B	125.0(14) 125.0(17)
OIA - COA - NZA	124.5(10)	OIB - COB - C/B	125.0(17)
OIA - CoA - C/A	118.5 (10)	OIB-C6B-N2B	112(2)
$N_2A - C_0A - C_7A$	115.3 (9)	C/B = C0B = N2B	118 (2)
C8A - C/A - C9A	118.5 (10)	C6B - C/B - C8B	118(2)
C8A - C/A - C10A	110.5 (7)	C6B—C7B—C9B	116.9 (15)
C9A—C/A—C10A	106.5 (7)	C8B—C7B—C9B	109.9 (16)
C8A—C/A—C6A	105.8 (8)	C6B—C/B—C10B	105.0 (15)
С9А—С7А—С6А	108.6 (7)	C8B—C7B—C10B	106.5 (14)
C10A—C7A—C6A	106.3 (9)	C9B—C7B—C10B	98.3 (16)
С7А—С8А—Н8АА	109.5	C7B—C8B—H8BA	109.5
C7A—C8A—H8AB	109.5	C7B—C8B—H8BB	109.5
H8AA—C8A—H8AB	109.5	H8BA—C8B—H8BB	109.5
С7А—С8А—Н8АС	109.5	C7B—C8B—H8BC	109.5
H8AA—C8A—H8AC	109.5	H8BA—C8B—H8BC	109.5
H8AB—C8A—H8AC	109.5	H8BB—C8B—H8BC	109.5
С7А—С9А—Н9АА	109.5	С7В—С9В—Н9ВА	109.5

С7А—С9А—Н9АВ	109.5	C7B—C9B—H9BB	109.5
Н9АА—С9А—Н9АВ	109.5	H9BA—C9B—H9BB	109.5
С7А—С9А—Н9АС	109.5	С7В—С9В—Н9ВС	109.5
Н9АА—С9А—Н9АС	109.5	Н9ВА—С9В—Н9ВС	109.5
Н9АВ—С9А—Н9АС	109.5	H9BB—C9B—H9BC	109.5
C7A-C10A-H10A	109.5	C7B-C10B-H10D	109.5
C7A—C10A—H10B	109.5	C7B-C10B-H10E	109.5
H10A—C10A—H10B	109.5	H10D—C10B—H10E	109.5
C7A—C10A—H10C	109.5	C7B-C10B-H10F	109.5
H10A—C10A—H10C	109.5	H10D—C10B—H10F	109.5
H10B—C10A—H10C	109.5	H10E—C10B—H10F	109.5
C11A ⁱ —C11A—C1A	122.2 (9)	C1B-C11B-C11B ⁱ	113.2 (10)
C11A ⁱ —C11A—H11A	106.8	C1B—C11B—H11C	108.9
C1A—C11A—H11A	106.8	C11B ⁱ —C11B—H11C	108.9
C11A ⁱ —C11A—H11B	106.8	C1B—C11B—H11D	108.9
C1A-C11A-H11B	106.8	C11B ⁱ —C11B—H11D	108.9
H11A—C11A—H11B	106.6	H11C-C11B-H11D	107.8

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C10 <i>A</i> —H10 <i>C</i> ···O1 <i>A</i> ⁱⁱ	0.96	2.46	3.409 (12)	171
$N2A$ — $H2AB$ ····O1 A^{ii}	0.86	2.26	3.100 (16)	168

Symmetry code: (ii) -x+1/2, y+1/2, z.