Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(1H-Benzimidazol-2-yl)-4,6-dichlorophenol

Li-Lu Han

Hunan Yongzhou Vocational College, Yongzhou Hunan 425100, People's Republic of China

Correspondence e-mail: yzzyhll@126.com

Received 1 July 2010; accepted 13 July 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.127; data-to-parameter ratio = 15.3.

The title compound, C₁₃H₈Cl₂N₂O, was prepared by the reaction of 3,5-dichloro-2-hydroxybenzaldehyde with 1,2diaminobenzene in methanol at ambient temperature. The title molecule is essentially planar, the mean deviation from the plane of the non-H atoms being 0.037(2) Å. There is an intramolecular $O-H \cdots N$ hydrogen bond in the molecule. In the crystal, symmetry-related molecules are linked through N-H···O hydrogen bonds, forming polymeric chains propagating in [001]. The chains are linked by π - π interactions involving the dichlorophenol ring and the benzoimidazole ring system [centroid–centroid distances = 3.535(2) and 3.724 (2) Å].

Related literature

For the preparation and crystal structures of some Schiff bases bearing a C=N double bond, see: Jeseentharani et al. (2010); Hamaker et al. (2010); Tanaka et al. (2010); Tunç et al. (2009); Khalaji et al. (2010). For standard bond distances, see: Allen et al. (1987).

Experimental

Crystal data C13H8Cl2N2O

 $M_r = 279.11$

Monoclinic, $P2_1/c$	Z = 4
a = 11.850 (3) Å	Mo $K\alpha$ radiation
b = 7.446 (3) Å	$\mu = 0.53 \text{ mm}^{-1}$
c = 13.947 (2) Å	$T = 298 { m K}$
$\beta = 104.261 \ (3)^{\circ}$	$0.21 \times 0.20 \times 0.18 \text{ mm}$
V = 1192.7 (6) Å ³	

Data collection

Bruker SMART CCD area-detector	6117 measured reflections
diffractometer	2562 independent reflections
Absorption correction: multi-scan	1810 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.035$
$T_{\min} = 0.897, \ T_{\max} = 0.911$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$vR(F^2) = 0.127$	independent and constrained
S = 1.03	refinement
2562 reflections	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
67 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
restraint	

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots N2$	0.82	1.85	2.582 (2)	148
$N1-H1A\cdots O1^{i}$	0.90 (3)	2.39 (2)	3.145 (2)	143 (3)

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author acknowledges Hunan Yongzhou Vocational College for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2193).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34-39.
- Jeseentharani, V., Selvakumar, J., Dayalan, A., Varghese, B. & Nagaraja, K. S. (2010). J. Mol. Struct. 966, 122-128.
- Khalaji, A. D., Chermahini, A. N., Fejfarova, K. & Dusek, M. (2010). Struct. Chem. 21, 153-157.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tanaka, K., Shimoura, R. & Caira, M. R. (2010). Tetrahedron Lett. 51, 449-452. Tunç, T., Sarı, M., Sadıkoğlu, M. & Büyükgüngör, O. (2009). J. Chem. Crystallogr. 39, 672-676.

supporting information

Acta Cryst. (2010). E66, o2047 [https://doi.org/10.1107/S1600536810027844]

2-(1H-Benzimidazol-2-yl)-4,6-dichlorophenol

Li-Lu Han

S1. Comment

The condensation reaction of aldehydes with primary amines readily leads to the formation of Schiff bases bearing a C=N double bond (Jeseentharani *et al.*, 2010; Hamaker *et al.*, 2010; Tanaka *et al.*, 2010; Tunç *et al.*, 2009; Khalaji *et al.*, 2010). Herein, we report on the structure of the title compound, the unexpected result of the Schiff base condensation reaction of 3,5-dichloro-2-hydroxybenzaldehyde with 1,2-diaminobenzene.

The title molecule (Fig. 1) is essentially planar, with the mean deviation from the plane of all the non-H atoms being 0.037 (2) Å. There is an intramolecular O—H…N hydrogen bond (Table 1) in the molecule, as shown in Fig. 1. All the bond lengths are within normal ranges (Allen *et al.*, 1987).

In the crystal symmetry related molecules are linked through an intermolecular N—H···O hydrogen bond to form polymer chains propagating in [001] (Table 1 and Fig. 2). These chains are linked via π - π stacking interactions involving rings N1/N2/C7-C9 and C1-C6 [symmetry operation: 2-x, 2-y, 1-y], with a centroid-to-centroid distance of 3.535 (2) Å, and rings C1-C6 and C8-C13 [symmetry code: 2-x, 1-y, 1-z], with a centroid-to-centroid distance of 3.724 (2)Å.

S2. Experimental

3,5-Dichloro-2-hydroxybenzaldehyde (1 mmol, 0.19 g) and 1,2-diaminobenzene (1 mmol, 0.11 g) were dissolved in methanol (30 ml). The mixture was stirred for 30 mins. at RT to give a yellow solution. Yellow single crystals were obtained by slow evaporation of the solution in air.

S3. Refinement

Atom H1A was located in a difference Fourier map and its positional parameters were refined with a fixed isotropic thermal parameter of 0.08 Å². The remaining H-atoms were positioned geometrically and refined as riding: C—H = 0.93 Å, O—H = 0.82 Å, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular O-H…N hydrogen bond is shown as a dashed line.

Figure 2

The crystal packing of the title compound, viewed along the *b*-axis. The O-H…N and N-H…O hydrogen bonds are shown as dashed lines (see Table 1 for details).

2-(1H-Benzimidazol-2-yl)-4,6-dichlorophenol

Hall symbol: -P 2ybc a = 11.850 (3) Å b = 7.446 (3) Å

Cell parameters from 1560 reflections

 $\theta = 3.0-26.2^{\circ}$

 $\mu = 0.53 \text{ mm}^{-1}$

 $0.21 \times 0.20 \times 0.18 \text{ mm}$

T = 298 KBlock, yellow

c = 13.947 (2) Å $\beta = 104.261$ (3)° V = 1192.7 (6) Å³ Z = 4 F(000) = 568 $D_x = 1.554$ Mg m⁻³ Mo K α radiation, $\lambda = 0.71073$ Å

Data collection

Bruker SMART CCD area-detector	6117 measured reflections
diffractometer	2562 independent reflections
Radiation source: fine-focus sealed tube	1810 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
ω scans	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 3.0^\circ$
Absorption correction: multi-scan	$h = -15 \rightarrow 12$
(SADABS; Bruker, 2001)	$k = -9 \rightarrow 9$
$T_{\min} = 0.897, \ T_{\max} = 0.911$	$l = -12 \rightarrow 17$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.042$ Hydrogen site location: inferred from $wR(F^2) = 0.127$ neighbouring sites *S* = 1.03 H atoms treated by a mixture of independent 2562 reflections and constrained refinement 167 parameters $w = 1/[\sigma^2(F_0^2) + (0.0678P)^2]$ 1 restraint where $P = (F_0^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	1.19596 (6)	0.99614 (9)	0.79805 (4)	0.0505 (2)	
C12	1.37522 (5)	0.87011 (11)	0.48582 (5)	0.0602 (3)	
N1	0.91704 (15)	0.6598 (3)	0.37972 (14)	0.0350 (4)	
N2	0.85158 (15)	0.7146 (3)	0.51409 (13)	0.0361 (4)	
01	0.98220 (14)	0.8474 (2)	0.67436 (12)	0.0469 (4)	
H1	0.9240	0.8028	0.6378	0.070*	
C1	1.05692 (18)	0.7881 (3)	0.52982 (15)	0.0312 (5)	
C2	1.06961 (18)	0.8491 (3)	0.62790 (16)	0.0337 (5)	
C3	1.1788 (2)	0.9158 (3)	0.67846 (15)	0.0345 (5)	

C4	1.27187 (19)	0.9217 (3)	0.63599 (16)	0.0389 (5)	
H4	1.3434	0.9663	0.6713	0.047*	
C5	1.25768 (19)	0.8605 (3)	0.53975 (17)	0.0376 (5)	
C6	1.15119 (19)	0.7967 (3)	0.48692 (16)	0.0360 (5)	
H6	1.1423	0.7590	0.4219	0.043*	
C7	0.94248 (18)	0.7206 (3)	0.47531 (15)	0.0328 (5)	
C8	0.79936 (19)	0.6132 (3)	0.35518 (16)	0.0352 (5)	
C9	0.75956 (18)	0.6484 (3)	0.44004 (17)	0.0365 (5)	
C10	0.6424 (2)	0.6198 (4)	0.43936 (19)	0.0489 (7)	
H10	0.6147	0.6440	0.4949	0.059*	
C11	0.5702 (2)	0.5549 (4)	0.3542 (2)	0.0584 (8)	
H11	0.4922	0.5346	0.3520	0.070*	
C12	0.6117 (2)	0.5182 (4)	0.2698 (2)	0.0596 (8)	
H12	0.5604	0.4730	0.2135	0.071*	
C13	0.7263 (2)	0.5474 (3)	0.26834 (19)	0.0485 (6)	
H13	0.7532	0.5244	0.2123	0.058*	
H1A	0.968 (2)	0.649 (4)	0.342 (2)	0.080*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0599 (5)	0.0604 (4)	0.0299 (3)	-0.0096 (3)	0.0084 (3)	-0.0027 (3)
Cl2	0.0373 (4)	0.0907 (6)	0.0589 (4)	-0.0105 (3)	0.0236 (3)	-0.0014 (4)
N1	0.0306 (10)	0.0409 (11)	0.0340 (10)	-0.0020 (8)	0.0090 (8)	-0.0018 (8)
N2	0.0306 (10)	0.0451 (12)	0.0341 (10)	0.0002 (9)	0.0106 (8)	0.0037 (8)
01	0.0365 (9)	0.0717 (13)	0.0367 (9)	-0.0072 (8)	0.0171 (7)	-0.0077 (8)
C1	0.0297 (11)	0.0315 (12)	0.0326 (11)	0.0013 (9)	0.0085 (9)	0.0032 (9)
C2	0.0327 (12)	0.0374 (13)	0.0326 (11)	0.0040 (9)	0.0112 (9)	0.0065 (9)
C3	0.0384 (13)	0.0367 (13)	0.0283 (11)	0.0003 (10)	0.0077 (9)	0.0038 (9)
C4	0.0318 (13)	0.0438 (14)	0.0384 (12)	-0.0037 (10)	0.0034 (10)	0.0046 (10)
C5	0.0303 (12)	0.0433 (14)	0.0409 (13)	0.0004 (10)	0.0118 (10)	0.0048 (10)
C6	0.0349 (12)	0.0411 (14)	0.0338 (11)	-0.0007 (10)	0.0123 (10)	-0.0020 (10)
C7	0.0331 (12)	0.0339 (12)	0.0320 (11)	0.0028 (10)	0.0088 (9)	0.0043 (9)
C8	0.0299 (12)	0.0370 (13)	0.0382 (12)	0.0004 (9)	0.0073 (9)	0.0048 (10)
C9	0.0281 (12)	0.0399 (13)	0.0402 (12)	0.0007 (10)	0.0058 (10)	0.0074 (10)
C10	0.0343 (13)	0.0657 (18)	0.0486 (15)	-0.0014 (12)	0.0138 (11)	0.0071 (12)
C11	0.0297 (13)	0.082 (2)	0.0626 (18)	-0.0054 (14)	0.0087 (13)	0.0066 (15)
C12	0.0426 (16)	0.075 (2)	0.0530 (16)	-0.0102 (14)	-0.0035 (13)	-0.0045 (14)
C13	0.0425 (15)	0.0583 (17)	0.0435 (14)	-0.0053 (13)	0.0082 (11)	-0.0039 (12)

Geometric parameters (Å, °)

Cl1—C3	1.736 (2)	C4—C5	1.388 (3)	
Cl2—C5	1.740 (2)	C4—H4	0.9300	
N1—C7	1.370 (3)	C5—C6	1.379 (3)	
N1—C8	1.395 (3)	С6—Н6	0.9300	
N1—H1A	0.90 (3)	C8—C13	1.393 (3)	
N2—C7	1.320 (3)	C8—C9	1.403 (3)	

supporting information

N2 C0	1 204 (2)	C0 C10	1 402 (2)
$N_2 = C_9$	1.394(3) 1.250(2)	$C_{2} = C_{10}$	1.402(3)
01 - 02	1.550 (2)		1.309 (4)
	0.8200		0.9300
	1.393 (3)		1.409 (4)
	1.414 (3)	CII—HII	0.9300
C1_C/	1.470 (3)	C12—C13	1.380 (4)
C2—C3	1.403 (3)	C12—H12	0.9300
C3—C4	1.375 (3)	С13—Н13	0.9300
C7—N1—C8	106.74 (18)	С1—С6—Н6	119.6
C7—N1—H1A	125 (2)	N2—C7—N1	112.43 (19)
C8—N1—H1A	128 (2)	N2—C7—C1	122.80 (19)
C7—N2—C9	106.08 (18)	N1—C7—C1	124.77 (19)
C2—O1—H1	109.5	C13—C8—N1	132.1 (2)
C6—C1—C2	119.70 (19)	C13—C8—C9	122.2 (2)
C6—C1—C7	121.93 (19)	N1—C8—C9	105.67 (19)
C2—C1—C7	118.35 (19)	N2-C9-C10	130.6 (2)
O1—C2—C3	118.9 (2)	N2—C9—C8	109.08 (19)
O1—C2—C1	123.35 (19)	С10—С9—С8	120.3 (2)
C3—C2—C1	117.71 (19)	C11—C10—C9	117.7 (2)
C4—C3—C2	122.2 (2)	C11—C10—H10	121.1
C4—C3—C11	119.11 (17)	С9—С10—Н10	121.1
C2—C3—C11	118.67 (17)	C10-C11-C12	121.4 (2)
C3—C4—C5	119.1 (2)	C10-C11-H11	119.3
C3—C4—H4	120.4	C12—C11—H11	119.3
C5—C4—H4	120.4	C13—C12—C11	121.9 (2)
C6—C5—C4	120.4 (2)	C13—C12—H12	119.0
C6—C5—C12	120.51 (18)	C11—C12—H12	119.0
C4—C5—Cl2	119.04 (17)	C12—C13—C8	116.5 (2)
C5—C6—C1	120.8 (2)	C12—C13—H13	121.8
С5—С6—Н6	119.6	С8—С13—Н13	121.8

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N2	0.82	1.85	2.582 (2)	148
N1—H1A···O1 ⁱ	0.90 (3)	2.39 (2)	3.145 (2)	143 (3)

Symmetry code: (i) x, -y+3/2, z-1/2.